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ABSTRACT
While ample information was gathered in identifying guidance cues and their downstream
mediators, very little is known about how the information from multiple extracellular cues is
intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in
normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V)
graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts
provide instructive polarity information to guide cells and axons along their respective gradients. In
this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also
function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt
signaling components contribute to D/V polarity, while Netrin signaling components contribute to
A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the
other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling
pathways, roles that are masked due to their redundant nature, and provide a conceptually novel
view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish
polarity in multiple biological processes.
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Migrating cells and axons can travel long distances
navigating the antero-posterior (A/P) or dorso-ven-
tral (D/V) axis, or both, by responding to a multitude
of environmental cues encountered along their
migratory path. These include secreted guidance cues
such as Netrin and Slit known to function in guiding
cells and axons along the D/V axis1-5; secreted
glycoproteins of the Wnt family, signaling through
Frizzled and Ryk/derailed receptors to mediate
A/P guidance6-11; and a variety of other cues embed-
ded in the extra cellular matrix.12-14 While consider-
able advances were made in identifying guidance
cues and their downstream mediators, how extracel-
lular information comprised of additive, overlapping,
or opposing inputs is integrated within the cell to
culminate in a defined output, is yet to be fully
elucidated.

The UNC-6/Netrin guidance cue is graded along
the D/V axis and functions through its receptors

UNC-40/Frazzled/DCC and UNC-5 to mediate attrac-
tion or repulsion of migrating cells and growth cones.
This highly conserved guidance system is critical for
nervous system patterning in both vertebrates and
invertebrates.15-17 However, there are indications that
the Netrin signaling pathway, or components thereof,
could have functions that are not restricted
to migration along a single axis. For example, in
C. elegans UNC-40/DCC is involved in A/P migra-
tions of Q neuroblasts18,19 and A/P dendrite growth.20

Furthermore, over-expression of UNC-40/DCC in the
mechanosensory neurons causes A/P polarity reversals
in ALM and PLM axons21,22 akin to the effects of
impairing Wnt signaling in these neurons.9,11 More-
over, unc-5 and unc-40 are both necessary for mediat-
ing A/P ALM axon reversals induced by vab-8, a
kinesin-like protein required for posterior guidance,
suggesting a possible functional overlap between D/V
and A/P signaling pathways.21
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In a recent study, the role of Netrin signaling in A/P
guidance was further tested in additional sets of cells
and axons.23 Similar to the mechanosensory neurons,
the C. elegans distal tip cells (DTCs) migrate over long
distances along both the A/P and D/V axes. The
DTCs are born in the ventral mid-body of the animal
and migrate in 3 sequential phases alternating between
the A/P and D/V axes as they lead the elongation of
anterior and posterior mirror image U-shaped her-
maphrodite gonad arms. In the first migration phase
(phase 1) the 2 DTCs migrate along the A/P axis in

opposite directions, one migrating anteriorly while the
other migrates posteriorly (Fig. 1). At the onset of the
second migration phase (phase 2) the DTCs repolarize
and reorient along the D/V axis to initiate the second
migration phase, which occurs along the D/V axis
from the ventral to the dorsal side. Once the DTCs
reach the dorsal muscle bands they repolarize and
reorient again along the A/P axis to migrate back
toward the mid-body (phase 3). These cells provide an
excellent model system to study cell migration along
the A/P or D/V axes and the regulatory mechanisms

