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Abstract

State-of-the art, two-piece dental implants made from titanium alloys exhibit a

complex micromechanical behavior under dynamical load. Its understanding,

especially the formation of microgaps, is of crucial importance in order to predict

and improve the long-term performance of such implants. Microgap formation in a

loaded dental implant with a conical implant-abutment connection can be studied

and quantified by synchrotron radiography with micrometer accuracy. Due to the

high costs and limited access to synchrotron radiation sources, alternative

approaches are needed in order to depict the microgap formation. Therefore,

synchrotron radiography is used in this article to validate a simple finite element

model of an experimental conical implant design. Once validated, the model is in

turn employed to systematically study the microgap formation developed in a

variety of static load scenarios and the influence of the preload of abutment screw

on the microgap formation. The size of the microgap in finite element analysis
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(FEA) simulations is consistent with that found in in-vitro experiments.

Furthermore, the FE approach gives access to more information such as the

von-Mises stresses. It is found that the influence of the abutment screw preload has

only a minor effect on the microgap formation and local stress distribution. The

congruence between FE simulations and in-vitro measurements at the micrometer

scale underlines the validity and [4_TD$DIFF]relevance of the simple FE method applied to

study the micromovement of the abutment and the abutment screw preload in

conical implant-abutment connections under load.

Keywords: Dentistry, Mechanical engineering, Materials science

1. Introduction

Dental implants made from titanium or titanium alloys have been used successfully

for many decades for the replacement of human teeth. Today, a two-piece screw

implant is the most common, comprising; I. implant body, II. abutment and III.

abutment screw, which connects the abutment axially on the implant [1]. The

implant-abutment complex with the crown must withstand multi-axial masticatory

forces and provide long-term stability. Implants based on conical implant-abutment

connection (IAC) have become increasingly popular. These implants have

excellent clinical success rates; however the introduction of smaller diameter

implants (≤3.5 mm) with thin implant wall thickness (around 0.3 mm), necessitates

examination to ensure adequate fatigue resistance. In the past, controversial

discussions about the superior performance of such thin walled implants has taken

place [2, 3]. Our previous work demonstrated residual deformation and fatigue

cracking upon in-vitro testing [4, 5]. Off axis loading induced bending of a conical

IAC leads to elastic deformation at the implant wall, causing the abutment to tilt

(micro-movement) [5]. While conical IACs seem to perform better in fatigue tests,

they have lower bending strength outcomes, compared to butt-joint connections

[6]. The associated deformation of the abutment during such loading is small,

however it may be characterized by using synchrotron-based microtomography and

phase-contrast radiography (PCR) [7, 8, 9]. Contrary to previously published

reports these initial studies showed microgap formation evident in all IACs

regardless of their design [2, 3]. In addition however, certain geometric parameters

of two-piece implants, including taper angle, implant wall thickness, screw

diameter, manufacturing precision and diameter-length ratio of the IAC were

expected to influence the bending fatigue resistance. Finite element analysis (FEA)

enables simulation of mechanical response of dental implants, especially when [5_TD$DIFF]

complemented by experimental observations, and thus provide sensitivity

outcomes that show the influence of specific design parameters [10, 11, 12].

These include appropriate tightening torque of the abutment screw, which is

essential for IAC mechanical stability [11, 13, 14]. For example, Siamos et al.

suggest that torque values larger than 30 Ncm may be applied to guarantee the
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stability of the joint [15]. Ideally, validated FEA can lead up to virtual implant

design.

The aim of this study is simply to validate whether FEA based on linearly elastic

deformation is sufficient to predict microgap formation in dental implants. It is

explicitly noted that this study does not aim to establish an FE model which

describes perfectly the mechanical behavior of a two-piece dental implant design.

This is the task for a later, continuing work. Again, the model introduced in this

work is simply [6_TD$DIFF]intended to predict the formation of microgaps. Once validated, it

can be extended to quantify the influences of force and application angle, as well as

screw mounting torque, on the stability of the abutment in a conical IAC.

Furthermore, it would reduce the need for complex characterization methods such

as PCR, which have only limited availability. Hence, a simple CAD model of an

experimental conical implant was developed, virtually loaded and the resulting

microgap at the IAC compared to in vitro synchrotron-based PCR results. The

latter is a unique property of this study, i.e. the experimental validation of a model

predicting microscopic structures inside a macroscopic, fully opaque object.

