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Simple Summary: Breast cancer is the second leading cause of cancer-related death in women in
the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with
breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast
cancer, there are several members in the Akt family that play distinct roles in breast cancer. However,
the function of Akt isoforms depends on many factors. This review analyzes current progress on the
isoform-specific functions of Akt isoforms in breast cancer.

Abstract: Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It
acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes,
including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt
signaling pathway is frequently deregulated in breast cancer and plays an important role in the devel-
opment and progression of breast cancer. There are three closely related members in the Akt family,
namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures,
they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is
an important target for cancer therapy, an understanding of the isoform-specific function of Akt
is critical to effectively target this pathway. However, our perception regarding how Akt isoforms
contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The
purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in
breast cancer.

Keywords: Akt isoforms; regulation; breast cancer initiation and progression; cell proliferation;
autophagy; senescence; metabolism; tumorigenesis; metastasis; AGC kinase

1. Introduction

Breast cancer is the second leading cause of cancer-related death, affecting 1 in
8 women in the United States. It is also a common cancer worldwide. It is anticipated
that approximately 281,550 cases will be diagnosed, and 43,600 women are expected to die
from breast cancer in 2021 (breastcancer.org, 1 May 2021). Based on PAM50 gene expres-
sion profiling, breast cancer is categorized in four different subtypes: luminal A, luminal
B, HER2-enriched and basal-like [1]. The status of estrogen receptor (ER), progesterone
receptor (PR) and epidermal growth factor receptor 2 (HER2) detected by immunohisto-
chemistry is used in the clinic to decide treatment strategy for breast cancer [2]. While
luminal A breast cancers are ER-positive, PR-positive and HER2-negative, luminal B breast
cancers are ER-positive, PR-negative and HER2-positive. HER2-enriched breast cancers are
negative for ER and PR but overexpress HER2 whereas basal-like (BL) breast cancers do
not express ER, PR or HER2 and are often used synonymously with triple-negative breast
cancer (TNBC).

The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is frequently dereg-
ulated in breast cancer [3,4]. PI3K contains a p85 regulatory subunit and a p110 catalytic
subunit. In response to growth factors, the lipid kinase activity of class I PI3K becomes
activated and generates the second messenger PIP3 from PIP2, resulting in the activation of
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Akt [5]. The lipid phosphatase activity of the tumor suppressor PTEN, which dephospho-
rylates PIP3, causes inactivation of PI3K, thereby inhibiting Akt [6]. Although mutations in
Akt are rare, activating mutations in the catalytic subunit of p110 PI3K (PIK3CA) have been
found in breast cancer [7]. In addition, amplification of HER2 as well as mutations in PTEN
could also result in the activation of PI3K/Akt signaling. Mutations in PIK3CA are most
common in luminal type of breast cancer [8,9], but have also been found in TNBC [3,10].
HER2 is often amplified in HER2-enriched breast cancer whereas decreased PTEN and
increased EGFR expression is associated with TNBC [9]. Reduction in PTEN levels were
also associated with lymph node metastases and poor prognosis of breast cancer [11].

Akt belongs to the AGC group of serine/threonine protein kinases and is also known
as protein kinase B due to its similarities with protein kinase A and protein kinase C [12–14].
It regulates many cellular processes including cell proliferation, cell survival, metabolism
and metastasis [15,16]. It is a major mediator of the oncogenic signaling acting downstream
of PI3K. There are three members in the Akt family, namely, Akt1(PKBα), Akt2(PKBβ) and
Akt3(PKBγ) [17]. Although the overall structure of Akt isoforms is similar, they exhibit
redundant and even opposite functions depending on the cellular context. In this review
article, we have discussed recent advancements on the understanding of distinct functions
of Akt isoforms in breast cancer.

2. Structural Heterogeneity and Regulation of Akt Isoforms

Three members of the Akt family Akt1, Akt2 and Akt3 are encoded by distinct genes
located in chromosomes 14q32 [18], 19q13 [19] and 1q44 [20], respectively. All three Akt
isoforms contain an N-terminal pleckstrin homology (PH) domain, a central kinase domain
and a C-terminal regulatory domain that contains a hydrophobic motif (HM) site. While the
linker region that tethers the PH to the catalytic domain is divergent, there is considerable
sequence homology among these domains [21,22].

Activity of Akt is regulated by conformational changes and phosphorylation. Akt
isoforms can be phosphorylated at approximately 20 different sites and differential phos-
phorylation of Akt isoforms may be responsible for distinct substrate specificities and
their non-redundant functions [23]. Akt is phosphorylated at the conserved activation
loop (A-loop or AL), turn motif (TM) and hydrophobic motif (HM) sites. In the absence
of a stimulus, the interaction of the PH domain with the kinase domain maintains Akt
in an inactive compact structure in the cytosol [24]. When PI3K becomes activated, it
phosphorylates phosphoinositides to generate the second messenger phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) from phosphatidylinositol (4,5)-bisphosphate (PIP2) (Figure 1).
According to the canonical model, PIP3 binds to the PH domain of Akt inducing its
membrane recruitment and conformational change which relieves its negative regulation.
Phosphoinositide-dependent kinase 1 (PDK1) also contains a PH domain. Thus, the gener-
ation of PIP3 facilitates recruitment of PDK1 to the membrane where it phosphorylates Akt
at the activation loop (T308, T309, T305 in Akt1, Akt2, and Akt3, respectively) [25]. Mech-
anistic target of rapamycin complex 2 (mTORC2) phosphorylates Akt at the C-terminal
HM site (S473, S474, S472 in Akt1, Akt2, and Akt3, respectively) resulting in full activa-
tion of Akt [17,26]. It is believed that in response to insulin or growth factors, mTORC2
phosphorylates Akt at the HM site whereas during DNA damage or stress, DNA-PK
is primarily responsible for HM phosphorylation [27]. Several other kinases including
mitogen-activated protein kinase (MAPK) [28], integrin-linked kinase (ILK) [29], protein
kinase C (PKC)-α [30], PKCβII [31], ataxia telangiectasia mutated (ATM) [32], IκB kinase-κ
(IKKε)/TANK-binding kinase 1 (TBK1) [33] IκB kinase-α (IKKα) [34] and cyclin D1 [35]
have been implicated in phosphorylating Akt at the HM site. It was suggested that HM site
phosphorylation is regulated by autophosphorylation and is independent of mTORC2 but
depends on the removal of the PH domain from the kinase domain and phosphorylation at
the A-loop by PDK1 [36]. Once activated, Akt translocates to different compartments to
transduce signals [37].
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Akt is phosphorylated at the turn motif (TM) independent of growth factor stimula-
tion of PI3K activity. The TM site is phosphorylated co-translationally by mTORC2 (T450, 
T451 and T447 in Akt1, Akt2, and Akt3, respectively) and is required for Akt folding, mat-
uration, and stability but does not directly regulate Akt activity [38]. Although mTORC2 
mediates phosphorylation of both HM and TM sites of Akt, phosphorylation at these sites 
have differential effects on Akt activity. HM phosphorylation enhances phosphorylation 
at the A-loop and increases Akt activity whereas TM phosphorylation induces 
dephosphorylation of A-loop phosphorylation, thus decreasing Akt activity [39]. A recent 
study identified additional mTORC2-regulated phosphorylation sites termed TOR inter-
acting motif (TIM) at the C-terminal tail [40]. These sites are conserved among AGC ki-
nases (Akt1-T443, Akt-T444, Akt3-T440) and regulate A-loop phosphorylation by PDK1. 
Although there are controversies whether mTORC2 directly phosphorylates HM site or 
not, it can regulate Akt activity by phosphorylating TIM [40]. 