Figure 1. The C. elegans hermaphrodites U-shaped gonad arms are formed by 3 sequential migration phases of the anterior and poste-
rior DTCs (marked as white crescent shaped cells), both undergoing a mirror image symmetrical pattern of migration. The DTCs are
born in the mid-body, their first migration phase (phase 1) occurs along the A/P axis in opposite directions; the anterior DTC migrates
toward the head while the posterior DTC migrates toward the tail. At the onset of the second migration phase (phase 2), the DTCs pause
and reorient to polarize along the D/V axis. This phase 2 D/V migration is dependent on the unc-5 Netrin receptor, which is transcription-
ally up-regulated at the time of the turn.26 The polarity information determining the directionality along the D/V axis is provided by the
UNC-6/Netrin guidance cue,15,26 which is secreted from ventral sources16 (depicted by the red gradient). UNC-5 also functions redun-
dantly with Wnt signaling components to regulate D/V guidance.23 Wnts are distributed along the A/P axis. Some Wnts (like EGL-20)
are secreted from posterior sources, while others (like CWN-1 and CWN-2) are secreted from more anterior sources. Gradients of CWN-
1/Wnt (green) and EGL-20/Wnt (blue) are depicted based on published expression studies25,36 mig-14/Wntless is necessary to facilitate
Wnt secretion and was found to have substantial impact on egl-20/Wnt gradients.29,50 The last migration phase of the DTCs (phase 3)
occurs once again on the A/P axis where the DTCs migrate back toward the mid-body. The polarity and consequently the direction of
the migration throughout this migration phase is determined by a fine balance between different Wnts (such as cwn-1 and egl-20) or
Wnts (such as lin-44) and unc-5.23 Dorsal is up and anterior is left. Red arrows mark the direction of DTC movement. Black arrows repre-
sent genetic interactions (positive or negative). Gray arrows represent the route yet to be taken by the DTCs, which stop migrating as
they reach the mid-body.
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governing transition between the 2 axes, transitions
which require repolarization of the cell from one axis
to the other. Many of the signaling pathways regulat-
ing DTC migration, such as Netrins, Wnts, integrins
and matrix metalloproteases, are highly conserved and
function to guide cell and growth cone migrations in
vertebrates and invertebrates.24 Thus, the information
gleaned from studying these cells is relevant to both
cell migration and axon guidance in vertebrates and
invertebrates. Netrins and Wnts in C. elegans are
known for having a graded distribution along the D/V
and A/P axes, respectively16,25; accordingly, Netrin sig-
naling governs D/V migrations of the DTCs 15,26 while
Wnts are involved in their A/P migrations.27,28 Inter-
estingly, simultaneous abrogation of Wnt and Netrin
signaling components uncovered a redundant role for
UNC-6/Netrin and its receptors, UNC-5 and UNC-
40, in A/P guidance and a reciprocal role for Wnt sig-
naling components (including Wnt regulators such as
MIG-14/Wntless29 or SFRP-1 25) in D/V guidance,
demonstrating that Wnts and Netrin also guide
migrations orthogonal to the axis of their gradation.23

Notably, simultaneous compromise of both Wnt and
Netrin signaling components caused a nearly com-
plete penetrance of D/V transition defects of the pos-
terior DTC, demonstrating that the sum of Wnt and
Netrin signaling fully accounts for the polarization of
this cell along the D/V axis. The involvement of Wnt
signaling in D/V guidance of cells (DTCs) and growth
cones (see below) identifies Wnt signaling as one of
the long sought mechanisms that functions in parallel
to Netrin signaling to promote D/V guidance of cells
and axons. Wnt and Netrin signaling also fully
account for proper reorientation of the posterior DTC
along the A/P axis during the third migration phase,
suggesting that together Wnt and Netrin signaling
govern all migratory transitions of this cell.23

Wnts display complex interactions in regulating
polarity of cells and axons in C. elegans; they widely
function redundantly but often display opposing func-
tions such that a balance of their activity levels defines
explicit polarized patterns.8,30 Multiple Wnts are
involved in establishing DTC polarity on the A/P axis,
and similarly also here, a fine balance between various
Wnts determines the polarity of the DTC and conse-
quently the direction of its migration. For example,
phase 3 A/P polarity reversal defects resulting from
mutations in egl-20/Wnt can be markedly rescued by
impairing the function of another Wnt, cwn-1,

