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We consider the problem of learning generalized first-order representations of concepts

from a small number of examples. We augment an inductive logic programming learner

with 2 novel contributions. First, we define a distance measure between candidate

concept representations that improves the efficiency of search for target concept and

generalization. Second, we leverage richer human inputs in the form of advice to improve

the sample efficiency of learning. We prove that the proposed distance measure is

semantically valid and use that to derive a PAC bound. Our experiments on diverse

learning tasks demonstrate both the effectiveness and efficiency of our approach.

Keywords: cognitive systems, logics for knowledge representation, relational learning, knowledge representation

and reasoning, human in the loop (HITL)

1. INTRODUCTION

We study the case of learning from few examples, of which one-shot learning is a special case (Lake
et al., 2015). We consider a challenging setting—that of learning explainable, decomposable, and
generalizable (first-order) concepts from few examples. Plan induction becomes a special case
where a generalizable plan is induced from a single (noise-free) demonstration. As an example,
consider building a tower that requires learning L-shapes as a primitive. In our formulation, the
goal is to learn a L-shape from a single demonstration. Subsequently, using this concept, the
agent can learn to build a rectangular base (with 2 L-shapes) from another single demonstration
and so on till the tower is fully built. Concept learning has been considered as problem
solving by reflection (Stroulia and Goel, 1994), mechanical compositional concepts (Wilson and
Latombe, 1994), learning probabilistic programs (Lake et al., 2015), etc. While successful, they
are not considered in one-shot learning except with SVM (Tax, 2001), or with a neural network
(Kozerawski and Turk, 2018).

Our work has two key differences. First, we aim to learn an “easily interpretable,” “explainable,”
“decomposable,” and “generalizable” concepts as first-order Horn clauses (Horn, 1951) (which are
akin to If-Then rules). Second, and perhaps most important, we “do not assume the existence
of a simulator (for plans) or employ a closed-world assumption” to generate negative examples.
Inspired by Mitchell’s (1997) observation of futility of bias-free learning, we employ domain
expertise as inductive bias. The principle of structural risk minimization (Vapnik, 1999) shows how
optimal generalization from extremely sparse observations is quite difficult. The problem is difficult
in structured domains since most relations are false. Thus, few-shot induction of generalized
logical concepts is challenging. We employ iterative revision of first-order horn clause theories
using a novel scoring metric and guidance from a human. We emulate a “student” who learns a
generalized concept from an example provided by the “teacher,” by both reflecting as well as asking
relevant questions.
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We propose Guided One-shot Concept Induction (GOCI) for
learning in relational domains1. GOCI builds upon an inductive
logic program (ILP) learner (Muggleton, 1991) with two key
extensions. First, a modified scoring function that explicitly
computes distances between concept representations. We show
the relation to Normalized Compression Distance (NCD) for plan
induction settings. Consequently, we demonstrate that NCD is a
valid distance metric. Second, we use domain knowledge from
human expert as inductive bias. Unlike many advice taking
systems that employ domain knowledge before training, GOCI

identifies the relevant regions of the concept representation space
and actively solicits guidance from the human expert to find the
target concept in a sample-efficient manner. Overall, these two
modifications allow formore effective and efficient learning using
GOCI that we demonstrate both theoretically and empirically.

We make the following key contributions:

1. We derive a new distance-penalized scoring function that
computes definitional distances between concepts, henceforth
termed as “conceptual distance.”

2. We treat the human advice as an inductive bias to accelerate
learning. Our ILP learner actively solicits richer information
from the human experts than mere labels.

3. Our theoretical analyses of GOCI prove that (a) our metric is
indeed a valid distance, and (b) NCD between plans is a special
case of our metric.

4. We show a PAC analysis of the learning algorithm based on
Kolmogorov complexity.

5. We demonstrate the exponential gains in both sample
efficiency and effectiveness of GOCI on diverse concept
induction tasks with one or a few examples.

2. BACKGROUND AND RELATED WORK

Our approach to Concept Learning is closely related to Stroulia
and Goel (1994)’s work, which learns logical problem-solving
concepts by reflection. GOCI’s scoring metric is more general
and applicable to both concepts and plans and can be used for
learning from a few examples. While we use discrete spatial
structures as motivating examples, GOCI is not limited to discrete
spaces, similar to Wilson and Latombe (1994)’s work. GOCI

is also related in spirit to probabilistic (Bayesian) program
induction for learning decomposable visual concepts (Lake et al.,
2015), which illustrates how exploiting decomposability is more
effective. Our approach leverages not only decomposability but
also implicit relational structure.