The C-terminal regulatory tail contains additional phosphorylation sites S477 and 
S479 (Akt1) which can be phosphorylated in a manner dependent on cell cycle progression 
[41]. Phosphorylation of these sites by cyclin-dependent kinase 2 (Cdk2/cyclinA) results 
in Akt activation [41]. S477/S479 sites were also phosphorylated by mTORC2 or DNA-PK 
in response to insulin or DNA damage, respectively. A correlation between S477/S479 
phosphorylation and cyclin A2 expression was found in breast cancer patient samples 
[41]. Cdk2/cyclin A also phosphorylated Akt2 at S478 and synergized with S474 phos-
phorylation at the HM site to allosterically activate Akt2 [41]. Recently, it was reported 

Figure 1. Regulation of cellular processes by Akt isoforms. Phosphorylation of Akt isoforms by
upstream kinases triggers distinct cellular responses as indicated by upward and downward arrows.
AL—activation loop, TIM—TOR interacting motif, TM—turn motif, HM—hydrophobic motif, PH—
pleckstrin homology.

Akt is phosphorylated at the turn motif (TM) independent of growth factor stimulation
of PI3K activity. The TM site is phosphorylated co-translationally by mTORC2 (T450, T451
and T447 in Akt1, Akt2, and Akt3, respectively) and is required for Akt folding, maturation,
and stability but does not directly regulate Akt activity [38]. Although mTORC2 mediates
phosphorylation of both HM and TM sites of Akt, phosphorylation at these sites have
differential effects on Akt activity. HM phosphorylation enhances phosphorylation at the
A-loop and increases Akt activity whereas TM phosphorylation induces dephosphorylation
of A-loop phosphorylation, thus decreasing Akt activity [39]. A recent study identified
additional mTORC2-regulated phosphorylation sites termed TOR interacting motif (TIM)
at the C-terminal tail [40]. These sites are conserved among AGC kinases (Akt1-T443,
Akt-T444, Akt3-T440) and regulate A-loop phosphorylation by PDK1. Although there are
controversies whether mTORC2 directly phosphorylates HM site or not, it can regulate
Akt activity by phosphorylating TIM [40].

The C-terminal regulatory tail contains additional phosphorylation sites S477 and
S479 (Akt1) which can be phosphorylated in a manner dependent on cell cycle progres-
sion [41]. Phosphorylation of these sites by cyclin-dependent kinase 2 (Cdk2/cyclinA)
results in Akt activation [41]. S477/S479 sites were also phosphorylated by mTORC2 or
DNA-PK in response to insulin or DNA damage, respectively. A correlation between
S477/S479 phosphorylation and cyclin A2 expression was found in breast cancer patient
samples [41]. Cdk2/cyclin A also phosphorylated Akt2 at S478 and synergized with S474
phosphorylation at the HM site to allosterically activate Akt2 [41]. Recently, it was reported
that amino acids 44-46 (DVD) at the PH domain affect C-terminal phosphorylation [42].
Triple mutation of DVD (Asp Val Asp) to GPG (Gly Pro Gly) affected phosphorylation of
Akt at S473 and T308 but not at S477 and S479. All three Akt isoforms undergo alternate
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splicing to generate splice variants with altered C-termini that lack the regulatory HM
phosphorylation sites and additional C-terminal phosphorylation sites (Ser477 and Tyr479
for Akt1) [43].

Dephosphorylation of Akt results in inactivation of Akt and termination of Akt
signaling. Dephosphorylation of PI(3,4,5)P3 and PI(3,4)P2 to PI(4,5)P2 and PI(3)P by
PTEN [44] and INPP4B (inositol polyphosphate 4-phosphatase type II) [45], respectively
results in inactivation of PI3K/Akt. Protein phosphatase 2A (PP2A) and the PH domain and
leucine-rich repeat protein phosphatases (PHLPP) can directly dephosphorylate Akt. PP2A
dephosphorylates the A-loop (T308 for Akt1) site [46] whereas PHLPP dephosphorylates
the HM site [47]. There are two isoforms PHLPP1 and PHLPP2 with distinct specificities
towards Akt isoforms [48]. While PHLPP2 dephosphorylates Akt1 and Akt3, PHLPP1
dephosphorylates Akt2 and Akt3.

The activity of Akt is also regulated by additional post-translational modifications,
such as methylation and ubiquitination [49,50]. TRAF6 (tumor necrosis factor receptor-
associated factor 6)-mediated ubiquitination of Akt was required for its membrane lo-
calization, phosphorylation and activation [51]. Both Akt1 and Akt2 were shown to
interact with TRAF6 ubiquitin ligase. Methylation of Akt1 at K64 by the histone-lysine
N-methyltransferase SETDB1 was essential for the recruitment of TRAF6 and Skp2-SCF
ubiquitin ligase to Akt to trigger ubiquitination, membrane recruitment and phospho-
rylation/activation of Akt [49]. AKT E17K mutant exhibited enhanced methylation and
ubiquitination [49,50]. Methylation of Akt2 and Akt3 was much less compared to Akt1 [49].
The mitochondrial E3 ubiquitin protein ligase 1 (Mul1 or MULAN) was shown to interact
with active phosphorylated Akt1 and Akt2 to trigger their degradation, thus negatively
regulating Akt signaling [52].

3. Genetic Alterations of Akt Isoforms

No mutations in the catalytic domain of Akt isoforms were detected in breast cancer
specimens. A somatic mutation of Glu17 to Lys (E17K) in the PH domain of Akt1 gene was
shown to change conformation causing plasma membrane localization and constitutive
activation of Akt1 [53] but it was only weakly constitutively active [54]. The overall preva-
lence of Akt1 E17K mutation was 6.3% in breast cancers but it varied with tumor grade
(11.1% in grade 1 and 1.9% in grade 3). While Akt1 E17K may serve as an oncogene in some
luminal breast cancers [55], additional mutations may be required to promote tumorigene-
sis [17]. Recently, an OncoOmics approach that consisted of genomic alterations, signaling
pathways, protein-protein interaction network and protein expression in cell lines and
patient-derived xenografts was used to determine breast cancer dependency and Akt1 was
shown to be an essential gene in at least three different OncoOmics approaches [56]. Akt1
E17K mutation was restricted to hormone receptor-positive luminal breast cancers [57–59].
Similar mutation in Akt2 and Akt3 was rare [3,60]. Based on next-generation sequencing
analysis, genetic alteration in Akt1 (E17K and other pathologic mutations) was significantly
enriched in metastatic breast cancer compared to primary breast cancer and Akt1, but not
Akt2 or Akt3, was identified as an actionable target [61].

It has been reported Akt2 was amplified in 3% of breast cancers [62] and Akt3 is
frequently amplified in TNBC [63]. Based on TCGA dataset, Akt3 is most amplified
followed by Akt2 and amplification of Akt1 was least among Akt isoforms in breast
cancer [64]. A recurrent MAGI3-AKT3 fusion that resulted in constitutive activation of Akt
was enriched in TNBC [65]. Akt1 copy gain/high mRNA expression was associated with
poor prognosis of basal-like 2 (BL2) breast cancer, a subgroup of TNBC [66].

4. Function of Akt Isoforms

Akt was originally discovered as an oncogene. While oncogenes contribute to tumori-
genesis by increasing cell proliferation, they must overcome several barriers, including
apoptosis and senescence and gain the ability to invade and metastasize to acquire a fully
malignant phenotype. There have been numerous studies on the anti-apoptotic function of
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Akt. Most of the earlier studies have been focused on Akt1. Knockout of individual Akt
isoform in mice revealed their distinct functions [67]. In the following section, we have
discussed how Akt isoforms regulate various cellular processes that contribute to breast
cancer pathogenesis (Figure 1 and Table 1).

