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We examined how effective connectivity into and out of the left and
right temporoparietal areas (TPAs) to/from other key cortical areas
affected phonological decoding in 7 dyslexic readers (DRs) and 10
typical readers (TRs) who were young adults. Granger causality
was used to compute the effective connectivity of the preparatory
network 500 ms prior to presentation of nonwords that required
phonological decoding. Neuromagnetic activity was analyzed
within the low, medium, and high beta and gamma subbands. A
mixed-model analysis determined whether connectivity to or from
the left and right TPAs differed across connectivity direction (in vs.
out), brain areas (right and left inferior frontal and ventral occipital--
temporal and the contralateral TPA), reading group (DR vs. TR),
and/or task performance. Within the low beta subband, better
performance was associated with increased influence of the left
TPA on other brain areas across both reading groups and poorer
performance was associated with increased influence of the right
TPA on other brain areas for DRs only. DRs were also found to have
an increase in high gamma connectivity between the left TPA and
other brain areas. This study suggests that hierarchal network
structure rather than connectivity per se is important in determining
phonological decoding performance.
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Introduction

Developmental dyslexia is the most common learning disorder

worldwide, affecting both children and adults with a prevalence

as high as 17.5% (Shaywitz 1998). Dyslexia is a lifelong disorder

with a wide variability in prognosis regardless of the quality of

remediation therapy. Some studies have suggested that 2

subsets of dyslexic readers (DRs) can be differentiated based

on the reading skills that they eventually develop as young

adults: one subset is believed to develop adequate phonological

word decoding skills as young adults and the other subset is

believed to continue to manifest poor phonological word

decoding skills into adulthood (Shaywitz et al. 2003; Miller-

Shaul 2005; Svensson and Jacobson 2006). In contrast, other

studies suggest that DRs are probably best represented on

a continuum of severity with multiple genetic and environ-

mental risk factors interacting to result in the phenotype

known as dyslexia (Pennington and Lefly 2001; Snowling 2008).

Recently, we demonstrated that brain morphology (Frye,

Liederman, Malmberg, et al. 2010), white matter connectivity

(Frye, Hasan, et al. 2008; Frye, Liederman, Hasan, et al. 2010),

and effective connectivity (Frye, Wu, et al. 2010) were related

to reading-related skills on a continuum in young adults with

a history of dyslexia, thereby supporting the latter notion.

Three regions of the brain often manifest atypical activation

in DRs as compared with typical readers (TRs). These areas

include the inferior frontal areas (IFAs), the temporoparietal

areas (TPAs), and the ventral occipital--temporal areas (VOTAs;

Pugh, Mencl, Jenner, et al. 2000). This study will focus on the

TPAs and their connection to these other 2 brain areas as well

as to each other. The TPAs are the most consistently reported

areas of the brain that manifest atypical functional activation in

DRs. Relative underactivation of the left TPA and overactivation

of the right TPA has been reported in DRs during early

childhood (Simos, Fletcher, Foorman, et al. 2002), later child-

hood (Temple et al. 2003), adolescence (Simos, Fletcher,

Bergman, et al. 2002), and adulthood (Shaywitz et al. 2003).

Several studies have indicated that atypical TPA functional

activation can change with remediation. However, the exact

changes in right and left TPA functional activation have been

inconsistent across studies. Some studies report an increase in

left TPA activation in children with dyslexia who respond to

intensive intervention (Simos et al. 2007). However, other

studies report that functional activation of both the right and

the left TPAs increase following interventions in children with

dyslexia (Temple et al. 2003). Furthermore, other data suggest

that atypical right TPA functional overactivation may persist

into adulthood for DRs who develop adequate phonological

decoding accuracy but continue to have slow decoding skills

and remain nonfluent readers (Shaywitz et al. 2003). Thus,

whether persistence of atypical right TPA activity is compen-

satory or disadvantageous remains under question (Shaywitz

et al., 2003, 2006).

Rather than comparing functional activation between DRs

and TRs, some have compared functional connectivity. Two

early studies demonstrated poorer connectivity between the

left VOTA and TPA in DRs as compared with TRs (Horwitz et al.

1998; Pugh, Mencl, Shaywitz, et al. 2000). Newer connectivity

techniques allow the study of effective connectivity. Using

such newer techniques it is possible to determine the influence

of different cortical areas on each other, not just whether

cortical areas are connected to one another. Two of these

techniques, structural equation modeling and dynamic causal

modeling, are model-based effective connectivity techniques.

These techniques require the experimenter to specify a partic-

ular set of causal connections between brain areas and then

estimate free parameters for these models. These models

restrict the number of possible causal connections. As
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a consequence, when these techniques have been applied to

studies on reading, they have only evaluated one direction of

coupling (e.g., feedforward; Levy et al. 2009) or analyzed only

the left hemisphere (Cao et al. 2008; Quaglino et al. 2008; Bitan

et al. 2009).

In contrast to these ‘‘model-driven’’ techniques for measur-

ing effective connectivity, Granger causality (GC) is a ‘‘data-

driven’’ technique that empirically calculates the direction

and strength of connectivity with minimal assumptions about

the structure of the neural network (Frye, Wu, et al. 2010;

Frye and Wu forthcoming; Sakkalis forthcoming; Wu et al.

forthcoming). GC is based on the assumption that causes

precede effects. To determine the temporal relationship

between neurophysiological signals, the GC technique uses

autoregressive (AR) models to analyze the temporal relation

within and between signals. Essentially, if a particular neuro-

physiological signal can predicted another neurophysiological

signal better than that signal can predict itself, it is considered

to be driving the signal.

An AR process can be defined for a time series A = [a(t):

1 . . . T] and is assumed to have a periodic component so that at

any time t it can be predicted by the values of the previous

signal. Equation (1) defines signal a(t) which is dependent on

the past 3 values at times t – 1, t – 2, and t – 3. The influence of

the signal at times t – 1, t – 2, and t – 3 on the current time is

given by the coefficients c1, c2, and c3, respectively. Since real

signals are not completely deterministic, we must consider that

the predicted value of signal a(t) is associated with some error

eaja(t). This error represents the portion of the signal a(t) at

time t which is not accounted for by the given previous values

of a(t – 1), a(t – 2), and a(t – 3):
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The number of previous time points considered is known as

the order of the model. A generalization of equation (1) for any

order P is given by equation (2) where error eaja(t) represents

the portion of the signal a(t) at time t that is not accounted for

given the previous values of a(t – 1) . . . a(t – P):
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A periodic signal can also be predicted by another periodic

signal rather than itself. The case where the time series B = [b(t):