implying that a balance between the activity of these 2
Wnts is required to elicit normal A/P polarity of the
DTCs.23 The Netrin receptor, UNC-5, seems to be an
integral component of this Wnt signaling network; it
functions redundantly with some Wnts, while oppos-
ing the function of others, to maintain a fine balance of
activities required for proper A/P polarity, more specif-
ically, a balance between UNC-5 and LIN-44/Wnt
activities promotes normal DTC phase 3 A/P polar-
ity.23 The balance in activities of Wnts and UNC-5
determines whether anterior or posterior polarities are
established (and hence the direction taken on the A/P
axis), whether the cell reorients to the D/V axis, and
likely also whether the cell halts. UNC-5 was further
found to be a target for negative regulation by the Wnt
frizzled receptor MOM-5. This regulation is mediated
by a small GTPase signaling cascade involving ced-12/
Elmo, ced-10/Rac andmig-2/RhoG.31

Redundant functions of Wnt and Netrin signaling
pathways were also observed in axon guidance.
Impairing both Netrin and Wnt signaling components
simultaneously causes synergistic axon guidance
defects of the CAN neuron, which extends bipolar
axons along the A/P axis, or the mechanosensory neu-
rons, which extend axons along the A/P and D/V
axes.23 This indicates a functional redundancy
between Wnt and Netrin signaling components in
orchestrating axon guidance. Other examples of func-
tional redundancy in mechanisms regulating axon
guidance were recently demonstrated in commissural
axons of the mouse spinal cord.32 Thus, redundant
regulatory mechanisms seem to be prevalent in axon
guidance and likely provide a safety measure to ensure
accurate navigation and proper connectivity. Interest-
ingly, in addition to uncovering redundant functions
for Wnt and Netrin signaling in axon guidance, the
analysis of the mechanosensory neurons also revealed
a novel function of the UNC-5 receptor. For example,
although unc-5 or egl-20/Wnt mutants rarely dis-
played defects in D/V guidance toward ventral sources
of Netrin (attraction response) the unc-5 egl-20 double
mutants displayed a synergistic interaction causing
high penetrance of failures of the AVM and PVM
axons to migrate toward the ventral source of UNC-6/
Netrin.23 With the exception of the HSN,33 UNC-5 is
not known to be involved in attraction toward ventral
sources of its ligand UNC-6/Netrin, but rather to elicit
migration away from these sources.15,26,34,35 These
results demonstrate that UNC-5 has a role in
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establishing D/V polarity that extends beyond its con-
ventional role in mediating Netrin induced axon
repulsion,15,26,34,35 and that this role is redundant with
a role for EGL-20/Wnt in D/V guidance.23 The dual
function of UNC-5 in A/P and D/V guidance raises
the untested possibility that both Wnt and Netrin sig-
naling pathways converge on UNC-5 and that this
receptor assimilates information from both cues.
Hypomorphic unc-5 alleles, such as unc-5(ev644) that
has impaired A/P guidance in the background of mig-
14/Wntless mutants, but almost intact D/V guid-
ance,23 indicates that the functional requirements for
UNC-5 in A/P signaling versus its conventional D/V
instructive signaling are genetically separable.

Orchestrating A/P and D/V guidance

Wnts are graded along the A/P axis in 2 opposing
gradients; some Wnts (like LIN-44 and EGL-20)
are secreted from posterior sources, while others
like CWN-2 and CWN-1 are secreted from more
anterior sources and their graded distributions
intersect to varying degrees depending on the posi-
tion along the A/P axis.25,36 A possible mechanism
by which A/P graded Wnts can affect D/V polarity
is by eliciting A/P bipolar inhibition, i.e. inhibiting
the possibility of leading edge formation at both the
anterior and posterior poles of the cell or growth
cone. Inhibiting or excluding the polarity establish-
ment machinery from the anterior or the posterior
poles would effectively restrict it to the center of
the cell (aligning with the D/V axis) where it can
be employed for D/V guidance. This allows the effi-
cient distribution of polarity determinants along the
orthogonal axis and provides means for translating
the output of a seemingly contradicting extracellular
inputs (i.e., input from an A/P guidance cue elicit-
ing A/P polarity vs. a D/V guidance cue eliciting
D/V polarity) into a cooperative output (both sig-
naling pathways establish polarity along a single
axis). An example of apparent A/P bipolar inhibi-
tion was observed in a study of the HSN neuron,
where Wnt signaling components were implicated
in the exclusion of the UNC-40/DCC receptor from
the anterior and posterior poles of the HSN growth
cone.33 It is tempting to speculate that bipolar inhi-
bition of anterior and posterior leading edges could
regulate reorientations from one axis to another in
complex pathfinding processes. It is also tempting