4.1. Cell Proliferation and Survival

Cell cycle progression depends on the activity of cyclin dependent kinases (CDK)
which require cyclins for their activation. Induction of cyclin D activates CDK4/6 which
phosphorylates and inactivates tumor suppressor protein Rb to allow cell cycle progres-
sion [68]. Cyclin-dependent kinase inhibitors (CKI), such as p21 and p27 encoded by
CDKN1A and CDKN1B, respectively, inhibit CDK2-cyclin E and CDK2-cyclin A complexes
halting cell cycle progression [69].

Akt1, but not Akt2, was shown to promote breast cancer cell proliferation by upregu-
lating cyclin D1 and S6 (a downstream target of mTORC1) in IBH-6 and T47D breast cancer
cells [70]. A recent study showed that there is cross-regulation between Akt1 and cyclin
D1 [35]. Extranuclear membrane-associated cyclin D1 was shown to associate with Akt1
and enhanced Akt1 activity both in vitro and in vivo in response to growth factors and
increased cell proliferation [35]. Akt1 gene expression signature positively correlated with
cyclin D1 gene expression signature in different subtypes of breast cancer with highest
significance in luminal A, luminal B and basal type [35].

There are controversies regarding the role of Akt2 on cell proliferation. Santi et al.
reported that Akt2, but not Akt1 or Akt3, played a more prominent role in augmenting
cell proliferation in triple-negative breast cancer MDA-MB-231 cells [71]. Silencing of Akt2
induced cell cycle arrest at the G0/G1 phase by downregulating cyclin D1. Another study,
however, showed that knockdown of Akt1, but not Akt2, decreased cyclin D1 expression
and inhibited MDA-MB-231 cell proliferation [72]. Recently, Akt2-specific nanobodies
that bind to the hydrophobic motif of Akt2 and reduce phosphorylation of Akt2 at the
HM site were developed [73]. These Akt2 nanobodies inhibited cell cycle progression of
MDA-MB-231 cells at the G0/G1 phase by decreasing cyclin D1 levels [73].

The mechanisms by which CKIs, such as p21 or p27 regulate cell cycle progression
are complex. p21 and p27 inhibit cell cycle progression when localized in the nucleus.
Phosphorylation of p21 at Ser145 and p27 at Thr157/Thr198 alters their localization from
the nucleus to the cytosol where they cannot inhibit cell cycle progression [74–78]. Heron-
Milhavet et al. showed that Akt1 phosphorylates p21 at T145 and induces its cytoplasmic
localization in myoblasts whereas Akt2 interacts with unphosphorylated p21 at the nucleus
causing an increase in p21 and cell cycle exit [79]. Phosphorylation of p21 by Akt1 prevented
interaction of p21 with Akt2 and localized p21 to the cytosol [79]. Phosphorylation of p21
at S146 by Akt increased its stability in MCF-7 cells and promoted cell survival [78].
Although p21 is believed to inhibit cell proliferation, it could also enhance cell cycle
progression at the G1/S phase by promoting the assembly and activation of cyclin D-
CDK4/6 [78]. S146-p21 did not interact with or inhibit cyclin E-CDK2, but increased
cyclin D1 level [78]. Akt1-mediated phosphorylation, cytoplasmic translocation, and
stabilization of Skp2 caused degradation of p27 [80] and accumulation of cytoplasmic
T157-p27 correlated with Akt activity in primary breast cancer tissues [75,81]. Thus, Akt1
can increase cell proliferation not only by altering the levels of p21 and p27, but also by
inducing their nucleo-cytoplasmic shuttling.
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Table 1. Function of Akt isoforms.

Akt
Isoform Cell line/Model System Expression Phenotype/Function Potential Mechanisms Ref

Akt2 MDA-MB-231 Akt2 siRNA ↓ Cell proliferation, ↑ Mitophagy ↓ Cyclin D1, ↑ p27, ↓ mTORC1, ↑ PGC-1α [71]

Akt1 MDA-MB-231 Akt1 siRNA ↓ Cell proliferation, ↑ Apoptosis ↓ Cyclin D1 [72]

Akt2 MDA-MB-231 Akt2 nanobodies ↓ Cell proliferation, ↑ Autophagy ↓ Cyclin D1, ↑ LC3B-II [73]

Akt1 SKBR3 Akt1 siRNA ↓ Cell proliferation ↑ p27 [80]

Akt1 MDA-MB-231 cell line & xenograft Akt1 siRNA ↓ Cell proliferation & tumor growth [82]
Akt2 Akt2 siRNA No effect on cell proliferation & tumor growth
Akt3 Akt3 siRNA ↓ Cell proliferation & tumor growth

Akt3 Mouse mammary tumor C4 cells Akt3 shRNA ↓ Cell proliferation, ↑ Tamoxifen sensitivity ↓ pErbB2/pErbB3, ↓ Foxo3a, ↑ ERα [83]

Akt3 MDA-MB-468 & MCF10DCIS xenografts Akt3 shRNA ↓ TNBC growth in 3D culture & xenografts ↑ p27 [63]

Akt3 3475 (metastatic MDA-MB-231 cell line) Overexpression of Akt3/-S472 ↓ Tumor growth & metastasis, ↑ Apoptosis ↓ ERK, ↑ Bim, ↑ Bax activation [84]

Akt1 MDA-MB-231 CA-Akt1 (Myr-Akt1) ↓ Autophagy ↓ UVRAG [85]
Akt2 CA-Akt2 (Myr-Akt2) ↓ Autophagy ↓ UVRAG

Akt2 * MDA-MB-435 WT Akt2 cDNA ↑ Invasion & metastasis ↑ β1-integrin [86]

Akt1 Transgenic mice with activated ErbB-2 Activated Akt1 (Akt1-DD) ↑ Cell proliferation, ↑ Tumorigenesis, ↓ Metastasis ↑ Cyclin D1, ↑ Rb phosphorylation [87]

Akt1 Transgenic mice expressing Activated Akt1 (Akt1-DD) ↑ Tumorigenesis, ↓ Metastasis ↑ Nuclear ERα [88]
Akt2 ErbB2 or PyVmT Activated Akt2 (Akt2-DD) ↑ Invasion & metastasis

Akt1 IGF-IR-overexpressing MCF-10A cell Akt1 siRNA ↓ Cell proliferation, ↑ EMT, ↑ Migration ↑ ERK activity [89]
Akt2 monolayer and 3D culture Akt2 siRNA ↓ Cell proliferation, ↓ EMT, ↓ Migration

Akt1 MDA-MB-231 CA-Akt1 (Myr-Akt1) ↓ Migration ↑ Palladin phosphorylation (S507) [90]

Akt1 MDA-MB-231, * MDA-MB-435, SUM-159-PT CA-Akt1 (Myr-Akt1) ↓ Migration and invasion ↑ HDM2 phosphorylation, ↓ NFAT1 [91]

Akt1 T4-2 cells and mouse xenografts CA-Akt1 ↑ Tumor growth, ↓ Cell migration & invasion ↑ T1462 TSC2, ↓ TSC2, ↓ Rho-GTPase [92]

Akt2 MCF-7 and * MDA-MB-435 cells Akt2 siRNA ↓ Migration & invasion Transactivation of Akt2 by Twist [93]

Akt1 IBH-6, T47D shAkt1 ↓ Tumor growth, ↑ Migration & invasion ↓ Cyclin D1, ↑ β1-integrin & FAK [70]
Akt2 shAkt2 ↓ Migration, invasion & lung metastases ↓ F-Actin & vimentin

Akt1 MCF-10A, MCF-7 and BT474 cells Akt1 siRNA ↑ EMT ↓ miR-200, ↑ Zeb1, ↓ E-cadherin [94]
MMTV-cErbB2 mice Akt1 knockout ↑ Migration & invasion

Akt1 MCF-7, BT-474, MDA-MB-231, SKBR3 Akt1 siRNA ↑ EMT and invasion ↑ EGFR/ERK activity, >↑ Nuclear β-catenin [95]
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Table 1. Cont.