1 . . . T] predicts the time series A is given in equation (3) where

themodel order is P and eajb(t) represents the error in predicting

a(t) given the previous time point of b(t – 1) . . . b(t – P):
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The signal a(t) can also be predicted by its own past activity

as well as activity of another signal. In order to formulate such

a model, we combine equations (2) and (3) to produce

equation (4). Equation (4) demonstrates that signal a(t) at time

t is being predicted by the previous activity of both a(t – 1) . . .
a(t – P) and b (t – 1) . . . b (t – P). eajab(t) represents the error in

predicting a(t) given the previous time point of a(t – 1) . . .
a(t – P) and b(t – 1) . . . b (t – P):
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GC measures the influence of one signal on another. This

measure is based on the relative change in the model error

when time series are added to improve the prediction of the

dependent signal (Granger 1969). For example, we can

measure the error accounted for by adding the time series B

to equation (4) by comparing the error terms of equations (2)

and (4). The traditional GC measure is given by equation (5)

(Ding et al. 2006; Seth and Edelman 2007). Essentially GC is the

ratio of the variance of the model before and after the addition

of the new time series:

Fy/x = ln
Var
�
eaja

�

Var
�
eajab

�: ð5Þ

Although Granger originally described using least-square

linear regression for solving AR models (Granger 1969), over

the last 2 decades many researchers, particularly those in the

signal analysis field, have adopted the Levinson, Wiggins,

Robinson algorithm, a maximum entropy method, to solve

the system of AR equations associated the GC (Ding et al. 2000,

2006). Recently, we demonstrated that a version of GC analysis

that uses least-squares linear regression known as Dynamic

Autoregressive Neuromagnetic Causal Imaging (DANCI) has

significant advantages over a method that uses the Levinson,

Wiggins, Robinson algorithm and that DANCI provides a fast,

accurate, unbiased, and robust estimation of GC for up to 50

completely interconnected neurophysiological signals (Frye

and Wu forthcoming). In addition, although GC is traditionally

a time domain method, the concept has been adapted to the

frequency domain (Geweke 1984; Hosoya 2001) for which

several alternate causality measures, such as the directed

transfer function (Kaminski and Blinowska 1991) and partial

directed coherence (Sameshima and Baccala 1999), have been

developed. Recently, we demonstrated that GC provides a more

accurate estimation of effective connectivity than these other

frequency domain measures (Wu et al. forthcoming).

We recently used DANCI to analyze neuromagnetic causal

connectivity during the prestimulus period while DR and TR

participants were preparing to phonologically decode a visually

presented nonword (Frye, Wu, et al. 2010). We compared

causal connectivity between the IFA and brain areas known to

be essential for reading (left and right IFAs, TPAs, and VOTAs)

in the low, medium, and high beta and the low, medium, and

high gamma frequency subbands. We found that greater top-

down connectivity from the left IFA to other cortical regions in

the low beta subband was correlated with better phonological

task performance in DRs but not TRs, suggesting that left IFA

top-down activity may be acting in a compensatory manner to

facilitate phonological decoding in DRs.

In contrast, TRs did not demonstrate significant top-down

activity from either the left or the right IFA to other key brain

regions. We hypothesized that this was due to the fact that the

reading network in TRs did not require top-down activation

from the frontal areas since the reading network in TRs is

believed to automatically engage when phonological word

decoding is necessary. In fact, this automaticity is a key attribute

that is deficient in DRs (Yap and van der Leij 1994; Brambati et al.
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2006; Shaywitz and Shaywitz 2008). This reasoning led us to

suggest that in DRs, the atypically strong functional connectivity

from the left IFA to other key brain regions for readingmay serve

them as a compensatory mechanism.

Using GC, our previous study helped clarify why functional

overactivation of the left IFA is inconsistently reported in DRs.

First, the functional activation of the IFA in DRs probably

depends on how well the DR has compensated for their

disability, making the results of functional brain imaging studies

sensitive to the characteristics of the individuals which make

up the group of DRs selected for the study. Second, the

influence of the IFA on other brain areas probably depends on

IFA causal connectivity, not just functional activation. We

believe that the inconsistency across studies in the functional

activation of the left and right TPAs in DRs is due to the

same factors that we argued affect the inconsistency of IFA

activation (Frye, Wu, et al. 2010). These factors are variations

in participant performance and differences in causal connec-

tivity between the TPA and other key brain areas involved in

reading.

The premise of this study is: 1) in general, the left TPA is the

dominant control hub for the preparatory phonological decod-

ing network and 2) in DRs, the extent to which this control is

shared with the right TPA is related to deficiencies in

phonological decoding performance. Our first set of hypotheses

is centered on the causal connectivity measured during beta

frequency activation. Beta band activity has been linked to long-

range synchronization of the frontal, parietal, temporal, and

occipital areas (Gross et al. 2004, 2006) and multimodal

integration between cortical lobes (von Stein et al. 1999).

Therefore, it is hypothesized that activity within the beta

frequency band will be related to large-scale communication

between the cortical areas hypothesized above. Specifically, we

hypothesize that, in the beta frequency band, 1) for both TRs and

DRs, the extent to which the left TPA provides control over the

other key cortical regions for reading will be proportional to

performance on the nonword phonological decoding task

and 2) in only DRs, the extent to which the right TPA also

provides control of the key reading areas in the brain will be

inversely proportional to performance on the nonword phono-

logical decoding task. We used GC to examine the influence

from the right or left TPA to other brain areas relative to the

influence from other brain areas to the right or left TPA. Greater

relative influence of the right or left TPA on other brain

regions will be interpreted as a measure of control over those

regions.

In contrast to beta band activity, we hypothesize that increased

levels of gamma-band interconnectivity between the TPA and

other brain regions will be associated with decreased perfor-

mance during phonological decoding. In our prior study (Frye,

Wu, et al. 2010), stronger symmetric gamma-band connectivity

between the IFA and other key brain areas involved in reading

during the prestimulus period was found to be related to poorer

performance on the visual phonological decoding task. Transient

desynchronization of gamma activity has been documented

during reading in TRs (Lachaux et al. 2008). Therefore, we

interpreted our results as indicating that highpreparatory gamma-

band connectivity may have reduced the ability of the network to

decouple during theperformanceof the actual task and assumean

asymmetric activation pattern. We now are testing whether high

levels of gamma in the TPAs are also associated with poorer

phonological decoding.

Materials and Methods

Participants
We examined 10 TRs and 7 DRs who were native English speakers

between the ages of 18 and 45 years, with normal or corrected vision,

normal hearing, and no history of severe psychiatric or neurological

illnesses or attention defects. DRs reported a childhood diagnosis of

phonological dyslexia and were either referred from the Office of

Disability Services at Boston University or recruited from Curry College

in Milton, Massachusetts.