2.1. One/Few-Shot Learning and Theory
Induction
Our problem setting differs from the above in that it requires
learning from sparse examples (possibly one). Lake et al. (2015)
propose a one-shot version of Bayesian program induction of
visual concepts. There is also substantial work on one/few-shot
learning (both deep and shallow) in a traditional classification

1Our algorithm can learn from one (few) example(s). We specify the number of

examples in our evaluations.

setting (Bart and Ullman, 2005; Vinyals et al., 2016; Wang et al.,
2018), most of which either pre-train with gold-standard support
example set or sample synthetic observations. We make no such
assumptions about synthetic examples. ILP (Muggleton, 1991)
inductively learns a logical program (first-order theory) that
covers most of the positive examples and few of the negative
examples by effectively employing background knowledge as
search bias. In concept learning, generalization is typically
performed as a search through space of candidate inductive
hypotheses by (1) structuring, (2) searching, and (3) constraining
the space of theories. FOIL (Quinlan, 1990) is an early
noninteractive learner with the disadvantage that it occasionally
prunes some uncovered hypotheses. This is alleviated in systems
like FOCL by introducing language bias in the form of user-
defined constraints (Pazzani, 1992). With Interactive ILP, learner
could pose questions and elicit expert advice that allows pruning
large parts of search space (Sammut and Banerji, 1986; Rouveirol,
1992). To incorporate new incoming information, ILP systems
with theory revision incrementally refine and correct the induced
theory (Sammut and Banerji, 1986; Muggleton, 1988). While
GOCI is conceptually similar to ALEPH (Srinivasan, 2007),
it learns from a few examples and actively acquires domain
knowledge by interacting with human expert incrementally.

2.2. Knowledge-Guided Learning
Background knowledge in ILP is primarily used as search bias.
Although the earliest form of knowledge injection can be found
in explanation-based approaches (Shavlik and Towell, 1989), our
work relates to preference-elicitation framework (Braziunas and
Boutilier, 2006), which guides learning via human preferences
as an inductive bias. Augmented learning with domain
knowledge as an inductive bias has long been explored across
various modeling formalisms, including traditional machine
learning (Fung et al., 2003), probabilistic logic (Odom et al.,
2015), and planning (Das et al., 2018). Our human-guided GOCI

learner aims to extend these directions in the context of learning
generalizable complex concepts from a few examples(including
plans). Similar problem setting of concept learning from
incomplete/sparse observations has also been explored in the
cognitive science paradigm via explanation-based inductive
program synthesis (Flener, 1997; Kitzelmann and Schmid, 2006).

The idea of augmented learning with human
guidance/knowledge has also been extensively studied in the
context of evolutionary computation. Interactive evolutionary
systems (Eiben and Smith, 2015) use expert guidance to emulate
a holistic fitness function that would otherwise depend on a very
restricted pre-defined fitness model. The potential richness of
such knowledge can be leveraged in not just evolutionary parent
selection but can also optimize other parameters that leads to
faster convergence, especially in mutations (Wendt et al., 2010).
ILP has been shown to be conceptually similar to mutative EA in
the context of program induction (Wong and Leung, 1997) and
hence knowledge-guided mutations are related to knowledge
augmented search in ILP. Thus, in our problem setting, the
interaction module that seeks human guidance to select the most
useful constraints (detailed in section 3.2.3) is similar in spirit to
interactive (knowledge guided) evolutionary mutation process.
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However, our underlying search strategy and optimization is
based on ILP.

3. GUIDED ONE-SHOT CONCEPT
INDUCTION

We are inspired by a teacher (human) and student (machine)
setting in which a small number of demonstrations are used
to learn generalized concepts (Chick, 2007). Intuitively, the
description provided by a human teacher tends to be modular
(can have distinct logical partitions), structured (entities and
relations between them), and in terms of known concepts.
Hence, a vectorized representation of examples is insufficient.
We choose a logical representation, specifically a “function-free
restricted form of first-order logic (FOL)” that models structured
spaces faithfully.

Given: A set of “facts” or assertions, that is, a set of ground
literals (or trajectories) describing 1 (or few) instance(s) of
an unknown concept, availability of an expert to provide
guidance and a knowledge-base of known concepts.
To Do: Learning a representation, by inducing a first-
order logic program, of the given concept that optimally
generalizes the given instance(s) effectively.

The input to GOCI is the description of the instances(s) of a
concept that the human teacher provides. An example is, thus,
conjunction of a set of ground literals (assertions). The output of

GOCI is a least general generalization (LGG) horn clause from the
input example(s).

3.1. Concept Representation
Consider the following example input to the GOCI framework.
The input here is an instance of the structural concept L
(illustrated in Figure 1).