Akt
Isoform Cell line/Model System Expression Phenotype/Function Potential Mechanisms Ref

Akt2 MDA-MB-231, MDA-MB-468, MCF-7, Akt2 siRNA ↓ Non-CSC reversion, ↓ CSC survival ↓ Twist, ↓ mTOR [96]
SKBR-3 cells & MDA-MB-231 xenografts ↓ EMT and invasion

Akt1 MCF-10A, p53-null background, MCF-7 Akt1 E17K ↑ Cell growth, ↓ Migration & invasion ↓ Zeb1, ↑ E-cadherin [97]
Akt2 Myr-Akt2 ↑ β-catenin transcription, ↓ E-cadherin

Akt3 MDA-MB-231 BO cells & xenografts Akt3 siRNA ↑ Migration, invasion and bone metastasis ↑ HER2 and DDR kinase, ↓ CTGF [98]

Akt1 Transgenic MMTV-ErbB2 mice Akt1 knockout ↓ Cell proliferation, ↓ Tumor growth ↓ p21, p27 & cyclin D1 [99]
Monolayer & 3D culture of MEC ↓ Cell migration and Lung metastases ↓TSC2 phosphorylation (S939), ↓CXCL-16

Akt1 MMTV-ErbB2 & MMTV-PyMT mice Akt1 knockout ↓Tumorigenesis, ↑ Invasion, ↓Lung metastases ↓Cyclin D1 [100]
Akt2 Akt2 knockout ↑ Tumorigenesis, ↓metastases ↑ Cyclin D1
Akt3 Akt3 knockout No effect on tumorigenesis or lung metastases

Akt1 Immortalized MEC Akt1 and vAkt1 ↑ Invasion ↓ MMP2 degradation [101]

Akt1 IBC cells-SUM149 Akt1 siRNA ↓ IBC cell invasion, no effect in nIBC cells ↓ RhoC GTPase activity [102]
Akt2 nIBC cells-MDA-MB-231 & * MDA-MB-435 Akt2 siRNA ↓ nIBC cell invasion, no effect in IBC cells

Akt3 siRNA ↓ Survival of IBC but not nIBC cells
Akt3 No effect on invasion in IBC & nIBC cells

Akt1 HER2-enriched MMTV-NIC mouse model Cell-autonomous Akt1 deletion ↓ Tumor development, No effect on lung metastasis [103]
Akt2 Cell-autonomous Akt2 deletion ↓ Tumor development completely
Akt1 HER2-enriched MMTV-ErbB2 mouse model Systemic Akt1 deletion ↓ Tumor growth, ↓ metastasis completely
Akt2 Systemic Akt2 deletion ↑ Tumor growth, ↑ metastasis markedly ↑ Insulin, ↑ ErbB2, ↑ Akt1 activity
Akt1 Luminal B MMTV-PyMT mouse model Cell-autonomous Akt1 deletion No effect on metastasis
Akt2 Cell-autonomous Akt2 deletion No effect on metastasis
Akt1 Luminal B MMTV-PyMT mouse model Systemic Akt1 deletion Improved tumor-free survival, ↓ lung metastasis ↓ Survival & mobilization of neutrophil
Akt2 Systemic Akt2 deletion No effect on survival or lung metastasis ↑ Akt1 activity

* Please note that although MDA-MB-435 cells were originally isolated as breast cancer cells, based on cell authentication they are now characterized as melanoma cells.
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Akt2 on the other hand was shown to interact with Prohibitin 2/Repressor of Estrogc-
tivator (PHB2/REA) which has been implicated in transcriptional repression of myogenesis
in estrogen-dependent cancers like breast cancer [104,105]. Using N-terminal truncation,
Heron-Milhavet et al. showed that Akt2 directly binds p21 on a 27 amino acid sequence
at 410-437 in the C-terminal domain of Akt2 leading to cell cycle arrest and myogenic
differentiation [106]. Santi et al., however, reported that Akt2 increased cell proliferation in
MDA-MB-231 cells by reducing p27 levels [71]. Akt2 had no effect on T157/T198 phospho-
rylation which has been associated with cytoplasmic localization, but Akt2 knockdown
enhanced phosphorylation of p27 at Thr187 due to a decrease in Skp2 which targets T187-
p27 for degradation via the ubiquitin proteasome-mediated pathway [71]. In addition,
miRNA-615 which directly targets Akt2, inhibited MDA-MB-231 cell proliferation by up-
regulating p21 and p27, implicating a role for Akt2 in cell proliferation [107]. In contrast,
Toulany and colleagues showed that knockdown of Akt1 and to some extent Akt3, but
not Akt2, inhibited cell proliferation and tumor growth in K-Ras-mutated MDA-MB-231
cells [82]. The reason for the contradictory results from different laboratories with the same
cell line is not clear except Santi et al. [71] and Bai et al. [107] depleted Akt2 by siRNA
or miRNA and monitored overall cell growth using MTT assay whereas Toulany et al.
selected shRNA-transfected MDA-MB-231 cells and assessed clonogenic activity in vitro
and tumor growth in vivo [82].

It has been reported that Akt3 can contribute to the proliferation of ErbB2 (HER2)-
positive breast cancers which express low levels of ERα and contribute to endocrine
resistance [83]. Knockdown of Akt1 and Akt3 in ErbB2-positive Erα-negative mouse
mammary tumor C4 cells caused a substantial decrease in cell proliferation whereas Akt2
knockdown had only a modest effect [83]. Knockdown of Akt3 induced ERα via FoxO3a
and restored sensitivity to tamoxifen. However, the most significant effects of Akt3 in
terms of growth and proliferation of breast cancer have been shown in TNBC. Search for
potential targets of TNBC using short hairpin RNA screen of protein kinases identified
Akt3 as a regulator of TNBC cell growth [63]. Silencing of Akt3 with shRNA inhibited three-
dimensional (3D) spheroid growth and TNBC xenografts in nude mice via upregulation
of p27 [63]. Akt3 is also a target of miRNA-433 which inhibits cell proliferation and cell
survival of TNBC cells by downregulating Akt3 [108]. Analysis of clinical samples of breast
cancer tissues revealed an inverse relationship between miRNA-433 and Akt3 mRNA,
the latter being much higher in breast cancer patient samples compared to normal breast
tissues [108]. A splice variant of Akt3 that lacks Ser472 phosphorylation site induced
apoptosis and suppressed TNBC 3475 cell (a metastatic subline of MDA-MB-231 cells)
growth in vivo by upregulating pro-apoptotic Bcl-2 family member BIM but had no effect
on the proliferation of these cells [84].

4.2. Autophagy

Autophagy is a process of self-cannibalism that allows cells to survive under nutrient-
deprived or stressful conditions [109]. Autophagy also plays an important role in breast
cancer development and progression [110]. Although autophagy is considered a survival
mechanism [111] it can also cause cell death and tumor suppression [112,113]. mTORC1,
which functions downstream of Akt, is considered the master regulator of autophagy [109].
There are different types of autophagy depending on the organelles that are affected. For
example, bulk degradation of cellular organelles is known as macroautophagy and often
used synonymously with autophagy whereas selective degradation of specific organelles,
such as mitochondria is known as mitophagy.