2. Materials & methods

2.1. Implant and experimental set-up

The tested dental implant system is an experimental conical implant (ECI); its

geometric parameters are listed in Table 1. The implant body is cp TiGr 4, the

screw and abutment of Ti alloy grade 5 (ELI) according to ASTM F-136 and

ASTM F-67, respectively. Two implants were tested and IAC microgap measured

by synchrotron PCR in vitro at the BESSY-II light source. The implant and

abutment were assembled and screw tightened with a torque of 15 Ncm. Each

implant was rigidly mounted in a brass cylinder (15 × 15 mm2) with

methylmethacrylate-based adhesive (X60, HBM Germany) up to 3 mm below

the shoulder of the implant according to ISO standard 14801:2008 with a 10 mm

steel ball connected to the abutment (X60). The center of the steel ball was 8 mm

above the shoulder of the implant (cf. Fig. 1b).

After positioning the implant for PCR, in-vitro imaging [9], with a static force of

30, 100 and 200 N at either 90° or 30° to the main implant axis was applied

(cf. Fig. 1a). The force was measured with a force gauge (SH-500, PCE-group

OHG, Germany), while displacement and IAC microgap were recorded for three

static loadings by PCR: 30N-90°, 100N-90° and 200N-30°.

PCR images were recorded at the BESSY-II light source (Berlin, Germany) on the

BAMline (with 24.8 pm, X-ray wavelength and 1.4 mm beam-height). The X-ray

images were recorded as described previously [16] with 0.87 μm detector pixel size

with the detector situated 770 mm downstream of the sample, allowing PCR with
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Table 1. Geometric design parameters according to Fig. 2c of the implant and screw.

Implant system Taper angle α [°] Lever angle θ [°] DIAC/LIAC [mm/mm] Dimp [mm] Dscrew [mm] Hindex [mm]

Experimental Conical Implant (ECI) 7.5 66.2 3.0/1.7 4.3 1.16 0.62
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substantial edge-enhancement. The IAC microgap is measured by drawing line

profiles across the edge-enhanced IAC in the PCR images, see Fig. 2. Calculating

the actual microgap width from these profiles is described in an established

protocol [7]: using the existing knowledge about the geometry and materials of the

implants, the profiles can also be simulated. Here, the gap width is introduced as fit

parameter in order to match the simulated profiles to the measured data. A good fit

is interpreted as estimator for the width of the microgap [7].

2.2. Finite element analysis

Finite element analysis calculation employed Autodesk Inventor® 3D (Autodesk

GmbH, Germany). Based on radiographic observations of the inner and outer

geometry, a CAD model was created for the ECI implant as detailed in Fig. 3. The

materials’ mechanical parameters used for the simulation are listed in Table 2. The

FE model has a number of approximations, namely:

a the abutment screw mounting force Fscr is not simulated by a torque, but by a

downward force (assembly preload) of the screw (applied at the lower end of the

screw, see Fig. 3a).

b The implant is embedded in a solid brass block, no deformation of the block nor

movement at the brass-implant interface is assumed in the simulation.

c The same constrain (as in (b)) applies to the interface between steel ball and

abutment.

Since the screw mounting force is approximated by an elastic downward force the

value for the assembly preload FM was estimated from Eq. (1) [17]:

[(Fig._1)TD$FIG]

Fig. 1. (a) Photo of the testing rig for the Phase-contrast Radiography (PCR) experiments. After load

application at 30° or 90°, a bolt sustains the force during the PCR image acquisition. (b) Schematic

drawing of the implant assembly according to ISO Standard 14801:2007.
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FM ¼ MA⋅ 0:16⋅Pþ 0:58⋅d2⋅μg þ cos α⋅
DKm

2
⋅μK

� ��1

(1)

with the total tightening torqueMA= 15Ncm, d2 = d1− 0.64952 · P = (1.5–0.23) mm

= 1.27 mm the pitch diameter, thread pitch P = 0.35 mm, and DKm the average of

outer and inner diameters of the friction ring between screw-head and abutment

DKm = (dW + DKi)/2 = 1.95 mm. The last term is multiplied with a cosine to account

for a tapered screw head in the ECI (α = 32.5°). The friction coefficients μG (thread)

and μK (head) were both set to 0.5 [18] (own unpublished experiments have never

shown values below 0.5). In summary these values result in a preload of the implant

system of 179.54 N. Because the torque is different for each implant system from

different companies and since the preload has little effect on the microgap formation

(see results below), a slightly lower value was used for most of the FE calculations

FM = const. = 120 N (which corresponds to 10 Ncm torque) [24, 25].

