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Abstract: Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts
and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-
friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs
synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum
of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD
pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size
calculated from the Debye–Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs
spherical in shape with clusters (1–100 nm). The antibacterial activity of the NPs was tested against
Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial
growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and
showed antibacterial activity.

Keywords: zinc oxide; green synthesis; nanoparticles; antibacterial; Rubus fairholmianus

1. Introduction

Metal oxide nanoparticles have received remarkable attention in biomedical technol-
ogy and are extensively used in engineering and medical applications due to their high
surface area. Both the metal and metal oxide nanoparticles hold strong antioxidant and an-
timicrobial properties, which are widely used for the detection of pathogenic microbes and
diagnosis of cancer progression [1]. Metal oxide nanoparticles such as zinc (Zn), calcium
(Ca), and magnesium (Mg) oxide nanoparticles at a minimum concentration significantly
inhibit microbial growth. ZnO-NPs are commonly used in the production of anti-itch
creams, anti-septic lotion, anti-microbial powders, anti-bacterial band-aids, surgical tapes,
anti-dandruff lotion, diaper powders, and ceramics [2]. Hamelian and colleagues synthe-
sized silver nanoparticles through a green synthesis method using Thymus kotschyanus
extract as a reducing agent. The synthesized silver nanoparticles showed strong antioxi-
dant and antibacterial but less cytotoxic effects [3]. Hemmati et al. [4] reported the green
synthesis of silver nanoparticles using fritillaria flower plant extract as a reducing and
capping agent. Various researchers explained the antimicrobial and antioxidant properties
of metal nanoparticles, the metal nanoparticles have shown strong antimicrobial properties,
in both in vitro and in vivo experiments [5–9].

Among various nanoparticles, ZnO has recently received much attention due to
its unique properties (wide and direct bandgap (3.3 eV) and large excitation binding
energy (60 meV)). ZnO is highly catalytic in nature with photochemical activity [10].
Generally, ZnO NPs are produced by several physicochemical approaches such as direct
homogenous precipitation, hydrothermal and solvothermal reactions, metal decomposition,
chemical vapor decomposition, laser irradiation, mechanochemical milling, and molecular
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beam epitaxy. The chemical synthesis of ZnO NPs involves the consumption of various
organic solvents, oxidizing, and reducing agents that are tedious, expensive, and non-eco-
friendly [11]. Hence, there is a need for an alternative approach to synthesize ZnO NPs in
an eco-friendly way. In contrast to chemical synthesis, biological nanoparticle synthesis
uses microbes, enzymes, fungi, or plants as reducing agents in the production of ZnO
NPs [12,13]. Based on previous studies, it is understood that ZnO exhibits significant
growth inhibition of a broad spectrum of bacteria [14,15]. Zinc oxide nanoparticles can
also be used as a drug delivery vehicle to deliver various drug molecules to the targeted
cells [12].

The use of plant and plant-based bioactive compounds for the synthesis of metal
nanoparticles is attracting attention due to their excellent reducing capacity and antimi-
crobial activity and this process is known as green synthesis [15]. In green synthesized
nanoparticles, the bioactive/phytochemical compounds present in the plant extract are
strongly bound or encased over the surface of nanomaterials that will have both the proper-
ties of nanomaterials and phytochemicals. Phytochemicals or plant bioactive compounds,
which have strong unique properties of that particular plant (e.g., phenols, vitamins, ter-
penoids, ketones, aldehydes, and amides), play a pivotal role in treating various diseases.
The type of plant and plant extract determines the size and shape of the nanoparticles. The
increased biological activity of the green synthesized nanoparticles is due to the synergistic
effect of the bioactive compounds present in plants and nanomaterial precursors used for
synthesis. The green synthesized nanoparticles have also shown various properties such
as electrochemical detection of many antibiotic drugs due to the superior electrochemical
performance of biosynthesized nanoparticles [16–18].