Santi et al. reported that knockdown of Akt2 in MDA-MB-231 cells attenuated phos-
phorylation of p70 S6 kinase (p70S6K) at Thr389 site, indicating inhibition of mTORC1
activity [71]. Akt2 was shown to physically associate with mitochondria and prolonged
knockdown of Akt2, but not Akt1 or Akt3, induced mitochondrial biogenesis by upregu-
lating peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and ultimately
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led to cell death by mitophagy. Thus, Akt2 promoted survival of MDA-MB-231 cells
by protecting against mitophagy. However, knockout of individual Akt isoform in mice
revealed that Akt3 but not Akt1 promotes mitochondrial biogenesis. Ablation of Akt3
induced autophagy by stabilizing nuclear export protein CRM-1 which exports PGC-1α
from the nucleus to the cytoplasm causing a decrease in PGC-1α-dependent gene expres-
sion and mitochondrial content [114]. Yang et al. on the other hand showed that both
Akt1 and Akt2 inhibited autophagy in MDA-MB-231 cells by downregulating ultraviolet
irradiation resistance-associated gene (UVRAG) which is involved in the autophagosome
formation and maturation during autophagy (macroautophagy) and sensitized cells to
UV irradiation by inhibiting cell proliferation [85]. The effect of Akt1 on UVRAG was
independent of Akt1 and mTORC1 activity. Interestingly, while overexpression of Akt1
protected against apoptosis induced by UV irradiation, it decreased cell proliferation by
inhibiting autophagy and overcame the anti-apoptotic effect of Akt1. Akt2 also attenuated
autophagy by inhibiting the function of the transcription factor EB (TFEB) which regulates
the expression of several autophagy-related genes, including LC3B [73]. Phosphorylation
of TFEB by mTORC1 causes its cytoplasmic localization and inhibition of its transcrip-
tional activity [109]. The Akt2-specific nanobody Nb8 which was shown to inhibit Akt2
activity and cell cycle progression in MDA-MB-231 cells caused a decrease in TFEB phos-
phorylation and upregulation of LC3B-II, suggesting Akt2 indirectly regulates TFEB via
mTORC1 [73]. Akt3-derived circRNAs hsa_circ_0000199, which has been associated with
the clinical pathology of TNBC, was shown to mediate its function by downregulating
miR-206 and miR-613 [115]. Silencing of hsa_circ_0000199 decreased cell proliferation,
migration and invasion and increased autophagy in TNBC cells and these effects were
reversed by inhibitors of miR-206 and miR-613 [115].

Several studies performed in other cell lines suggested additional involvement of Akt
isoforms in autophagy. Both Akt1 and Akt2, but not Akt3, were shown to interact with the
lysosomal protein pleckstrin homology domain-containing family F member 2 (Phafin2)
and knockdown of these isoforms inhibited induction of autophagy. However, only re-
introduction of Akt2 but not Akt1 restored autophagy. Interaction of Akt2 with Phafin2
following initiation of autophagy caused accumulation of the complex in the lysosomes
where the interaction of Phafin2 with PtdIns(3)P facilitated autophagy induction [116]. The
same group showed that vaccinia-related kinase (VRK)-2, a member of the VRK family
of serine/threonine protein kinases, also interacts with Akt1 and Akt2 but not Akt3 and
accumulates phosphorylated Akt in the lysosomes [117]. Increase in lysosomal Akt activity
was important for lysosomal acidification, activation of lysosomal hydrolases and com-
pletion of the autophagy process. The orphan nuclear receptor TR3 or Nur77 was shown
to induce autophagy via the mitochondrial signaling pathway [118]. Phosphorylation of
TR3 by Akt2 retained it in the nucleus and inhibited autophagic cell death in response to
1-(3,4,5-trihydroxyphenyl)nonan-1-one (THPN) in gastric cancer SGC7901 and cervical
cancer Hela cells [119]. Interestingly, while phosphorylation of TR3 at Ser533 inhibited
autophagy, phosphorylation of TR3 at Ser351 by Akt1 inhibited apoptosis [119]. Recently, it
has been shown that Akt1 and Akt3, but not Akt2, is required for the increase in lysosomal
vacuolar H1-ATPase (V-ATPase) activity in response to amino acid starvation [120].

4.3. Cellular Senescence

Senescence is defined as prolonged cell cycle arrest and the proteins that inhibit
cell cycle progression also play important roles in regulating senescence [121,122]. Since
phosphorylation of the tumor suppressor protein Rb by CDK4/6 is required for cell cycle
progression, an increase in CDK4/6 inhibitor p16/INK4 which inhibits Rb phosphorylation
can induce senescence by causing cell cycle arrest [123]. On the other hand, the CDK2
inhibitor p21, a transcriptional target of the tumor suppressor protein p53 which halts cell
cycle in response to DNA damage or cellular stress, can trigger senescence [124]. While
replicative senescence is a normal process of aging, premature senescence could be induced
by hyperactivation of oncogenes or cellular stress to suppress tumorigenesis.
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The oncogenic function of Akt could be counteracted by the induction of cellular
senescence. Using Akt1/Akt2 double knockout (DKO) mouse embryo fibroblasts it was
shown that ablation of Akt1/Akt2 could inhibit replicative senescence as well as premature
senescence induced by oxidative stress and Ras oncogene [125]. Activation of Akt induced
premature senescence by inhibiting its downstream target FoxO3a transcription factor
which scavenges ROS via induction of Sesn3. Chemotherapeutic agents are known to in-
duce premature senescence. Constitutive activation of Akt1 inhibited doxorubicin-induced
senescence but appears to augment tamoxifen-induced senescence in breast cancer MCF-7
cells [126]. All three constitutively-active (CA) Akt isoforms were shown to induce senes-
cence in telomerase reverse transcriptase (TERT)-immortalized BJ human fibroblasts (BJ-T)
and Akt1 had the most pronounced effect on the induction of senescence [127]. Activated
Akt induced senescence by enhancing mTORC1-mediated translation of p53 and increase
in its target p21 [127]. Transcriptome and metabolic profiling was utilized to identify the
Akt-induced senescence network and the clinical relevance was determined by analyzing
TCGA data of fourteen different cancer types, including breast adenocarcinoma [128]. The
tumor suppressor protein neurofibromin 1 (NF1) was shown to maintain Akt-induced
senescence via suppression of Ras/ERK signaling [128]. In addition, cycle and apoptosis
regulator 1 (CCAR1) which is downregulated in breast cancers and FADD which exerts pro-
apoptotic activity in breast cancer were shown to mediate Akt-induced senescence [128].
Overexpression of Akt1 in MDA-MB-231 cells was shown to counteract the effects of the
chemokine receptor CXCR2 on breast cancer cell growth, metastasis and chemoresistance
by inducing senescence [129].

4.4. Metabolism

Altered metabolism is one of the hallmarks of cancer. The most well-known example
of metabolic reprogramming in terms of cancer, the Warburg effect, results in increased
glucose uptake and elevated lactate production. However, there are other aspects of
metabolic regulation that are abnormal in cancer cells. Key enzymes such as succinate
dehydrogenase and pyruvate kinase are associated with multiple steps in the tumorigenic
process [130]. p53 and Myc, which are among the most commonly mutated genes in
a variety of cancers, are master regulators of metabolism and through gain of function
mutations contribute to cancer progression and metabolic reprogramming [131].

Akt isoforms have been studied for their ability to affect metabolic regulation in cancer
cells. Oncogenic Akt activation plays a major role in meeting the metabolic needs of the
tumorigenic process. At a broad level, Akt plays a role in metabolic function in breast
cancer through the phosphorylation of glycogen synthase kinase 3 (GSK3) at Ser9 [131].
This phosphorylation inhibits GSK3β resulting in a decrease of its kinase activity on its
multiple downstream targets like β-catenin. Upon GSK3β inhibition by Akt, normal
effector function of β-catenin is restored, and β-catenin can undergo normal nuclear
translocation. In breast cancer, overexpression of β-catenin has been shown to affect lipid
metabolism via differential protein expression. Using MCF-7 cells with an endogenous
knockdown of β-catenin Vergara et al. showed alterations in metabolic processes including
the tricarboxylic acid cycle (TCA) and lipid metabolism. After β-catenin knockdown
a decrease in expression of acetyl-CoA carboxylase, ATP-citrate lyase, and monoacyl
glycerol lipase were all seen, suggesting a significant role in β-catenin function in breast
cancer cells [132].