Reading performance composite was calculated by averaging the

percentile ranks of reading rate and comprehension of the Nelson--

Denny Reading Test. DRs scored below and TRs scored above the 25th

percentile. All participants scored greater than or equal to 80 on the

Wechsler Adult Intelligence Scale as estimated from vocabulary and

block design subtests (Wechsler 1997) and subtest scores were

equivalent for DRs and TRs (Table 1). Right handedness was confirmed

by a score greater than 50 on the Edinburgh Handedness Inventory

(Dragovic 2004). Written informed consent was obtained in accor-

dance with our Institutional Review Board regulations. Participants

underwent a magnetoencephalography (MEG) and magnetic resonance

imaging (MRI) scan as described below and received $20 per hour.

Participants completed additional tasks that measured their phono-

logical skills (McGraw Fisher et al. forthcoming). Two tasks that

complemented the nonword rhyme task performed in the scanner are

discussed (McGraw Fisher et al. forthcoming). In the first task, called

the final consonant discrimination task, participants completed an

auditory discrimination task that required speech sound segmentation.

One-syllable nonword synthetic stimuli with a consonant-vowel-

consonant (CVC) structure were synthesized such that the vowel

segments were not the same. This allowed trials with a rhyming stimuli

pair in which the final consonant was the same and trials with

nonrhyming stimuli pair in which the final consonants were not the

same. Participants listened to 48 pairs of CVC nonwords separated by

a 250 ms interstimulus interval and decided if the final consonant

sounds were the same or different. As seen in Table 1, accuracy on the

final consonant task was lower for DRs as compared with TRs (t16 =
3.30, P < 0.01). Similarly latencies were longer for DRs as compared

with TRs (t16 = 2.35, P < 0.05). In the second task, called the nonword

naming task, participants were required to pronounce 40 two-syllable

nonwords aloud. This task explicitly measured phonological decoding

ability as a nonphonological strategy could not be used to successfully

complete this task. Accuracy on the nonword naming task was lower

for the DRs as compared with TRs (t16 = 2.18, P < 0.05). Reaction time

for the nonword naming task was higher for the DRs as compared with

the TRs but the difference did not reach statistical significance.

Nonword Rhyme Task
A scanner task was developed to equate task difficulty across the 2

groups of readers due to their different levels of reading skills (McGraw

Fisher et al. forthcoming). In order to do this, we developed a task with

3 levels of difficulty (Fig. 1). For all levels of difficulty, the participant

was required to indicate if any of the target nonword(s) rhymed with

the test nonword. A keypad press with the right index or middle finger

Table 1
Participant characteristics (mean (standard error))

Characteristic TRs DRs

Age 21.9 (1.1) 24.6 (2.3)
Male:female 5:5 3:4
Handedness 77.8 (5.4) 87.1 (4.0)
Nelson--Denny rate 38% (7%) 6% (2%)
Nelson--Denny comprehension 66% (10%) 13% (5%)
Nelson--Denny average 53% (7%) 11% (3%)
Vocabulary subtest 12.9 (1.0) 13.1 (1.3)
Block design subtest 12.6 (0.6) 11.3 (0.7)
Final consonant test—accuracy 84% (2%) 74% (2%)
Final consonant test—reaction time 1862 (123) ms 2659 (314) ms
Nonword naming—accuracy 93% (1%) 79% (6%)
Nonword naming—reaction time 755 (64) ms 1411 (450) ms
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indicated that the words did or did not rhyme, respectively. All

nonwords were presented for 400 ms each, the total time from trial

onset to the onset of the test nonword remained constant at 1650 ms

and the intertrial interval was 2000 ms. Depending on the level of

difficulty, 1, 2, or 3 target nonwords were presented sequentially before

the test nonword. By eliminating the most difficult level of the task for

the DRs, we were able to achieve overall equivalent performance across

these 2 reading groups since DRs performed at chance at the most

difficulty level (McGraw Fisher et al. forthcoming). Thus, TRs

completed 6 blocks: 4 with 1 target item (level 1), 1 with 2 target

items (level 2), and 1 with 3 target items (level 3). DRs completed

5 blocks: 4 with 1 target item (level 1) and 1 with 2 target items (level

2). Each testing block consisted of 60 randomly presented novel trials.

Visual stimuli were projected by a Panasonic DLP projector (Model No.

PT-D7500U) through an aperture in the chamber onto the back of

a nonmagnetic screen located 1.5 m in front of the participant.

Letter strings were constructed to look orthographically similar, even

when they did not rhyme, in order to eliminate the use of a visual

strategy. For example, the nonwords in the pair ‘‘plord/glurd’’ are

similar in length, in the number and position of consonants (C) and

vowels (V), but do not rhyme. A visual scan of the overall shape of the

nonwords would falsely suggest that they rhyme, since they both end in

‘‘rd.’’ Additionally, nonwords that did rhyme did not have the same

endings. For example, the nonword pair ‘‘leat’’ and ‘‘jete’’ have different

endings but rhyme. Therefore, a correct response could not be based

solely on a visual strategy and individuals were required to phonolog-

ically decode the nonword in order to correctly complete the task. The

task used in the MEG scanner was developed on a larger group of

31 TRs and 26 DRs in order to validate the performance of this task in

the 2 groups (McGraw Fisher et al. forthcoming).

Performance Measurements
A signal detection paradigm was used to obtain a measurement of

performancewithout response bias. Rhyme trials were considered signal
+ noise trials, while nonrhyme trials were considered noise trials.

Sensitivity (d-prime) was calculated from the hit and false alarm rates

assuming an equal variancemodel (i.e., z (Hit Rate) – z (FalseAlarmRate)).

Magnetic Resonance Imaging
After the MEG session, a high-resolution, 3D, T1-weighted structural MRI

of the brain was acquired. Using FreeSurfer software, the MRI

images were segmented and the cortical surface was reconstructed (Dale

et al. 1999; Fischl et al. 1999). These images were used to ensure that the

MEG sensors selected were located above the true regions of interest.

MEG Acquisition

Participant Preparation

Four head position indicator coils were placed on both sides of the

forehead and behind the ears. These coils were used to determine the

relative position of the head while in the scanner. The coils’ positions

were measured using a low-intensity magnetic field generated by each

coil at the start of each run. The positions of the coils, the nasion, and

auricular points and about 70 points on the scalp were recorded with

a Polhemus Fastrack (Colchester, VT) 3D digitizer (Hämäläinen et al.

1993). Electrooculography (EOG) electrodes were placed at each

temple and above and below the left eye, with the ground on the left

lower cheek. Vertical and horizontal EOG was recorded to detect

blinks and large eye movements.

MEG Recording

MEG recordings were performed at the Massachusetts General Hospital

Athinoula A. Martinos Center for Biomedical Imaging using a whole-

head VectorView system (Elekta Neuromag Oy, Finland) inside a high-

performance magnetically shielded room (Imedco AG, Switzerland)

(Cohen et al. 2002). The device has 306 SQUID (superconducting

quantum interference device) sensors arranged in 102 locations within

a helmet-shaped array. Each location contained longitudinal and

latitudinal planar gradiometers and a magnetometer. Signals were

filtered at 0.1--172 Hz and sampled at 601 Hz.