In recent years, a lot of interest has been raised in isolating plant-based bioactive
compounds using alcoholic extracts to perform pharmacological experiments [19]. The
main aim of these pharmacological experiments is to control fungal and bacterial infections
in human beings. Various ethnomedical plants (e.g., Alhaji camelorum, Anthemis nobilis,
Berberis integerrima, and Zingiber officinale) are used for their antibacterial and antifungal
properties [20–23]. R. fairholmianus is an ethnomedicinally important plant with antioxi-
dant and anticancer properties. Various bioactive compounds were isolated from various
Rubus species (Rubus amabilis, Rubus niveus, Rubus sachalinensis, Rubus idaeus, Rubus moluc-
canus, Rubus ellipticus, Rubus brasiliensis) and the preliminary phytochemical screening
showed the presence of phenolic compounds, anthocyanins, terpenoids, flavonoids, ter-
penoids, polyphenols, and aldehydes. Studies reported that R. fairholmianus root acetone
extract showed the presence of many phenolic compounds. Cis-2-(isopentyloxycarbonyl)
benzoic acid, 2-(5-methylhexyl) benzoic acid, 4-methylpentyl benzoate, 3-(iminomethyl)-
2,4-dimethylphenol, and isopentyl benzoate or 3-methyl benzoate are some of the bioactive
compounds isolated from R. fairholmianus, which showed strong antioxidant properties,
active in inhibiting BRCA oncoproteins and COX inflammatory proteins with in vitro
anticancer properties against various cell lines [24,25]. Plant phenolic compounds hold
significant antioxidant properties, and antioxidants are well known for their metal ion-
reducing properties. This action favors the formation of nanoparticles in the green synthesis
method. Moreover, the presence of various proteins, lipids, and amino acids in plants
supports the formation of nanoparticles and inhibits nanoparticle cluster formation or
particle agglomeration. To date, there are no reports on the use of R. fairholmianus extracts
for the biosynthesis of ZnO NPs. This study is the first report on the synthesis of ZnO NPs
through a green chemistry approach using R. fairholmianus root extract (RE) as an effective
reducing agent, and to evaluate their antimicrobial properties.

2. Materials and Methods
2.1. Plant Collection, Extraction and Biosynthesis of ZnO NPs

R. fairholmianus was collected from Kerala, India, and the authenticity was confirmed
(voucher specimen no: BSI/SRC/5/23/2010-11/Tech.1657) by the Botanical Survey of
India. The root (100 g) of R. fairholmianus was washed under running tap water, dried,
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and powdered. The powdered roots were extracted with acetone using Soxhlet apparatus.
Then, 200 mg of dried extract was dissolved in 10 mL of 0.5% DMSO [25].

Biosynthesis of NPs was carried out according to the procedure of Zheng et al. [26].
Briefly, 10 mL R. fairholmianus root extract in 0.5% DMSO was added into 10 mL of 0.5
M zinc nitrate solution and stirred at 80 ◦C for 48 h. The pale white precipitate formed
after centrifugation (30 min at 2500 rpm) was washed with double distilled water. RE-ZnO
NPs were collected by drying at 40 ◦C in a hot air oven. Meanwhile, to compare the
biosynthesized NPs, the ZnO NPs were chemically synthesized using sodium hydroxide
according to the method of Zheng et al. [26]. A modified green synthesis protocol for the
zinc oxide nanoparticles using various plant extracts is given in Table 1.

Table 1. Biosynthetic conditions of nanoparticles synthesized from various plant extracts.

Plant Name Biosynthesis Conditions Nature References

Mussaenda frondosa L. Continuous stirring at 70 ◦C for 15 min + drying at
400 ◦C 30 min + calcination at 400 ◦C Crystal [27]

Cayratia pedata Continuous stirring at 65 ◦C for 20 min + drying at
65 ◦C for overnight + calcination at 400 ◦C for 2 h Fine powder [28]

Eucalyptus globulus Labill Continuous stirring at 60 ◦C for 1 h + drying at
100 ◦C + calcination 400 ◦C for 2 h Fine powder [29]

Mimosa pudica Continuous stirring at room temperature for 4 h +
drying at 300 ◦C for 45 min + calcination 400 ◦C Crystal [30]

Beta vulgaris, Cinnamomum tamala,
Cinnamomum verum, Brassica oleracea var.