Altered glucose metabolism is a common hallmark of cancer and it has been shown
that constitutively active Akt can promote aerobic glycolysis as well as increase both
glycolytic rate and glucose uptake [133,134]. Immunohistochemical analysis of breast
cancer specimens by Schmidt et al. showed a correlation between pAkt and glucose
transporter 1 (GLUT1) expression in breast cancer specimens, suggesting a role for Akt
in the glycolytic phenotype [135]. Knockdown of GLUT4 was shown to induce metabolic
reprogramming and decrease viability of breast cancer MCF-7 and MDA-MB-231 cells, and
both GLUT1 and GLUT4 have been suggested as prognostic and therapeutic targets in
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breast cancers [136,137]. Akt2 specifically, has been implicated in most studies involving
glucose transporters. Beg et al. recently provided evidence that linked Akt2 to both
GLUT1 and GLUT4 translocation in adipocytes [138]. Using a method developed by Kajno
et al. [139], they showed that Akt2 T309 phosphorylation by PDK1 was responsible for
GLUT4 translocation, while both T309 and S474 phosphorylation were required for GLUT1
translocation to the plasma membrane of proliferative cells [138]. These actions of Akt2 can
be partly responsible for increased glucose uptake and the reprogramming of metabolism
seen in breast cancer.

Akt isoforms have also been implicated in the glycolysis pathway through modulation
of regulatory proteins. In MCF-7 cells, Akt1 was shown to interact with hexokinase
2 (HK2), which phosphorylates glucose to glucose-6P [140]. This relationship shows Akt1′s
involvement in a critical regulatory step that blocks glucose from leaving the cell due to
conformational changes from hexokinase phosphorylation resulting in increased glycolysis
by breast cancer cells. Phosphofructokinase 1 (PFK1) is another important regulatory
enzyme in glycolysis, which catalyzes the ATP-dependent conversion of fructose-6P to
fructose-1,6-BP. The platelet form of PFK1 (PFKP) is overexpressed in breast cancer cells
and has been associated with increased glycolytic efficiency [141,142]. Lee et al. showed
a relationship between Akt1 and PFKP in breast cancer cells. Knockdown/inhibition of
Akt1 resulted in a reduced half-life of PFKP, while Myr-Akt1 resulted in prolonged half-life
of PFKP [143]. This suggests that Akt1 plays a pro-tumorigenic role via manipulation
of PFK1.

Another attribute of breast cancer is alterations in lipid synthesis. Akt has been
shown to have multiple effects on tumorigenic lipid synthesis. Little is known about
oncogenic Akt isoform specificity in breast cancer in terms of lipid metabolism, but at a
homeostatic level Akt1/2/3 have different functions in mammary gland lipid biosynthesis.
For example, constitutively-active Akt1 in transgenic mouse mammary glands mediates
lipid accumulation during pregnancy, but mostly general Akt studies have made the
connection between Akt and lipid metabolism in breast cancer [144]. Akt can directly
affect de novo lipid synthesis through interaction with ATP citrate lyase (ACLY). Akt
phosphorylates ACLY on S454 resulting in its activation leading to increased production of
cytosolic acetyl-CoA which is in turn used in multiple metabolic reactions including sterol
and fatty acid synthesis [145]. ACLY is overexpressed in breast cancer and its presence
has been suggested as a diagnostic marker for recurrence and possible chemotherapy
resistance [146]. While not shown directly in breast cancer yet, Wei et al. showed a link
between ACLY and the PI3K-Akt pathway. Utilizing knockdowns of various ovarian cancer
cells, they showed that a decrease of ACLY resulted in inhibition of PI3K-Akt possibly
through inhibition of p-Akt [147].

Akt also acts on sterol regulatory element-binding protein (SREBP-1/-2) transcription
factors and fatty acid synthase (FASN), which are involved in different aspects of fatty
acid and sterol synthesis [148]. SREBP transcription factors act on promoter regions of
genes responsible for lipogenesis and NADPH production [15]. Bao et al. showed SREBP-1
upregulation in breast cancer and in vitro knockout of SREBP decreased migration and
invasion of breast cancer cell lines [149]. Recently Yi et al. demonstrated that in multiple
cancer cell lines, including MDA-MB-231, oncogenic activation of Akt protected against
ferroptosis via SREBP lipogenesis [150]. FASN is involved in the synthesis of long chain
fatty acids and is upregulated in multiple breast cancers [151,152]. Xu et al. were able to
show that knockdown of FASN not only affects the metabolic profile of breast cancer lines,
but also led to decreases in migration of SK-Br-3 cells [151]. FASN inhibition in MCF-7 and
BT-474 cells leads to downregulation of Akt and thus overall breast cancer survival [153].
Akt isoform specificity has yet to be extensively studied in breast cancer in relation to FASN,
although prostate cancer studies have revealed a relationship between Akt3 and FASN
involving the two as downstream effectors of peroxisome proliferator-activated receptor
gamma (PPARG) activation [154].
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NADPH is a key component of homeostatic lipogenesis and its altered expression
is evident in multiple cancers. NADPH has two-fold metabolic functions; fatty acid
synthesis involving acetyl-CoA and providing reducing components for multiple cellular
processes [155]. Akt has been shown to affect NADPH levels through alteration of the
pentose phosphate pathway (PPP), the major source of cytosolic NADPH, through an
mTORC1-SREBP axis [156]. Akt has also been shown to affect NADPH production by
directly phosphorylating NAD kinase (NADK) and in oncogenic PI3K breast cancer cell line
T47D, Akt phosphorylation of NADK facilitated anchorage-independent cell growth [157].
Cui et al. showed that NADPH was involved in apoptosis of breast cancer cells. In multiple
breast cancer cell lines, FAS inhibition leading to NADPH accumulation was responsible for
apoptosis [158]. These findings together show another mechanism by which oncogenic Akt
signaling can contribute to the broad metabolic reprogramming responsible for meeting
the needs of developing cancers. NADPH replenishment is a critical step in metabolic
functions and understanding the link between Akt and its isoforms and their specific effects
on this process could lead to novel therapeutic targets in breast cancer therapy.

4.5. Tumor Growth, Invasion and Metastasis

It is well established that PI3K/Akt signaling is frequently deregulated in breast
cancer and plays critical roles in tumorigenesis. While Akt contributes to tumor growth by
increasing cell proliferation or decreasing cell death, metastatic dissemination of cancer
cells from the primary tumor site to a secondary site involves several steps, including
epithelial-to-mesenchymal transition (EMT), invasion, intravasation into the blood vessels,
anoikis resistance, and extravasation [159]. In this section, we discuss how Akt isoforms
regulate tumor growth and various processes leading to metastasis.