MEG Postprocessing
Blinking and other artifacts were excluded by removing epochs with

EOG amplitudes exceeding 150 lV or gradiometer signals exceeding

3000 fT/cm. Typically, 1 or 2 MEG channels were excluded for each

participant due to artifacts. To examine the preparatory state activity,

the neural activity was extracted from 500 to 0 ms before the onset of

the first nonword stimulus on each trial. Approximately 300 trials were

extracted for each participant. To reduce the number of channels, the

signal amplitude at each location was derived from the longitudinal and

latitudinal planar gradiometers as given in equation (6).

Signal Amplitude =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
longitudinal amplitude2 + latitudinal amplitude2

q
:

ð6Þ

Since activity within the beta and gamma frequency subbands have

been linked to phonological and orthographic processes required for

reading in MEG, electroencephalogram (EEG), and intracranial studies

(Duncan-Milne et al. 2003; Mainy et al. 2008; Matsumoto and Iidaka

2008; Spironelli et al. 2008; Cornelissen et al. 2009; Trebuchon-Da

Fonseca et al. 2009; Penolazzi et al. 2010), we examined signals within

the low (12--14 Hz), medium (15--19 Hz), and high (20--29 Hz) beta and

low (30--59 Hz), medium (60--89 Hz), and high (90--12 0Hz) gamma

subbands. Signals were filtered using low-order bidirectional Butter-

worth filters to prevent frequency and phase distortion and distortion

of the causal structure of the data (Florin et al. 2009). The signal was

down sampled by a factor of 2 before analysis.

Region of Interest Selection
Data was selected from 24 sensor locations overlying the right and left

IFA, TPA, and VOTA. A viewer depicting the exact position of the

selected sensors over the 3D model for each participant was used to

ensure that the position of the sensors corresponded to the regions of

interest for each participant. The average Talairach coordinates of the

cortex underlying the center of the groups of sensors for each region of

interest are as follows: left IFA –54.2, 22.4, 1.71; left TPA –62.5, –51.1,

30.4; left VOTA –42.8, –62.4, –13.2; right IFA 57.7, 26.7, 7.1; right TPA

58.0, –54.4, 35.8; right VOTA 39.2, –55.1, –14.4.

GC Analysis
To maintain stationarity, a brief ‘‘snapshot’’ of the signal was extracted

using the short-window approach (Ding et al. 2000). A 20 point

window was incrementally moved across the 500 ms data epoch. The

epoch length was 150 data points after downsampling, which fit 131

20 point windows and 131 observations per trial. Given that about

300 data trials were recorded from each participant, approximately

39 300 (i.e., 300 3 131) observations were produced for each

participant. The signal was normalized with respect to both amplitude

and variation for each individual and ensemble by detrending each trial,

normalizing by the trial mean and standard deviation, and then

normalizing by the ensemble mean and standard deviation in a point-

by-point manner (Ding et al. 2000; Frye, Wu, et al. 2010).

Figure 1. Diagrammatic representation of the nonword rhyme task, including the
details of each of the 3 levels.
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A system of AR models was constructed to represent the mutual

influence of S sensors on one another. The MEG signal from a set of

sensors [1 . . . S], where S = 24, with time points [1 . . . T ], where T = 20

(as described above), is given in time series A = [as(t ): s = 1 . . . S, t = 1

. . . T ]. A system of AR models of order P (eq. 7) was used to model the

time series. The model order determines the number of coefficients

that are used to model each sensor--sensor interaction:
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In equation (7), each single equation represents a signal as(t) at time

t that is predicted by previous values of itself and all other signals. For

example, coefficients c1,1,j (j = 1 . . . P) quantitatively describe the

influence of the activity of a1(t) on itself, coefficients c1,2,j ( j = 1 . . . P)
quantitatively describe the influence of the activity of a2(t) on a1(t),

and coefficients c1,s,j (j = 1 . . . P) quantitatively describe the influence of
signal as (t) on a1(t), etc. Likewise, coefficients cs,1,j ( j = 1 . . . P)

describe the quantitative influence of signal a1(t) on signal as (t).

In order to solve this system of equations using least-squares linear

regression, we define matrix Xo for one data observation o as equation (8).

The design matrix given in equation (9) is defined for all observations from

equation (8). The dependent matrix defined in equation (10) is then

defined from a series of O observations for each signal s. The coefficients

for the above set of equations can then be solved for each signal s using

the X and Ys (eq. 11). The coefficients derived with (eq. 11) are the same

coefficients outlined in equation (7). For each signal s, equation (11)

derives a coefficient matrix with coefficients [cs,1,1 . . . cs,1,P . . . cs,S,1 . . .
cs,S,P]. Using the coefficients, the error of the AR for each source can be

calculated using equation (12). The variance of the model error, also known

as the mean squared error (mse) for signal s is shown in equation (13):

X�=
�
a�
1ðt – 1Þ . . . a�

1ðt – PÞ a�
2ðt – 1Þ . . . a�

2ðt – PÞ . . . a�
Sðt – 1Þ . . . a�

Sðt – PÞ
�
; ð8Þ

X =
�
X1 . . .XO

�
#; ð9Þ

Ys =
�
a1s ðtÞ . . . aOs ðtÞ

�
; ð10Þ

cs = ðX#XÞ – 1ðX#YsÞ; ð11Þ

esj1...S =Xcs –Ys; ð12Þ

msesj1...S =

+
O

i=1

e2
sj1...S

O
: ð13Þ

We can apply the same calculation to the system of AR models

presented in equation (7) to help derive measures of GC. The AR

models for a signal s in equation (7) already accounts for the influence

of all of signals. We can eliminate the signal of interest by

reconstructing the matrix Xo leaving out the signal of interest. For

example, if we were interested in the influence of signal 2 on any other

signal s, we would reformulate Xo as demonstrated in equation (14),

recalculate the least-squares linear regression and derive the error

vector esj1,3 . . . S:

X�=
�
a�
1ðt – 1Þ . . . a�

1ðt – PÞ a�
3ðt – 1Þ . . . a�

3ðt – PÞ . . . a�
Sðt – 1Þ . . . a�

Sðt – PÞ
�
:

ð14Þ

The GC measure representing the influence of signal 2 on signal s

given all of the other signals 1 to S (expect for 2) would be calculated

with equation (15):

F2/s = ln
msesj1;3...S

msesj1...S
: ð15Þ

Using the approach above, we constructed a matrix of GC values to

represent the influence of each MEG sensor on every other MEG

sensor. We then evaluated the significance of each GC value in order to

consider only the connections which represented significant connec-

tivity. The same measure of error that is used to calculate GC can also

be used in a partial F-test in order to calculate the significance of the

GC value. Equation (16) outlines the calculation of this F-distributed

value which has P and O*T – S*P – 1 degrees-of-freedom in the

numerator and denominator, respectively. Granger used the same

symptom ‘‘F ’’ to signify GC, making the notation confusing:

F 2/s
P ;O�T – S�P – 1 =

O�ðmsesj1;3...S –msesj1...SÞ
P

O�msesj1...S

O�T – S �P – 1

: ð16Þ

To empirically derive the structure of the network, we use equation

(16) to determine the true connections within the network. The F

value in equation (16) provides an indication of statistical significant of

the GC value. In order to ensure, we only examine the correct network

connections, we use a very conservative alpha (P < 10
–4). In order to

compare network connectivity across participants, the average GC

values between each language area of interest were calculated by

averaging the significant GC values between language areas. This whole

process was performed for each frequency band separately.