[(Fig._2)TD$FIG]

Fig. 2. (a) Typical radiograph showing the IAC of the ECI system. (b) Magnified high resolution image

in PCR showing the IAC (recorded for 100 N load, at 90° application) and the microgap, which is

highlighted by the edge-enhancement effect. (c) Schematic drawing based on (a) showing the different

parts and geometric parameters of the ECI implant system. Typical line profiles as in (d) are calculated

from strips, which are drawn perpendicular to the IAC, as shown in (b). The line profiles are the basis to

calculate the microgap’s width from the PCR [7].
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Standard settings of the Autodesk Inventor® 3D software were applied in order to

obtain a generic FE approach that enables estimation of the microgap formation.

According to the software description, all of the mesh elements are solid tetra 10

type (4 physical points and 10 nodes for the interpolation). These are volumetric

elements with the mesh size at the implant shoulder set to 0.1 mm. At less critical

positions the meshes were reduced up to 0.3 mm element size. The FE analysis was

calculated with approximately 151 000 [10_TD$DIFF]nodes and 96 000 elements. The contact

condition of the different implant components were defined to be separated [24,

25] (in detail: brass cylinder and implant: bonded, abutment and steel ball: bonded

(cf. sample description in Section 2.1), implant and abutment as well as implant

and screw: separation and no sliding contact).

A constant force vector was virtually applied to the outer surface of the steel ball at

inclinations 30°, 45° and 90° to the main implant axis, in order to simulate the flat

surface of the loading bolt which was used during the experiments (cf. Fig. 1a).

The width of the microgaps were acquired in the coronal part of the implant-

abutment-interface, on the side of force application (named UL = “upper left” in

the results) (cf. inset in Fig. 3b). Values of von-Mises stress were attained from the

opposite side (termed “point P” for the FEA, or UR = “upper right” for the

experimental data). The influence of the screw mounting force, ranging from 0 N

to 200 N, on the microgap formation is simulated using a static load of 100 N at an

angle of 30°.

[(Fig._3)TD$FIG]

Fig. 3. Illustration of the FE simulation for the ECI implant system. (a) The screw assembly preload is

simulated by a 120 N downward force, whereas the off-axis load applies to small contacts on the surface

of the steel ball in order to guarantee a constant loading angle (either 30°, 45° or 90°). (b) Resulting

displacement at 100 N load applied under 90°. The inset shows the precise location in the FE model at

the implant shoulder where the microgap is measured (in this case the virtual gap was 9.3 μm wide).
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Table 2. Mechanical parameters for the FE simulation according to ASTM F-136 and F-67.

Material Young’s modulus [GPa] Shear [3_TD$DIFF]modulus [GPa] Poisson Ratio Coefficient of friction Yield Strength [MPa]

CP-Ti Grade 4 105 40 0.37 0.5 483

Ti Grade 5 ELI 114 44 0.342 0.5 795
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It is known that FE simulations are sensitive to the mesh density used [23]. The

values chosen above are based on our previous experiences with FE simulations

and dental implants [24, 25]. Additionally, simulations were performed with

different mesh densities in order to verify that the results are free from any

potential influence of the latter (besides the chosen values, simulations were

performed for: a) shoulder 0.1 mm, other: 0.2 mm, b) shoulder 0.08 mm,

other: 0.150 mm and c) shoulder 0.05 mm, other: 0.08 mm).

3. Results

The microgap width was determined (Fig. 2) using in vitro PCR images and

calculating line plots at four different positions at the IAC, labeled “upper left“
(UL), “lower left“ (LL), “lower right“ (LR) and “upper right“ (UR), corresponding
to the four edges of the IAC trapezoid (cf. Fig. 2a). Note that the line profiles were

calculated approx. 100 μm below and above the exact edges for accuracy. The

loading force was always applied from the left hand side, hence point P

corresponds to UR and the FE estimations of the microgap have to be compared to

UL. Fig. 4 shows the resulting microgap widths. The implants show the largest gap

of 11 μm at LR for ECI 1 (at 100 N-90°) and 8 μm for ECI 2 (at 200 N-30°), also in

LR. In all load applications the implants open at UL and LR while closing at LL

and UR, hence the abutment is canted within the IAC.