Example 1. An instance in a minecraft domain can be
a L with dimensions height = 5, base = 4 (Figure 1).
L(S),Height(S, 5),Base(S, 4), s is the concept identifier and

FIGURE 1 | Concept L (base = 4, height = 5), described as composition of a

Tower and a Row.

may be described as conjunction of ground literals,
Row(A)∧ Tower(B)∧ Width(A,4)∧ Height(S,5)∧
Base(S,4)∧ Contains(S,A)∧ Contains(S,B)∧
Height(B,4)∧ SpRel(B,A,′ NWTop′),

which denotes L as composition of a “Row” of w = 4 and a
“Tower” of h = 4 with appropriate literals describing the scenario
(Figure 1, left). As a special case, under partial or total ordering
assumptions among the ground literals, an input instance can
represent a plan demonstration.

We aim to learn the optimally generalized (decomposable)
representation of the concept (L in the context of the
aforementioned example) referred by the one/few instances that
were passed to GOCI as input. Before further discussion on the
learning such a generalized (decomposable) representation let us
first define formally what a concept representation signifies in
our setting.

Definition 1. Concepts in GOCI are represented
as horn clause theories. A theory T is defined as,
T = C(sk . . .) :−

∨
[

∧Ni=1fi(t1, . . . , tj)
]

, where the body

∧Ni=1fi(t1, . . . , tj) is a conjunction of literals indicating
known concepts or relationships among them, such that any
tj ∈ V ∪ {sk} ∪ C where V is the set of all logical variables in
the clause, C is the set of constants in the domain of any logical
variable. The head C(sk . . .) identifies a target concept, and the
terms {sk} are logical variables that denote the parameters of the
concept assuming there are k = {1, . . . ,K} parameters including
the identifier to the given instance of the concept. Since a concept
can be described in multiple ways (Figure 1), the final theory will
be a disjunction over clause bodies with the same head. A (partial)
instantiation of a theory T is denoted as T/θ .

Note that these definitions allow for the reuse of concepts,
potentially in a hierarchical fashion.We believe that this is crucial
in achieving human-agent collaboration.

Example 2. Figure 1 illustrates an instance of the concept L that
can be described in multiple ways. A possible one is,

L(s) :−[Height(s,hs),Base(s,ws),Contains(s,a),

Contains(s,b),Row(a),Tower(b),

Width(a,wa),Height(b,hb),Equal(ws,wa),

Sub(hb,hs,1),SpRel(b,a,
′′ NWTop′′)]

∨

[Height(s,hs),Base(s,ws),Contains(s,a),

Contains(s,b),Row(a),Tower(b),

Width(a,wa),Height(b,hb),Equal(hs,hb),

Sub(wa,ws,1),SpRel(b,s,
′′ W′′)]

The generalization must be noted. The last argument of the
SpRel() is a constant, as only this particular spatial alignment
is appropriate for the concept of the L structure. Although
the input is a single instance (Example 1), GOCI should
learn a generalized representation such as Example 2. Another
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interesting aspect is the additional constraints: Equal(X,Y)
and Sub(X,Y,N). While such predicates are a part of the
language, they are not typically described directly in the
input examples. However, they are key to generalization, since
they express complex interactions between numerical (or non-
numerical) parameters. Also note that the head predicate of the
clause could have been designed differently as per Definition 1.
For instance, in case of Example 2, the head predicate could have
folded in the dimensional parameters—L(s, hs,ws). However, the
number of such dimensional parameters can vary across different
concepts. Hence to maintain generality of representation format
during implementation, we push the dimensional parameters of
the learnable concept into the body of the clause.

A specific case of our concept learning (horn clause induction)
framework could be plan induction from sparse demonstrations.
This can be achieved by specifying time as the last argument of
both the state and action predicates. Following this definition, we
can allow for plan induction as shown in our experiments. Our
novel conceptual distance is clearer andmore intuitive in the case
of plans as can be seen later.

Definition 2 (Decomposable:). A concept C is decomposable if it
is expressed as a conjunction of other concepts, and one or more
additional literals to model the interactions. C ⇐ (

∧

i C
′
i) ∧

(
∧

j Bj). Here C′i are literals that represent other concepts that

are already present in the knowledge base of the learner and Bj
are literals that either describe the attributes of C′i or interactions
between them.

Decomposable allows for an unknown concept to be constructed
as a composition of other known concepts. GOCI learns the
class of decomposable concepts since it is intuitive for the
“human teacher” to describe. Decomposable concepts faithfully
capture the modular and structured aspect of how humans
would understand and describe instances. It also allows for a
hierarchical construction of plans.