The optimal model order is typically chosen by estimating several AR

models with different orders and determining which model order is

optimal with respect to 2 standard information criteria, the Akaike

information criterion (AIC) and the Bayesian information criterion

(BIC). Since there is no specific criterion to guide the choice of model

orders to test, we selected orders 8, 12, and 16. A model order of 16 was

found to be optimal with respect to the AIC and BIC criteria.

Statistical Analysis
In order to quantitatively analyze GC values, we constructed a linear

mixed-model similar used in our recent studies (Frye et al. 2007; Frye,

Fisher, et al. 2008; Frye, Hasan, et al. 2008; Frye et al. 2009; Frye,

Liederman, Hasan, et al. 2010; Frye, Liederman, Malmberg, et al. 2010;

Frye, Wu, et al. 2010). In our previous studies, we investigated the

relationship between performance and anatomic connectivity and

found that this relation was not necessarily the same for different

reading groups (i.e., DRs, TRs). Thus, our previous models contained

the fixed effects of both reading groups (TRs vs. DRs) and a covariate

for performance with an additional interaction between these effects.

In the current study, we examined effective connectivity to/from the

TPA. Since there are 2 directions of connectivity for each connection

(in vs. out) an additional fixed effect of connectivity direction was

included in the models. Since each TPA is connected to 5 other areas

(i.e., right and left IFA, right and left VOTA, and the contralateral TPA)

an additional fixed effect, which represented brain area, was included

in the model. Thus, the final model for this study had fixed effects of

area (5 levels), reading group (TRs vs. DRs), and connectivity direction

(in vs. out) with a covariate representing performance, which in this

case is d-prime (i.e., sensitivity). The ‘‘mixed’’ procedure of SAS 9.1 (SAS

Institute Inc., Cary, NC) was used to evaluate the model. The

participants’ cortical areas and connectivity direction were entered as

random effects in the mixed model (Frye, Wu, et al. 2010).
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The general mixed model is in the matrix form is given by equation

(17), where y is the dependent variable, which in this case is

connectivity between 2 cortical regions, X is the design matrix for

the fixed effects and covariate, b is a vector containing the parameters

of the fixed effects and covariate, Z is the design matrix for the random

effects, c contains the parameters of the random effects, and e is the

variance--covariance matrix of the model error:

y =Xb +Zc + e: ð17Þ

The key assumption of the mixed model are that both c and e have

the expected value of 0 (i.e., E(c) = 0 and E(e) = 0) and known

covariance structure given by the matrixes Var(c) and Var(e). The
values for each row of the design matrix X are given by equation (18),

where c is the constant with value 1, area is the cortical area

represented by the 5 dummy variables area1 . . . area5 (i.e., for analysis of
the left TPA, dummy variables would be set up to represent the other

cortical regions that the left TPA is connected to, e.g., area1 = 1 for left

IFA and 0 otherwise, area2 = 1 for left VOTA and 0 otherwise, etc.),

inout is connectivity direction represented by a dummy variable (i.e.,

inward = 0, outward = 1), read is reading group as represented by

a dummy variable (i.e., dyslexia = 1, typical = 0) and dp is the centered

d-prime value for the particular participant, p:

x
�
t; v;h; ap; v

�
=

�
c area1 area2 area3 area4 area5 inout read dp

�
area1 � inout

�

. . .
�
area5 � inout

��
area1 � read

�
. . .
�
area5 � read

��
area1 � dp

�
. . .

�
area5 � dp

��
inout � read

��
inout � dp

��
read � dp

�

�
area1 � inout � read

�
. . .
�
area5 � inout � read

��
area1 � inout � dp

�

. . .
�
area5 � inout � dp

��
area1 � read � dp

�
. . .
�
area5 � read � dp

�

�
inout � read � dp

��
area1 � inout � read � dp

�
. . .

�
area5 � inout � read � dp

��
:

ð18Þ

The values for each row of the random-effects design matrix Z are

given by equation (19), where p is the participant where pi is 1 for

participant i and 0 otherwise. The mixed model was calculated using

the restricted maximum likelihood method:

z
�
p; area; inout

�
=
�
p1 . . .p17 area1 area2 area3 area4 area5 inout

�
: ð19Þ

Each left and right TPA and frequency subband was analyzed with

a separate mixed model. For each analysis, all effects, along with their

interactions, were examined for significance and the model was

simplified by removing the highest order nonsignificant interaction,

or effect if no interaction existed, and recomputing the model. This

simplification procedure was repeated until all effects and interactions

in the model were significant with the exception that nonsignificant

effects remained in the model if they were dependent effects of

a significant interaction. This procedure has been widely used by

ourselves and others (Frye et al. 2007; Frye, Fishcher, et al. 2008; Frye,

Hasan, et al. 2008; Frye, Landry, et al. 2009). In order to verify that the

statistical model represented the data accurately, diagnostic plots of

standardized residual plots were examined to insure that the residuals

demonstrated a normal distribution and that the predicted versus

residual plots did not demonstrate any systematic bias. In order to

mitigate the effects of inflated alpha due to performing multiple

statistical models, we corrected the alpha for the full model using the

Bonferroni method. Since there are 6 frequency bands examined and 2

TPAs (i.e., left and right) we used an alpha of 0.05/12 = ~0.004 for the

overall analysis. All follow-up statistical tests used an alpha of 0.05. The

relationship between performance and connectivity was additionally

analyzed using 2-tailed Pearson correlations.

Results

Beta Frequency

Table 2 provides the F values for the mixed-model analyses for

the beta frequency subbands.

Low Beta (12--14 Hz)

Left TPA. Connectivity was significantly influenced by an

interaction between direction and performance, indicating

that the relative balance between inward versus outward

connectivity was related to task performance. As seen in

Figure 2A, performance was related to the difference between

inward and outward connectivity (r15 = –0.66, P < 0.005) such

that better performance was associated with relatively greater

outward connectivity from the left TPA to the other brain areas

and a lower inward connectivity from the other regions of the

brain to the left TPA.