[(Fig._4)TD$FIG]

Fig. 4. Microgaps calculated from PCR images at the four pivotal points of the tapered IAC (legend:

UL = upper left, LL = lower left, LR = lower right, UR = upper right). The applied off-axis load points

to the LR direction, therefore a microgap forms at UL and/or LR while a forced contact appears at LL

and/or UR. Values are given for three specific loads: (a) 30 N under 90°, (b) 100 N under 90° and (c)

200 N under 30°, inclination with respect to the main implant axis.
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For the FE model of the ECI implant, microgaps were calculated for axial forces

ranging from 10 N to 200 N and angles of 90°, 45° and 30°. The resulting gap

widths are shown in Fig. 5, along with the corresponding experimental values

(UL in Fig. 4). Obviously, with increasing angle of the applied load the resulting

microgaps forming at the adjacent implant shoulder widen, reaching 16.4 μm at

200 N force at 90°, whereas with the same load the gap is only 8.0 μm and 5.7 μm
for angles of 45° and 30°, respectively. For each force application angle the IAC

microgap width increases monotonically with applied load, but deviates somewhat

from linear behavior. Especially at smaller force values (below 50 N, 90° force

application) the gap decreases reaching almost zero at 10 N. The data scatter is less

pronounced at 90°, it is difficult to estimate the error for both the microgap and

stresses from the FE simulations as accuracy improves with a finer mesh at the

appropriate locations. Comparing FEA with PCR values the following can be

summarized: For 30 N-90° simulation predicted a 3 μm wide gap at UL, while 1.0

μm and 1.2 μm are observed experimentally for samples ECI 1 and 2, respectively.

A 9 μm wide gap was expected for 100 N-90° from our simulations, yet we found 7

μm and 6 μm for this configuration. Finally, for 200 N-30° force application 5 μm
and 3.5 μm were observed, whereas 5.7 μm was found in the FE study, hence all

experimental values are close but 1–3 μm less than of the model. Due to the finite

mesh size, von-Mises stresses measured at the opposite implant shoulder

(measurement point “P” is indicated in inset, Fig. 6) also exhibit scatter, with

peak values as high as 600 MPa (200 N at 45°), which exceeds the yield stress of

[(Fig._5)TD$FIG]

Fig. 5. Results of the FE model on the ECI implant: Microgap opening vs. load (ranging from 0 N to

200 N) application at 30°, 45° and 90°. Superimposed onto the FEA results are bars corresponding to

the PCR measurements of the microgap in the two tested implants.
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the CP Ti Grade 4 (483 MPa) implying plastic deformation occurs at the inner

implant walls. For the application angle of 45° and 90° von-Mises stress increase

monotonically with applied load, whereas high values (>400 MPa) are observed

for 30° load application at forces from 20 N to 80 N (Fig. 6). Both the residual

stress values for zero load (ca. 150 MPa at 10 N) and fluctuation at 30° application

are attributed to the abutment screw preload (120 N for all FE tests).

The influence the screw mounting force on the microgap formation at a static load

application of 100 N at 30°, 45° and 90° results in microgap widths shown in

Fig. 7. The largest gap formation is seen for zero preload (0 N) in all three load

directions: 9.6 μm at 90°, 4.5 μm at 45° and 3.6 μm at 30° application. All three

values are found to decrease monotonically with the applied preload. This effect is

indeed very faint and when the von-Mises stress is examined in the same context

(data not shown), no systematic changes in stress as a function of the applied

preload can be observed (only stochastic changes).

4. Discussion

The FE simulations, based on a simplified linearly elastic model, reveal a high

congruence with the experimental microgap values found by in-vitro synchrotron-

based PCR. Although the simulated microgaps at maximum load are approx.

1–3 μm wider than those measured experimentally. This discrepancy can be

[(Fig._6)TD$FIG]

Fig. 6. von-Mises stress for Fscr = const = 120 N and for 30°, 45° and 90° off-axis force application.

Stress values were measured at the inner implant shoulder, one at the pivotal point P. The insets show

FE model with the abutment rendered transparent, color values indicating the stress magnitude. The

implant shoulder has a mesh size of 0.1 mm.
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attributed to the line profiles being measured approx. 100 μm below or above the

IAC extremities. The FE simulation on the other hand enables measurement of

microgaps at the implant shoulder level where it shows a greater opening than 100

μm below the shoulder. Hence, the FE model is a useful approach. More

sophisticated methods for high resolution spatial measurements, such as the

recently developed stroboscopic 4D microtomography of dental implants, are only

required in a final stage of the implant development [22].