Continuous stirring at 70 ◦C until white paste
formation + calcination 400 ◦C for 2 h

Coroase
powder [31]

2.2. Characterization of Biosynthesized RE-ZnO NPs

The crystalline structure of RE-ZnO NPs was characterized from 5◦ to 80◦ in 2θ by
XRD (Panalytical X-PertPro X-Ray Diffractometer with Philips PW1729 diffractometer
equipped with Cu Kα radiation source which operates at 45 kV/40 mA). The surface
morphology of RE-ZnO NPs was categorized by a TESCAN, VEGA Scanning electron
microscope operating at 20 kV and the samples were coated with carbon to acquire higher
resolution images. UV-Vis spectrophotometer was used to find the stability of the syn-
thesized RE-ZnO NPs in distilled water and the wavelength used was in the range of
200–800 nm (Schimadzu UV-1208, Kyoto, Japan). Fourier-transform infrared spectroscopy
(FTIR) (Perkin–Elmer PE 1600, MA, USA) was used to find out the chemical and functional
group of RE and RE-ZnO NPs. For FTIR analysis, the samples were made into pellets
using KBr reagent and measured in the spectral range of 400–4000cm−1. Finally, thermal
properties of RE-ZnO NPs were measured using thermogravimetry (TGA)/differential
scanning calorimeter (DSC) (TGA/DSC-60H Schimadzu, Kyoto, Japan) at a heating rate of
10.0 ◦C/min at room temperature and at 1000 ◦C in nitrogen gas to establish the ratio of
organic/inorganic contents.

2.3. Agar Well Diffusion Method for Antimicrobial Activity

The agar well diffusion technique was used to find the antibacterial activity of RE-ZnO
NPs using S. aureus (ATCC® BAA-1026TM). Briefly, a sterile cotton swab was dipped into a
broth culture of S. aureus (1 × 105 cfu/mL) and spread uniformly on nutrient agar plates.
Two agar wells of 5 mm diameter were prepared with the help of a sterilized stainless steel
cork borer. About 100 µL of RE-ZnO NPs or RE were added to wells and the plates were
incubated at 37 ◦C for 24 h. Then the zones of inhibition (appearance of clear area/white
color area around the wells) and the diameter of each zone of inhibition were measured
and the mean values were recorded.



Molecules 2021, 26, 3029 4 of 11

2.4. Minimum Inhibitory Concentrations

The minimum inhibitory concentration (MIC) for S. aureus (ATCC® BAA-1026TM) was
determined as sensitivity to the synthesized RE-ZnO NPs, RE, and ampicillin (positive
control) using the microdilution assay according to Mandell et al. [32]. Twenty-four-hour
fresh cultures were prepared and the standardized inoculum was made and used for the
antibacterial assay. In brief, a 96-well plate was prepared by dispensing 190 µL Mueller-
Hinton broth (MHB) and 10 µL inoculum (105 CFU/mL) into each well. Various dilutions
of RE, RE-ZnO NPs, and ampicillin (1 mg/mL) were mixed with MHB in the microplates
containing the previously added inoculums and plates were incubated at 37 ◦C for 24 h.
The well with only MHB served as a blank control. S. aureus growth was determined at
590 nm using a microplate reader (Reagen Microplate Reader, NJ, USA).

2.5. Bacterial Growth in Different Concentrations of RE-ZnO NPs

S. aureus (ATCC® BAA-1026TM) suspensions (0.2 mL) were inoculated into correspond-
ing tubes containing 1.5 mL of different concentrations of RE, ZnO NP, and RE-ZnO NPs
and 1.5 mL of MHB. To these test tubes, 1 mL of phenol red indicator solution was added.
Tubes containing inoculum alone served as positive controls and tubes with RE-ZnO NPs +
nutrient media served as negative controls. Test tubes with only MHB served as a blank
control and tubes were incubated at 37 ◦C for 24 h and were observed for change in color
and pH.

3. Results and Discussion

The successful biosynthesis of RE-ZnO NPs using R. fairholmianus root extract was
observed by the change in the color of the reaction solution from a brownish-yellow to a
pale white after mixing plant extract with zinc nitrate for 48 hr.