Right TPA. Connectivity was influenced by an interaction

among performance, direction, and reading group, indicating

that the relative balance between inward versus outward

connectivity was related to task performance but this was

different across reading groups. Figure 2B demonstrates the

relationship between performance and inward versus outward

connectivity differences for both TRs and DRs. This relation-

ship is significant for DRs (r5 = 0.96, P < 0.001) but not TRs (r8
= 0.40, P > 0.10). For DRs, greater relative inward connectivity

from the rest of the brain areas to the right TPA was associated

with relatively better performance, while greater relative

outward connectivity from the right TPA to the rest of the

brain areas was associated with relatively worse performance.

Middle Beta (15--19 Hz)

Left TPA. Connectivity significantly differed across cortical

areas. Connectivity with the right TPA was significantly greater

(t64 = 3.85, P < 0.001) than connectivity with other brain areas

(Fig. 2C).

Right TPA. Connectivity significantly differed across cortical

areas. Connectivity with the left TPA (t64 = 3.34, P = 0.001) and

right IFA (t64 = 3.76, P < 0.001) was significantly

greater than connectivity with other brain areas. In contrast

(Fig. 2D), connectivity with the left IFA (t64 = 3.64, P < 0.001)

was significantly lower than connectivity with other brain

areas.

High Beta (20--29 Hz)

Left and right TPA connectivity did not differ across cortical

area or reading groups and was not related to performance.

Gamma Frequency

Table 3 provides the F values for the mixed-model analyses and

the t values for the planned contrasts for the gamma frequency.

Table 2
F values for the mixed-model analysis of the beta frequency subbands

To d# In versus
out

Reading Reading 3 d# In versus out
3 reading

In versus
out 3 d#

Reading 3

d# 3 in
versus out

Low beta
Left 5.4y NS NS 11.48y
Right 5.0y NS NS NS NS 7.5U 9.2U 13.40y

Middle beta
Left 6.15y
Right 5.39y

Note: NS, not significant.

*#0.05, U#0.01, y#0.001, z#0.0001.
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Low Gamma (30--59 Hz)

Left TPA. Connectivity between the left TPA and other brain

areas differed across brain area (Fig. 3A). This was due to the

connectivity between the left TPA and the right TPA being

greater than connectivity between the left TPA and other brain

areas and connectivity between the left TPA and the left and

right IFAs and VOTAs being lower than connectivity between

the left TPA and other brain areas.

Right TPA. Connectivity between the right TPA and other brain

areas significantly differed across brain area. This was due to

the connectivity between the right TPA and both the left TPA

and the right IFA being greater than connectivity between the

right TPA and other brain areas and connectivity between the

right TPA and the left IFA and VOTA and right VOTA being

lower than connectivity between the right TPA and other brain

areas (Fig. 3B).

Medium Gamma (60--89 Hz)

Left TPA. Connectivity between the left TPA and other brain

areas differed across brain area. This was due to the relation-

ship between the left TPA and the right TPA being greater than

connectivity between the left TPA and other brain areas and

connectivity between the left TPA and the left and right IFAs

and VOTAs being lower than connectivity between the left TPA

and other brain areas (Fig. 3C).

Right TPA. Connectivity between the right TPA and other brain

areas differed across brain area. This was due to the

connectivity between the right TPA and the left TPA and the

right IFA being greater than connectivity between the right

TPA and other brain areas and connectivity between the right

TPA and the left IFA and VOTA and the right VOTA being lower

than connectivity between the right TPA and other brain areas

(Fig. 3D).

High Gamma (90--120 Hz)

Left TPA. Connectivity between the left TPA and other

brain areas differed across brain area. This was due to the

connectivity between the left TPA and the right TPA being

greater than connectivity between the left TPA and other brain

areas and connectivity between the left TPA and the left and the

right IFAs and VOTAs being lower than connectivity between

the left TPA and other brain areas (Fig. 3E).

Figure 2. GC connectivity for the left and right TPAs for the low beta (A,B) and medium beta subbands (C,D). (A) The relationship between performance on the nonword
phonological decoding task and the difference between inward and outward GC connectivity for the left TPA in the low beta subband. This relationship was significant across both
TRs and DRs. Greater outward connectivity (as compared with inward connectivity) from the left TPA to other areas was associated with better nonword rhyme discrimination
performance (d-prime). (B) The relationship between performance on the nonword phonological decoding task and the difference between inward and outward GC connectivity
for the right TPA in the low beta subband. This relationship was only significant for DRs. Greater inward connectivity (as compared with outward connectivity) to the TPA from
other brain areas was associated with better nonword rhyme discrimination performance (d-prime) in DRs. (C) Connectivity between the left TPA and the right TPA was greater
than connectivity between the left TPA and the other cortical areas in the medium beta subband. (D) Connectivity between the right TPA and the left TPA and right IFA was
greater than connectivity between the right TPA and other cortical areas in the medium beta subband. Error bars represent standard error.

Table 3
F values for the mixed-model analysis of the beta frequency subbands and the t values for the

planned contrasts

Analysis of variance Cortical area effect contrast

To Reading LF LTP LO RF RTP RO

Low gamma
Left 14.23z NS �6.85z �6.74z �6.85z 7.34z �7.05z
Right 16.88z NS �6.53z 7.31z �6.36z 6.51z �7.65z

Middle gamma
Left 14.54z NS �7.00z �7.24z �6.59z 8.63z �6.20z
Right 16.51z NS �5.95z 6.91z �7.16z 6.96z �7.40z

High gamma
Left 14.54z 35.54z �7.66z �7.62z �7.80z 8.08z �7.77z
Right 13.26z NS �6.78z 7.12z �6.60z 6.76z �6.87z

Note: NS, not significant; LF, Left Frontal; LTP, Left Temporoparietal; LO, Left Occipital; RF, Right

Frontal; RTP, Right Temporoparietal; RO, Right Occipital.

*#0.05, U#0.01, y#0.001, z#0.0001.
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In addition, DRs were found to have significantly greater

connectivity between the left TPA and all other brain areas as

compared with TRs (Fig. 3G).

Right TPA. Connectivity between the right TPA and other brain

areas differed across brain area. This was due to the connectivity

between the right TPA and the left TPA and right IFA being

greater than connectivity between the left TPA and other brain

areas and connectivity between the right TPA and the left IFA

and VOTA and right VOTA being lower than connectivity

between the right TPA and other brain areas (Fig. 3F).

Discussion

This is the first study to compare effective neuromagnetic

connectivity between the left and the right TPAs and other key

areas of the brain necessary for phonological word decoding in

DRs and TRs. This is also one of the first studies to examine

effective connectivity during the prestimulus period. In this

study, causal connectivity was analyzed in low, medium, and high

beta and low, medium, and high gamma frequency subbands.

Across both reading groups the balance of inward versus

outward connectivity to/from the left TPA to other regions of

the brain was associated with phonological decoding perfor-

mance. Note that there was no absolute difference between

connectivity from the left TPA to other brain areas between DR

and TR reading groups. This suggests that those that read best

may use the TPA differently within the neural network

responsible for preparing the brain for phonologically process-

ing nonword stimuli than those that read poorly.