to speculate that bipolar inhibition could serve as a
general mechanism for regulating cessation of cell
migration along a single axis; hence, opposing gra-
dients can potentially determine cell positioning by
restricting polarity formation to the same extent
from both directions, consequently resulting in a
halt.

Wnts and Netrin- more to uncover

It is well established that the role of Netrin and its
receptors is not limited to guiding cell and axon
migrations. The Netrin pathway contributes to a
wide range of biological processes, such as: organo-
genesis, synaptogenesis, angiogenesis, cell survival,
adhesion, tissue morphogenesis, dendritic self avoid-
ance, tumor formation and metastasis.37-43 Similarly,
Wnts control a variety of developmental processes
including: cell fate determination, polarity establish-
ment, spindle orientation, cell migration and axon
guidance 36,44-46; and are hence involved in tumori-
genesis and human disease.47,48 The indication that
Wnts and Netrin signaling components share
redundant functions, which are not readily revealed
except by impairing both pathways simultaneously,
suggests that these 2 signaling pathways might be
substantially involved in more processes and to a
greater extent than currently appreciated. This is
further demonstrated by a synthetic fully penetrant
egg-laying defect and extensive embryonic lethality
observed in the mig-14/Wntless; unc-6/Netrin double
mutants,23 which indicates redundant functions for
Wntless and UNC-6/Netrin in orchestrating vulval
function and at least one essential developmental
process critical for early development in C. elegans.
Therefore, during normal development as well as
under some pathological conditions Wnts and
Netrins may have functions that are not apparent
due to their redundant output a notion that is
important to consider in order to fully elucidate the
underlying mechanisms governing these processes.

Given their redundant functions, are these 2 sig-
naling pathways co-regulated? Interestingly, SFRPs
known to function as Wnt regulators, contain a cyste-
ine rich domain (CRD), which shares high degree of
homology to the Frizzled family CRD, and also contain
a Netrin-related motif (NTR domain).49 It is an inter-
esting possibility that the SFRPs may function in some
cases to co-regulate these 2 fundamental pathways.
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To conclude, the observation that Netrins and
Wnts have shared functions in A/P and D/V guidance
opens new avenues for deciphering how A/P and D/V
guidance signals are integrated to establish polarity in
multiple biological processes and implicate broader
roles for Netrin and Wnt signaling - roles that are hid-
den due to prevalent functional redundancy between
these cues. Furthermore, it provides a novel concep-
tual view by which polarity establishment along the
A/P axis can also be achieved by D/V guidance cues,
and vice verse. Thus, for example, D/V polarity can be
potentially viewed as one of 3 possible A/P polarized
states; the two obvious A/P polarized states are ante-
rior polarity (when the polarizing machinery is limited
to the anterior pole) and posterior polarity (the polar-
izing machinery is limited to the posterior pole) while
the third state is established when the polarizing
machinery is limited to the center of the cell by means
of exclusion from both anterior and the posterior
poles, effectively positioned along the D/V axis. Thus
D/V and A/P guidance cues can function collabora-
tively to establish polarity on a single axis, with D/V
polarity being, in part, the culminating result of bipo-
lar inhibition of A/P polarity formation at both the
anterior and posterior poles providing a mean for col-
laborative input integration of A/P and D/V signaling
pathways.
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