Figure 1 displays the UVs absorption spectrum of the RE and RE-ZnO NPs. A peak
was observed at 280 nm, which could be attributed to the n–π* transition of the molecules
present in the RE. The spectrum of RE-ZnO NPs revealed a peak at 357 nm due to intrinsic
bandgap absorption, which confirms the RE-ZnO NPs synthesis. The bandgap energy was
calculated at 3.47 eV [33,34].
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Figure 2 shows the FTIR spectrum of the RE and RE-ZnO NPs. The plant extracts
showed various functional peak stretches from 3440 cm−1 (hydroxide) to 2856 cm−1 (car-
boxyl) groups. Hydrogen bonds (OH) stretched at 3440 cm−1, C-H stretching was observed
at 2856 cm−1, COO symmetric stretch was found at 1426 cm−1, and COO asymmetric
stretching at 1626 cm−1. Similar types of peaks were also observed in RE-ZnO NPs
spectra, which showed a stretching of COO symmetric and asymmetric bonds around
1400–1600 cm−1 and indicating the presence of carboxyl groups over the surface of ZnO
NPs. The ZnO peak was observed at 486 cm−1 and the presence of phytochemical com-
pounds (polyphenolics, flavonoids, tannins, glycosides, saponins, and gallic acids) in Rubus
(RE) facilitates the formation of ZnO NPs by acting as a reducing and stabilizing agent.
Another reason is that the polyphenolic groups present in Rubus also promote the reduction
of zinc nitrate to zinc oxide and stabilize the formation of RE-ZnO NPs. These spectral
results were consistent with the studies of Senthilkumar et al. [34].
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Figure 2. FTIR spectra of R. fairholmianus root extract (RE) and RE-zinc oxide nanoparticles (RE-ZnO NPs).

Figure 3a,b describe the TGA/DSC spectra of the RE and RE-ZnO NPs, which dis-
played heat at 10 ◦C/Min. TGA was used to decompose the prepared materials, and release
water and volatile organic molecules [35,36]. The extract gives three types of weight loss
of 26.78%, 11.44%, and 20.88% with corresponding temperatures of 205 ◦C, 604 ◦C, and
789 ◦C, respectively. The weight loss of the extract at 26.78% is due to the removal of water
molecules [37]. The weight loss of 11.44% might be due to the decomposition of hydroxide
and volatile organic groups [38]. The TGA/DSC spectrum of RE-ZnO NPs is shown in
Figure 3b. The DSC curve of RE-ZnO NPs exhibited exothermic and endothermic peaks at
95 ◦C and 395 ◦C, respectively. The exothermic peak revealed weight loss (1.68%), which
is due to the removal of water and organic volatile molecules from the RE-ZnO NPs. The
endothermic peak at 395 ◦C reveals the decomposition of zinc hydroxide to ZnO NPs with
the weight loss (0.93%), as shown in Figure 3b.
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Figure 3. Thermogravimetric analysis spectra of the R. fairholmianus root extract (RE) (a) and RE-zinc oxide nanoparticles
(RE-ZnO NPs) (b).

Figure 4 describes the XRD pattern of biosynthesized RE-ZnO NPs. The peaks at
2θ 32◦, 34◦, 36.1◦, 46◦, 58◦, 64◦, 66◦, 70◦, and 72 ◦C can be indexed to (100), (101), (102),
(110), (103), (200), (112), and (201), planes are matching with those patterns present in the
International Center of Diffraction Data card (JCPDS card no: 36-1451), which confirms the
crystalline nature of the RE-ZnO NPs. The absence of diffraction peaks showed that the
synthesized ZnO NPs are pure without any cross-contamination with other molecules and
crystalline in nature. The Debye–Scherrer equation was used to determine the size of the
RE-ZnO NPs and showed the size is about 11.34 nm. During the biosynthesis process, the
aromatic hydroxyl groups (OH) of Rubus interact with zinc ions and leads to the formation
of RE-ZnO NPs. The unreacted zinc nitrate precursors and intermediate products were
observed as a peak around the 30 nm and 60 nm wavelengths. The particle size of the
synthesized ZnO NPs was in close agreement with the previous findings of Fakhari et al.
who synthesized the ZnO NPs of an average size of 21.49 nm [39].
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Figure 5 displays the SEM image of ZnO NPs synthesized using RE. The excellent
distribution of ZnO NPs in RE might be due to the presence of organic compounds in
Rubus, which facilitates the reduction of zinc nitrate from RE that can offer adequate surface
charges between individual ZnO NPs. It was found that the individual particles aggregated
together to form larger spherical particles, which were uniformly distributed. The EDAX
spectrum shows the presence of Zn and O together with carbon and oxygen, which can
be attributed to the extract. The synthesized nanoparticles are aggregated in a spherical
shape and showed an average size between 1 and 100 nm. The characterization results
obtained in this study were found to be similar to the earlier reports on the biosynthesis
of ZnO NPs from algal and other plant extracts [40,41]; however, this is the first report on
R. fairholmianus mediated green synthesis of ZnO NPs.
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Tables 1 and 2 and Figure 6 depict the antibacterial activity of RE, and RE-ZnO NPs
against S. aureus. The results indicated that RE and RE-ZnO NPs have antibacterial activities
at various concentrations against the target bacteria. RE-ZnO NPs displayed the most
significant spectrum of activity. The inhibitory effect of RE-ZnO NPs was observed at
157.22 µg/mL (MIC), whereas RE was at 337.86 µg/mL (MIC). Ampicillin showed an
inhibitory activity at 0.79 µg/mL (MIC) on S. aureus.