The implant loading parameters used within this study are based on the ISO

Standard 14801:2007 with the implant being embedded in a brass cylinder up to 3

mm below the nominal bone level of the implant. Unfortunately this does not

resemble a clinical setting in which the implant is placed in bone with variable

quality. Hence, no output can be specifically extracted to conclude the influence of

the stress development on the surrounding bone. However, as a consequence of this

study the FE model could be modified to include the surrounding bone matrix. Our

validation of the FE simulations by experimental measurements of the IAC

microgap suggests that such simulations would allow a comparison to be quantified

and visualized for in-vivo response of loaded implants. Upon refining the model it

became apparent that the preload of the abutment screw was an essential parameter

for comparison with experimental results. The screw retains the abutment

deflection when larger bending forces are applied; hence limiting microgap

[(Fig._7)TD$FIG]

Fig. 7. Opening of the IAC microgap as a function of the mounting force of the abutment screw (from

0 N to 200 N) for a constant load of 100 N under 30°, 45° and 90° application angle.
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formation, to an extent, while partially supporting the applied load by straining the

threads of the abutment screw. Furthermore, the contact condition of implant and

abutment is treated numerically as no sliding contact in our simplified model. It can

be expected that the microgap formation is sensitive to the contact condition of

interface between implant and abutment.

Once validated these FE models can be used for sensitivity studies to evaluate

specific design parameters, e.g. IAC taper angle, or implant wall thickness. From

the FE model we found that the preload or screw mounting force has limited

influence on microgap formation and peak stresses at point P. In fact the screw

mounting force is a matter of controversy and a hypothesis exists that with

increasing screw preload a decrease in micromovement of the abutment results

[15]. These authors indicated mechanical stability of the IAC is correlated to the

preload or tensile force generated in an abutment screw by tightening it [15, 19];

this clamping force exerted by the screw must exceed the forces acting on the joint.

Micromovements of the components of a joint are known to minimize the preload

as seen in samples measured after fatigue loading [15, 20]. The optimum preload

should ensure that with additional occlusal loading forces the materials remain

within their elastic range. That is, the resultant stresses generated are below the

yield stress of the material used. The accuracy of the preload has been determined

to be essential for studying the dynamic loading response of implant components

[11]. Evaluating the influence of the screw assembly force on the formation of

microgaps and the stress distribution at point P with the FE model under oblique

force application (30°) however revealed diverging outcomes. For small assembly

forces (lower effective bending moment) the microgap decreases due to a tighter

fit, whereas the gap is further opened when the assembly force surpasses a critical

value (approx. 100 N for 30°–100 N). Evaluation of the von-Mises stress beyond

this value has minimal significance because the implant and abutment are no

longer in contact at point P. For lower assembly forces and 90° force application

the von-Mises stress ranges between 500 and 800 MPa. The largest values, which

are seen for 200 N-90°, indicate that plastic deformation of the inner implant wall

may take place at point P when strong oblique chewing forces are applied.

To extrapolate our FE model findings to [11_TD$DIFF]consider the influence the screw mounting

torque on the overall mechanics of the implant system, a more refined model of the

ECI is recommended. While for the purpose of simulating the microgap formation

the FE model proved to be sufficient, however while an estimate of the von-Mises

stresses in the implant was possible it was considered to be at the critical limit of

the details of the CAD mesh.

The experimental results support the use of FE modeling which is already widely

used to assess the biomechanical behavior of dental implants [21, 22]. So far, the

results only consider static off-axis loading of virgin implant systems, and can thus
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not predict cyclic damage caused by fatigue loading. However, ex-situ synchrotron

micro-CT measurements [8] revealed residual deformation of the implant body at

point P in the high-cycle fatigue regime. These observations are in agreement with

von-Mises stresses predicted at this point in the current model. Since the microgap

formation as well as any other potential cause (e.g. local plastic deformation) for

loosening of the abutment screw is a cause for clinical revision/intervention, the

interest and necessity for studying the mechanics of dental implants will most

likely increase with the complexity of their design.

5. Conclusion

FE analysis has been successfully validated using in-vitro synchrotron radiogra-

phy. Compared to the use of laboratory X-ray sources the use of synchrotron

radiation allows one to probe the interior of the implant with high spatial resolution

[12_TD$DIFF][1_TD$DIFF][5, 26]. As such this is one of the very few validated dental implant FE studies

available. Hence, simple linearly elastic FE analysis enables the investigation of

abutment micromovement in a conical implant-abutment connection when multi-

axial static loading is applied. Additionally the impact of other specific parameters

such as screw preload can be studied. While the FE analysis used in our study was

able to predict displacements, i.e. it full-filled the needs of our descriptive study, a

finer mesh is recommended to reliably determine the stresses generated around

stress concentration sites such as threads. A more detailed mesh sensitivity study

would be required in order to allow for the model to predict the behavior of a two-

piece implant design in a truly realistic manner.
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