Several studies showed that Akt1 and Akt2 have opposite effects on tumor initia-
tion and tumor progression. Arboleda et al. reported that overexpression of active Akt2,
but not Akt1 or Akt3, enhanced invasion through collagen IV matrix via upregulation
of β1-integrin in several breast cancer cells and increased metastasis of MDA-MB-435
xenografts [86] (Table 1). Using a transgenic mouse model, Muller and co-workers demon-
strated that mammary-specific expression of activated Akt1 accelerated ErbB2-induced
mammary tumorigenesis by enhancing cyclin D1 and cell proliferation but suppressed lung
metastases [87], suggesting Akt1 had opposite effects on tumor growth and metastases.
Activated Akt2 in the same model system did not affect tumor development but caused a
substantial increase in lung metastases [88], supporting the notion that Akt1 and Akt2 have
distinct effects on tumor initiation versus tumor progression. A similar conclusion was
reached by several different laboratories, although the mechanism by which Akt1 and Akt2
regulated invasion and metastasis differed. When basal-like mammary epithelial MCF-10A
cells were stimulated by overexpressing insulin-like growth factor-I receptor (IGF-IR), Akt1
downregulation enhanced EMT and cell migration via activation of ERK whereas Akt2
downregulation suppressed EMT and inhibited migration in 3D cell culture [89]. Palladin,
an actin-associated protein, was identified as a specific substrate for Akt1 and not Akt2
and was shown to inhibit Akt1-mediated cell migration in breast cancer cells [90]. Ectopic
expression of constitutively-active Akt1 in TNBC cells inhibited invasion and migration by
phosphorylating HDM2 which triggered degradation of the transcription factor NFAT [91].
Introduction of constitutively-active Akt1 in HMT-3522 T4-2 breast cancer cells enhanced
cell proliferation and survival and promoted tumor growth but inhibited invasion and
motility by inducing phosphorylation (T1462) and degradation of TSC2 which regulates
cell adhesion and migration via Rho-GTPase [92]. Twist, a transcription factor for EMT [93],
was shown to mediate invasion in MCF-7 and MBA-MB-453 cells by transactivating the
Akt2 promoter and there was a correlation between Akt2 and Twist expression in late-stage
breast cancers [160]. Knockdown of Akt1 increased cell migration and invasion by upreg-
ulating β1-integrin & focal adhesion kinase (FAK) whereas Akt2 knockdown inhibited
migration and invasion by decreasing F-actin and vimentin in T47D and IBH-6 cells [70].
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Moreover, based on the analysis of invasive breast cancer samples in TCGA dataset, Akt2,
but not Akt1, was associated with worse clinical outcome [70].

A balance between Akt1 and Akt2 decided the invasiveness and metastasis of primary
and metastatic breast cancers by differential regulation of miR-200 [94]. Ablation of Akt1,
but not Akt2 or Akt3, promoted EMT in MCF-10A cells and increased invasiveness in
MMTV-cErb-B2 mice via downregulation of miR-200 which increased Zeb1 and decreased
E-cadherin expression. In contrast, Akt2 decreased the abundance of miR-200 in the absence
of Akt1, suggesting that the status of both Akt1 and Akt2 is important to determine the
ultimate outcome on invasion and metastasis [94]. Li et al. reported that Akt1 knockdown
promoted EMT and invasion of breast cancer cells by dephosphorylating and inactivating
PIKfyve which caused sustained activation of EGFR and ERK signaling resulting in β-
catenin nuclear accumulation [95]. The activation of cancer-activated fibroblasts (CAF),
which facilitates invasion of epithelial cells, required Akt2 which was activated by Snail
and was distributed in polarized cells that were more abundant in the area of invasion in
human breast tumor tissues [161]. Cancer stem cells (CSC) can lead to tumor initiation
and progression as well as metastasis [162]. Knockdown/inhibition of Akt2 inhibited
metastatic potential of CSC and non-CSC by inhibiting the expression of TWIST or mTOR
and high levels of Akt2 could be detected in circulating tumor cells in orthotopic mouse
models [96]. Akt1 E17K mutation in p53 null background inhibited cell migration and
invasion in MCF-10A cells by decreasing ZEB1 which caused an increase in E-cadherin
and reversal of EMT whereas Akt2 had opposite effect on E-cadherin [97]. While most
of the studies have examined the involvement of Akt isoforms in lung metastases, Hinz
et al. showed that Akt3 but not Akt1 or Akt2 activity is elevated in a subline of MDA-MB-
231 cells that metastasize to bone (MDA-MB-231 BO) and knockdown of Akt3 increased
migration, invasion, and bone metastasis via activation of HER2 and discoidin domain
receptor (DDR) kinases and downregulation of the TGFβ/CTGF (connective tissue growth
factor) axis [98].

Many molecules/compounds have been shown to induce migration, invasion and
metastasis via the Akt2 signaling pathway. WDR26, a WD40 protein that is overexpressed
in highly malignant breast cancers and is associated with poor survival of breast cancer
patients, selectively bound to Akt2 and not Akt1 [163]. In ER-positive breast cancers, there
was a negative correlation between miR-124 and Akt2 expression and overexpression of
miR-124 inhibited E2-induced cell proliferation, migration and invasion by downregulating
Akt2 [164]. UCH-L1 (ubiquitin C-terminal hydrolase), a deubiquitinase, was shown to
specifically interact with and activate Akt2 in MCF-7 breast cancer cells to promote invasion
but did not affect cell proliferation [165]. Metformin inhibited cell migration and invasion
of several breast cancer cells and metastasis of MDA-MB-231 xenografts by upregulating
miR-200c which negatively regulated Akt2 expression [166]. Dietary fatty acids, such as
linoleic acid and oleic acid were also shown to promote migration and invasion in breast
cancer cells via Akt2 [167,168].

Several molecules also induced invasion and metastasis by inhibiting Akt1. The
chemokine receptor CXCR2 promoted breast cancer cell migration, invasion, and metastasis
by suppressing Akt1 [129]. The tumor suppresser, 12-O-Tetradecanoyl phorbol-13-acetate
(TPA)-inducible sequences 21 (TIS21), an ortholog of B-cell translocation gene 2 (BTG2),
inhibited TNBC cell growth and invasion via activation of Akt1 and not Akt2 [169]. A
recent study showed that Rho GTPase activating protein 29 (ARHGAP29) interacted with
Akt1 and knockdown of ARHGAP29 decreased invasion of breast cancer cells [170]. While
ARHGAP29 knockdown downregulated Akt1, the ratio of phosphorylated Akt1 to total
Akt1 remained unchanged.

In contrast to most of the published reports that suggest an anti-metastatic function of
Akt1, several studies support a pro-metastatic function of Akt1. Ablation of Akt1 in mice
not only inhibited ErbB2-induced mammary tumorigenesis and delayed tumor growth
by inhibiting phosphorylation of TSC2 at Ser-939, but also decreased lung metastases and
reduced migration of mammary epithelial cells both in 2D and 3D cell culture via induction
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and secretion of CXCL16 [99]. Another study reported that knockout of Akt1 in mice
inhibited, Akt2 accelerated, and Akt3 had little effect, on the induction of polyoma middle
T (PyMT) and ErbB2-driven mammary carcinogenesis [100]. However, while knockout
of Akt1 increased invasiveness of ErbB2/Neu-induced tumors, individual knockout of
either Akt1 or Akt2 in PyMT mice inhibited metastasis, suggesting a lack of correlation
between invasiveness and metastatic potential in this model system [100]. Akt1 induced
invasion of immortalized mammary epithelial cells by preventing degradation of matrix
metalloprotease (MMP)-2 by the proteasomal pathway [101]. PTEN expression is lost
in inflammatory breast cancer (IBC) SUM149 cells [102]. Knockdown of Akt1 inhibited
invasion of IBC cells by inhibiting phosphorylation of RhoC GTPase, a substrate for Akt1,
but had no effect on non-IBC (nIBC) cells whereas Akt2 knockdown inhibited invasion
of nIBC cells but had no effect on the invasiveness of IBC cells [102]. Akt3 knockdown
did not affect invasion of either IBC or nIBC cells. On the other hand, Akt1 and Akt2
knockdown had no effect on cell proliferation and apoptosis of IBC cells whereas depletion
of Akt3 decreased survival of IBC but not nIBC cells by inducing apoptosis [102]. Akt1 was
identified as one of the driver genes frequently mutated in patients with hormone receptor-
positive/HER2-negative metastatic breast cancer [171]. Moreover, analysis of patient
samples identified Akt1 as a major contributor of metastatic lymph node involvement
which is a risk for breast cancer progression [172]. Akt1 was highly expressed in ER-
positive recurrent breast cancers and negatively affected overall survival of breast cancer
patients [172].