Our hypothesis with respect to the left TPA was confirmed

within the low beta subband. In For the Low Beta Frequency

Figure 3. GC connectivity for the left (A,C,E,G) and right (B,D,F) TPAs for the low (A,B), medium (C,D), and high (E,F,G) gamma subbands. In general, the left TPA demonstrated
greater connectivity with the right TPA as compared with other brain areas regardless of the subband (A,C,F) and the right TPA demonstrated greater connectivity with the left
TPA and the right IFA regardless of the subband (B,D,F). (G) DRs demonstrated greater connectivity between the left TPA and other brain areas in the high gamma frequency
subband as compared with TRs. Error bars represent standard error.

Preparatory Neural Network Structure in Dyslexia d Frye et al.1930



Subband, the Balance between Inward and Outward

Connectivity to/from the Left TPA Was Related to Performance

across Both Reading Groups, we will examine the implications

of this finding. In contrast to our predictions for the left TPA, we

hypothesized that greater right TPA control of other brain areas

would be associated with poorer nonword decoding perfor-

mance for DRs. This hypothesis was confirmed and the

implication of this hypothesis will be discussed in Greater

Relative Outward Connectivity from the Right TPA to Other

Brain Regions Was Associated with Relatively Worse Perfor-

mance in DRs. In DRs Manifest Greater High Gamma Subband

Effective Connectivity between the Left TPA and Other Regions,

we will discuss our finding that greater effective connectivity in

the high gamma subband was associated with dyslexia. In Future

Studies to Examine the Generalizability of These Findings, we

will discuss the generalizability of our findings.

For the Low Beta Frequency Subband, the Balance
between Inward and Outward Connectivity to/from the
Left TPA Was Related to Performance across Both Reading
Groups

Within all of the frequency bands, there were no overall group

differences in inward versus outward connectivity to and from

the TPA. In addition, the pattern of connectivity between the

left versus the right TPA and other cortical regions was stable

across frequency bands and reading groups.

However, there were definite differences in the relationship

between task performance and the effective connectivity

between the left TPA and other brain areas. For the low beta

frequency subband, deviations from balanced inward as

compared with outward connectivity had consequences for

performance (Fig. 2). Those with greater connectivity from the

left TPA to other cortical regions were more likely to have

better phonological decoding and those with relatively greater

connectivity into the left TPA from other regions were more

likely to have worse phonological decoding performance,

consistent with our hypothesis.

It is important to remember that the majority of participants

irrespective of reading group had a relatively balanced inward

as compared with outward connectivity between the left TPA

and the other reading regions. Those with this balanced

connectivity had d-prime scores over 1.0, indicating adequate

discriminability of rhymes and nonrhymes. This suggests that

for most of the participants, the left TPA was acting as more of

an integration area rather than a control area. Specifically,

participants with a balance between inward and outward

connectivity may be using nonhierarchical small-world net-

work topography.

In contrast, those participants who have greater outward as

compared with inward left TPA connectivity may be using

hierarchical network topography. Neural networks with

hierarchical network topography have been shown to be more

stable as compared with neural networks with nonhierarchical

topography (Kaiser and Hilgetag 2010). This would be

consistent with the findings of this study as the participants

with greater outward left TPA connectivity, who therefore

manifest a hierarchical TPA neural network topography,

demonstrated better performance on the phonological non-

word decoding task. Thus, having hierarchical network

topography during the prestimulus period in the low beta

frequency subband may stabilize the network so that it can

optimally process the incoming nonword stimuli.

Greater Relative Outward Connectivity from the Right TPA
to Other Brain Regions Was Associated with Relatively
Worse Performance in DRs

We hypothesized that, as the degree of connectivity from the

right TPA to the other nodes of the reading network increased,

performance would decrease for DRs. This hypothesis was

confirmed. This finding suggests that when the right TPA

manifests increased influence over the other regions of the

brain, performance was compromised. Combined with the

findings discussed in For the Low Beta Frequency Subband,

the Balance between Inward and Outward Connectivity to/

from the Left TPA Was Related to Performance across Both

Reading Groups, it appears that increased influence of the

right TPA on the remainder of the brain is associated with

a disruption in ascendancy of the left TPA in the network

hierarchy, at least in DRs, resulting in a phonological decoding

deficit. Specifically, the worst-performing DR had greater

inward than outward functional connectivity between the left

TPA and other brain areas and greater outward than inward

functional connectivity between the right TPA and other brain

areas. This suggests that DRs who have not attained an

adequate ability to read may be doing so because the right

TPA, rather than the left TPA, is acting as the control node in

the phonological word decoding network. Since hierarchical

network topography provides stability to the network struc-

ture, having a network with the right TPA as the control node

may stabilize the neural network into a dysfunctional state.

The majority of functional imaging studies on DRs have

reported greater right hemisphere TPA activation in DRs as

compared with TRs (Simos, Breier, Fletcher, Bergman, et al.

2000; Simos, Breier, Fletcher, Foorman, et al. 2000; Temple,

2002; Heim and Keil 2004). Our results suggest that it is not

merely the degree of activation which is important, but the

direction of the functional connectivity of the right TPA with

other brain areas involved in reading. Poorer phonological

decoding in DRs was associated with increases in the influence

of the right TPA upon the left TPA (as well as other brain areas).

Studies using MEG have demonstrated that the timing to left

and right TPA activation are reversed in DRs as compared with

TRs. For example, TRs have been found to activate the left TPA

approximately 118 ms prior to the right TPA, while DRs

activate the right TPA approximately 123 ms before the left

TPA during phonological decoding tasks (Simos, Breier,

Fletcher, Bergman, et al. 2000). This pattern has also been

reported in at-risk children (Simos, Breier, et al. 2002). These

finding are consistent with the notion that (in some) DRs,

increases in the influence of the right TPA on the left TPA may

be related to quicker activation of the right TPA. Only some

DRs in our sample had phonological task performance that was

below chance and these were the DRs in which the right TPA

appeared to be the control node of the network. Thus, we

do not predict that all DRs have abnormal network topography.

In fact, some MEG studies have not found these differences

in timing between reading groups (Simos et al. 2005). This

may be due to the fact that dipole waveforms comprise a wide

frequency range, not just the beta frequency or its subbands,

and measures such as waveform onset and/or peak latency

derived from dipole source activations are not designed

to measure the temporal relationship between sources. In

contrast, GC and other casual connectivity techniques

are specifically designed to examine the significance of the
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relative changes in activity of sources. Alternatively, the lack of

sensitivity to differences in network topography within reading

groups may also be related to the DR sample studied.