Table 2. Minimum inhibitory concentration (MIC) of R. fairholmianus root extract (RE) and RE-zinc
oxide nanoparticles (RE-ZnO NPs).

Samples

Susceptibility (µg/mL)

S. aureus

MIC

RE 337.86
RE-ZnO NPs 157.22

Ampicillin (positive control) 0.79
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Table 3 reveals the antibacterial effect of R. fairholmianus root extract (RE), and RE-
ZnO NPs at various concentrations. The smaller size of the nanoparticles simplifies their
entry through the microbial cell membrane, and thereby inhibits cell growth and promotes
bacterial cell death. Metal nanoparticles, mainly ZnO NPs, have strong anti-microbial
properties; the mechanism behind this is that ZnO NPs will generate hydrogen peroxides
(H2O2) and these peroxides will disturb the lipid and protein bilayers that lead to the
destruction of bacterial cells [42]. The other antimicrobial action of ZnO NPs is that it
involves the generation of reactive oxygen species (ROS) and NPs accumulation in the
cytoplasm that induces cell death. The generated ROS will damage bacterial proteins,
lipids, and DNA to induce cell death [43,44]. Due to the smaller size (1–100 nm), NPs easily
breach through the cell wall and enter mitochondria leading to mitochondrial oxidative
stress and apoptosis that eventually results in cell death [44]. A recent study by Kumar
et al. proved that ZnO NPs prepared with Raphanus sativus root extract have excellent
antimicrobial activity against MDR strain [45].

Table 3. Bacterial growth in different concentrations of R. fairholmianus root extract (RE), and RE-
ZnO NPs.

Groups 10 µg/mL 20 µg/mL 30 µg/mL 40 µg/mL 50 µg/mL

RE + + + + +
RE-ZnO NPs + + - - -

Positive Control + + + + +
Negative Control - - - - -

Positive (+) = color change (red to yellow) indicating growth of S. aureus; Negative
(−) = no color change (red) indicating the absence of growth of S. aureus.

Previous reports of ZnO NPs from plant extracts showed good antibacterial effects
against various pathogenic bacteria. To the best of our knowledge, this is the first study
where the R. fairholmianus root extract has been used to synthesize ZnO NPs. Plants from
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the Rubus genus were found to possess flavonoids, tannins, and polyphenolics, which
could explain their biological properties and strong antibacterial properties. The different
phytochemicals in the R. fairholmianus extract are responsible for the reduction of zinc
nitrate in the formation of RE-ZnO NPs, and its antibacterial activity against S. aureus.

4. Conclusions

In this study, we reported a green and eco-friendly process to synthesize ZnO NPs
using Rubus fairholmianus root extract. The initial indication of the formation of ZnO NPs is
the change in the color of the reaction solution from a brownish-yellow to a pale white. The
size of the biosynthesized RE-ZnO NPs is 100 nm and it is confirmed by SEM analysis. The
phytochemicals of R. fairholmianus were helpful in the formation of ZnO NPs as evidenced
by FTIR results. The XRD study showed that the synthesized RE-ZnO NPs were high in
purity, and crystalline in nature. The synthesized RE-ZnO NPs showed strong antimicrobial
properties. These findings revealed that R. fairholmianus could be potentially used in the
production of metal nanoparticles for large-scale synthesis.
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