A recent study revealed that cell autonomous versus systemic deletion of Akt1 and
Akt2 had a major impact on the function of Akt1 and Akt2 on tumorigenesis and metasta-
sis [103]. Mammary gland-specific cell-autonomous Akt1 deletion inhibited tumor growth
but not metastasis. However, systemic deletion of Akt1 but not Akt2 inhibited lung metas-
tasis through impairment of mobilization and survival of tumor-associated neutrophils and
neutrophil-specific deletion of Akt1 suppressed metastasis. On the other hand, while sys-
temic or germline Akt2 deletion did not inhibit or enhance tumorigenesis, cell-autonomous
Akt2 deletion prevented tumorigenesis by inhibiting ErbB2 expression in the mammary
gland. Systemic Akt2 deletion increased circulating insulin levels which caused hyper-
activation of Akt1 and possibly Akt3, and maintained ErbB2 expression, thus interfering
with the ability of Akt2 deletion to inhibit tumorigenesis at an early stage, but enhanced
ErbB2-induced metastasis.

5. Discussion

The importance of the Akt signaling pathway in the development and progression of
breast cancer cannot be overstated. It is now well recognized that Akt isoforms play distinct
roles in various cellular processes. Most early studies were focused on Akt1 and this isoform
was associated with most of the oncogenic functions of Akt. It was then realized that Akt1
and Akt2 have opposite roles in breast cancer initiation and progression. Akt1 was shown
to promote tumor initiation by enhancing cell proliferation, cell survival and tumor growth,
but it inhibited tumor progression [70,89,90,94,95]. In contrast, Akt2 facilitated tumor
progression by increasing cell migration, invasion and metastasis [70,88,89,96,100,160].
Akt2 was also associated with worse clinical outcome and was considered a worthwhile
target for breast cancer therapy [70]. Although Akt3 expression was believed to be restricted
to neuronal cells, it is now known that it can also contribute to breast cancer, especially in
TNBC [63,82,84,98,102].

A consensus regarding isoform-specific functions of Akt, however, could not be reached
even within a particular subtype of breast cancer (Table 1). While knockdown of Akt1 in
breast cancer cell lines caused an increase in cell migration and invasion [70,89,90,94,95],
genetic ablation of Akt1 in mouse models of mammary tumor decreased tumor metas-
tasis [99,100]. However, hyperactivation of Akt1 also led to decrease in metastasis both
in vitro and in vivo [87,88,90–92]. Likewise, most studies are consistent with the involve-
ment of Akt2 in migration, invasion and metastasis but there are controversies regarding its
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involvement in cell proliferation and tumorigenesis. Akt2 was reported to decrease [100],
increase [71,73,89] or have no effect on cell proliferation and tumor growth [82,88]. Simi-
larly, there are contrasting reports whether depletion of Akt3 increases migration, invasion,
and bone metastasis [98], decreases cell proliferation and tumor growth [63,82,83], or has
no effect on tumorigenesis and lung metastasis [100].

Cellular context plays a major role in deciding the function of Akt isoforms. The
environment in live animal is much more complex compared to cultured cells. Ectopic
expression of Akt isoforms may have altered localization compared to endogenous Akt
isoforms. On the other hand, while germline knockout of Akt isoforms results in complete
ablation of Akt isoforms, knockdown of Akt by siRNA may reduce but may not completely
eliminate the abundance of Akt isoforms. However, complete ablation of Akt isoforms may
lead to compensatory increase in other signaling pathways. Moreover, since Akt isoforms
can regulate each other, the status of Akt isoforms in a particular cell type may influence
their function. It is, however, hard to reconcile why the function of Akt isoforms vary
even with the same cell line. For example, while some studies suggested knockdown of
Akt2 decreased proliferation of MDA-MB-231 cells [71,73,107], other studies suggested
knockdown of Akt1 and Akt3, but not Akt2, decreased MDA-MB-231 cell growth [63,82].
The threshold of Akt activity such as hyperactivation of Akt by certain stimulus (e.g.,
oxidative stress) or overexpression of CA-Akt may have different consequences compared
to physiological activation of Akt isoforms. For example, while activation of Akt promotes
tumorigenesis by increasing cell proliferation and survival (Table 1), hyperactivation
of Akt by reactive oxygen species could suppress tumorigenesis by inducing cellular
senescence [125].

A recent study revealed a completely different picture of how Akt1 and Akt2 con-
tribute to tumor development and metastasis based on systemic versus autonomous
deletion of Akt1 and Akt2 [103]. Systemic Akt1 deletion inhibited lung metastases whereas
systemic Akt2 deletion enhanced mammary tumorigenesis and metastasis at least in HER2-
enriched and luminal B mouse models of breast cancer [103]. Moreover, Akt1 was recently
identified as one of the driver genes more frequently mutated in hormone receptor-positive
metastatic breast cancer [171] and contributed to metastatic lymph node involvement [172].

6. Conclusions

In summary, our notion about which Akt isoform to target for cancer therapy is chang-
ing. Most studies are consistent with the roles for Akt1 in cell proliferation, cell survival
and tumorigenesis and it appears to play a predominant role in hormone receptor-positive
breast cancers. Akt3 has primarily been associated with the survival and progression of
TNBC. The function of Akt1 and Akt2 in tumor progression and metastasis is debatable.
While systemic deletion of Akt isoforms validated Akt1 as a suitable target for cancer
therapy in hormone receptor-positive and HER2-enriched breast cancers, it remains to be
seen how systemic deletion of Akt1, Akt2 and Akt3 in different subtypes of breast cancer
affects breast cancer development and progression. Thus, while Akt remains an important
target for breast cancer therapy, a complete understanding of how Akt isoforms contribute
to breast cancer is essential.
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Abbreviations

Abbreviation Definition
AL (A-loop) Activation loop
CCAR1 Cycle and apoptosis regulator 1
CDK Cyclin-dependent kinase
CKI Cyclin-dependent kinase inhibitor
DNA-PK DNA-dependent protein kinase
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
ER Estrogen receptor
ErbB2 Epidermal growth factor receptor 2
ERK Extracellular signal-regulated kinase
FADD Fas-associated death domain
HER2 Human epidermal growth factor receptor 2
HM Hydrophobic motif
MAP1LC3/LC3 Microtubule-associated protein 1 light chain 3
MEF Mouse embryo fibroblasts
mTOR Mechanistic target of rapamycin
mTORC1 Mechanistic target of rapamycin complex 1
mTORC2 Mechanistic target of rapamycin complex 2
NF1 Neurofibromin 1
PDK1 Phosphoinositide-dependent kinase 1
PH Pleckstrin homology
PHLPP PH domain and leucine-rich repeat protein phosphatase
PI3K Phosphatidylinositol 3- kinase
PIK3CA PI3K catalytic subunit alpha
PIP2 Phosphatidylinositol (4,5)-bisphosphate
PIP3 Phosphatidylinositol (3,4,5)-triphosphate
PKB Protein kinase B
PP2A Protein phosphatase 2A
PR Progesterone receptor
PKC Protein kinase C
PTEN Phosphatase and tensin homolog deleted on chromosome 10
SETDB1 SET domain bifurcated 1
Skp2 S-phase kinase associated protein 2
TCGA The cancer genome atlas
TERT Telomerase reverse transcriptase
TFEB Transcription factor EB
TIM TOR-interacting motif
TM Turn motif
TNBC Triple-negative breast cancer
TRAF6 Tumor necrosis factor receptor-associated factor 6
UVRAG Ultraviolet irradiation resistance-associated gene
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