Those DRs with an inadequate phonological rhyme task

performance manifested excessive influence from the right

TPA onto the remaining network. It is possible that the

intrusion of excess right TPA influence prevents the establish-

ment of a reading circuit with a dominant left TPA. De-

velopment of such an atypical language network could extend

the period during which neuroplastic changes need to occur

(from years to decades) before automatic and fluent reading

skills can be established.

One question which arises is whether reading remediation

training plays a role in reorganizing the prestimulus network

and reestablishing a hierarchy. Focal and repeated use of

a neural system followed by immediate feedback may enable

the connections between neurons that facilitate phonological

decoding to be strengthened and the connections that disrupt

phonological processing to be weakened. This may be

especially important in the case of dyslexia, in which

migrational anomalies during gestation may disrupt normal

patterns of connectivity. Training may serve to depress the

contribution of these misplaced neurons. We suggest that one

part of the decoding network which may need to be

restructured is the outward connectivity of the right TPA to

other cortical regions. In addition, our prior finding that greater

influence of the left IFA outward to the TPA and VOTA (Frye,

Wu, et al. 2010) is associated with better reading in DRs may

indicate that the left IFA is working to encourage network

reorganization in the brains of DRs.

Essentially the Same Patterns of Effective Connectivity Are
Found between the Left TPA and Other Regions within the
Medium and High Beta Subbands

Within the medium and high beta subband, there are 3 clear-

cut patterns: 1) there is no significant inward or outward

connectivity bias, 2) there is no performance or reading group

factors related to connectivity, and 3) connectivity is stronger

between the 2 TPAs than between any other region and either

right or left TPAs. This suggested that the TPAs work together

regardless of reading skill and/or whether the individual had

a history of dyslexia as a child. Our previous study that

examined IFA connectivity in DRs and TRs found similar

findings. This suggests that the relationship within DRs

between causal connectivity and their phonological decoding

may be restricted to the low beta subbands and may not

involve the medium and high beta subbands. However, with

our limited sample size, changes within these subbands may

be too subtle to detect.

Left TPA Underactivity Observed in DRs May Be Secondary
to Diminished Left TPA Reactivity Rather Than Inadequate
Input

Given that the connectivity between the left or the right TPAs

and other brain areas key for phonological processes was not

different between DRs and TRs for any frequency band, it is

reasonable to presume that the left TPA, in particular, has an

adequate inward connectivity, permitting it to be optimally

stimulated. Since the left TPA is almost ubiquitously under-

activated in DRs across functional neuroimaging studies (Pugh,

Mencl, Jenner, et al. 2000), it is possible that the left TPA

underarousal is due to reduced reactivity to input rather than

lack of adequate input. This is consistent with our previous

finding that top-down left IFA influence on other brain regions

during the prestimulus period is positively correlated with

performance in DRs (Frye, Wu, et al. 2010). In other words, the

left IFA may be compensating for the reduced reactivity of the

left TPA that normally occurs in TRs.

DRs Manifest Greater High Gamma Subband Effective
Connectivity between the Left TPA and Other Regions

This study found greater high gamma subband effective

connectivity between the left TPA and other regions in DRs

but not TRs. This is consistent with our previous study which

demonstrated that greater high gamma-band connectivity be-

tween the left IFA and other brain regions (i.e., right and left TPA

and VOTA and right IFA) was associated with poorer perfor-

mance on the phonological rhyme task, except that the effect

found in the current study was specific to DRs. As discussed in

the Introduction, during the prestimulus period, a relatively

increased degree of gamma subband effective connectivity

between the left TPA and other brain regions may be detrimental

as intracranial EEG studies have demonstrated a transient

desynchronization of gamma activity during reading in TRs

(Lachaux et al. 2008). Since gamma-band synchronization has

been proposed to facilitate communication between neighboring

neurons to promote the formation of transient neural networks

(Fries 2007), this finding may suggest that connections between

local networks in and around the left TPA and other regions of

the brain are not being decoupled in preparation for the

processing of incoming stimuli. This could explain why the left

TPA may have decreased reactivity to incoming stimuli.

Specifically, if the neural networks in the left TPA do not

transiently desynchronize, the neural networks in the left TPA

may not be able to process new incoming stimuli adequately.

The fact that this finding is related to having dyslexia and is

not associated with performance suggests that this could be

one of the key reasons that the left TPA does not develop

adequately during development. For example, if the left TPA

does not readily desynchronize to allow new information to be

integrated, especially during the acquisition of language, other

areas of the brain, such as the homogenous regions in the right

hemisphere (i.e., the right TPA) may take over the function of

the left TPA. Such a shift in the laterality of language processing

could start a detrimental cascade of events that leads to the

right TPA becoming the control hub of the phonological

decoding network. This notion is consistent with our finding

that greater outward connectivity from the right TPA to other

reading regions in the low beta subband is associated with

poorer phonological decoding.

Future Studies to Examine the Generalizability of These
Findings

This and our other recent study (Frye, Wu, et al. 2010) suggest

that the hierarchical structure of the neural network that

connect key brain areas important for reading differs for TRs

and DRs with some of these differences being detrimental

and others compensatory (specifically within the low beta

subband during the preparatory period). This study did not

examine any other stimuli besides nonwords, so it is not clear

whether these changes are specific to words or phonological

stimuli or represent general differences between the brains of
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TRs and DRs. Future studies will need to investigate the

differences in causal network structure in TRs and DRs across

various stimuli.

Another major finding of this study and our previous study

(Frye, Wu, et al. 2010) is that greater high gamma subband

connectivity appeared to be detrimental. In our previous study

where we examined the IFA, this finding was not specific to DRs

but was related to performance for all participants. The current

study found that higher left TPA gamma subband connectivity

was specific to DRs. We interpreted this as an inability of the

local neural networks to desynchronize and process new

incoming information. It would be very important to determine

when increased gamma connectivity was a general characteristic

of DRs as it could explain more general problems in learning and

processing speed that have been associated with DRs. Future

studies should examine the ability of neural networks to shift

and reorganize in DRs and TRs to determine if there is a role for

such differences in dyslexia.

Conclusion

This study has demonstrated that prestimulus preparatory

networks are reorganized in DRs and that network topography

is directly associated with nonword rhyme performance.

Reorganization of the prestimulus network associated with

DRs was found in the low beta frequency subband. Although

preliminary, our finding suggest that the left TPA is the

important cortical hub for controlling and coordinating the

preparatory neural network that subserves phonological non-

word decoding and that this hub may be shifted toward the

right hemisphere in DRs who have poor phonological decoding

skills. In addition, we have found that increased interregional

high gamma connectivity between the left IFA and other areas

of the brain during the prestimulus period in DRs. This

implicates a failure to decouple neural networks in the

development of dyslexia. Further research will be needed to

verify and expand on our findings. This combination of results

demonstrates the importance of considering direction in

connectivity analysis and suggests that analyses based on GC

can help uncover the typical and atypical architecture of neural

networks that underlie cognition.
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