Example 3. Following the Minecraft structure described in 2,
note how L is described with already known concepts C′1 =

Row() and C′2 = Tower() and the other literals such as
Height(b, hb), SpRel(b, a, "NWTop"), . . . ∈ {Bj}, that is, they
describe the parameters of the known concepts or interactions
between them. Note that known concepts in the knowledge base
could have beenmanually coded in by experts or learned previously
and are essentially represented in the same way. For instance,
Row() can be encoded as recursive the clause program representing
a composition of one block and one unit shorter row,

Row(r) :−[Width(r,wr),Block(a),Row(b),Width(b,wb),

SpRel(a, b, “East′′), Sub(wb,wr , 1)]
∨

[Width(r,wr),Equal(wr , 1),Block(a)]

Tower() could also be defined in the knowledge base in the same
way. When the optimally general representation of the concept L
is learned that is persisted in the knowledge base as well, such that
more complex concepts can be represented by decomposing into L
and other known concepts.

An obvious question that arises here is why {Bj} * {C′}?
that is, why can the other literals not be treated similarly
as a part of the knowledge base of known concepts? Ideally,
that would be correct. However, that will also cause infinite
levels of concept definitions, which cannot be implemented in
practice. Additionally, following the paradigm of a student–
teacher scenario, it can always be assumed that the student has
prior understanding of many concepts from outside the current
system. Thus, we can safely assume, without loss of generality,
that set of literals {Bj} are implicitly understood and defined
as a part of the framework itself. This argument applies to the
semantics of the “constraint predicates” (described later) as well.

Finally, before we discuss the details of the learning
methodology, let us briefly look into a motivating, and presently
relevant, real-world scenario that represents our problem setting.

Example 4. Consider a decision support AI system for resource
planning and management in hospitals as illustrated in Figure 2.
The AI agent forecasts the need for increased resources in the

FIGURE 2 | A motivating real-world scenario for concept induction. The concept learnt by the AI agent is “Divert()” .
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infectious diseases (ID) ward, given the early signs of an outbreak
of some disease such as Covid-19 or Ebola, and a potential spike
in ID ward admissions. However, as noted by the administrators
and/or physicians there is not enough budget to procure additional
resources for ID ward. But the problem is quite critical and needs
to be solved. So the human teacher (administrators in this case)
teaches the AI agent the concept of “Divert” -ing resources from
Cancer ward since cancer ward admissions are usually stable and
does not have spikes. The AI agent is hence expected to learn a
generalized representation of the concept of divert such that it may
be applied later for other wards or for other tasks and furthermore
in a “decomposable” fashion. For instance, “Divert” may be learned
as a clause program such as,

Divert(R,qtyR) :−To(R,Locdest),AcquireFrom

(R,Loc1source,qty1, ),

AcquireFrom(R,Loc2source,qty2),

AssignTo(R,Locdest,qtydest),

sum(qty1,qty2,qtydest)

Obviously, the above representation assumes that concepts such as
“AcquireFrom()” are known concepts, either implicitly defined
inside the learning framework or its explicit representation has
been learned and persisted inside the knowledge base in the past.

The above example is solely to motivate the potential impact
of our problem setting and the proposed solution. For an
explanation of different components and aspects of GOCI, we
refer to the much simpler and unambiguous structural example
outlines earlier (L).

3.2. Methodology
3.2.1. Search
ILP systems perform a greedy search through the space of
possible theories. Space is typically defined, declaratively, by
a set of mode definitions (Muggleton, 1995) that guide the
search. We start with the most specific clause (known as a
bottom clause) (Srinivasan, 2007) from the ground assertions and
successively add/modify literals that might improve a rule that
best explains the domain. Typically, the best theory is the one
that covers the most positive and least negative examples. Thus,
it optimizes the likelihood of a theory T based on the data. We
start with a bottom clause and variablize the statements via anti-
substitution. Variabilization of T is denoted by θ−1 = {a/x},
where a ∈ consts(T), x /∈ vars(T). That is, anti-substitution θ−1

is a mapping from occurrences of ground terms in T to new or
existing logical variables.
Evaluation Score: We redesign the ILP scoring (e.g., ALEPH’s
compression heuristics) as:

• The user-provided advice forces the learner to learn longer
theory, hence the search space can be exponentially large. Thus,
modes alone are not sufficient as the search bias.
• There is only one (a few) positive training example(s) to learn

from andmany possible rules can accurately match the training
example. Coverage-based scores fail.

Most learners optimize some form of likelihood. For a candidate
theory T, likelihood given data D is LL(T) = log P(D|T) (i.e.,
coverage). To elaborate further, in most classification tasks in
discrete domains (with categorical/ordinal feature and target
variables), goodness of fit of candidate models is achieved via
the measure of how well the candidate models explain (or cover)
the given data, that is, a good model is the one that will predict
positive class for maximum possible positive examples and for
minimum possible negative examples. This measure is expressed
as likelihood of the data given a candidate model. In GOCI, we
have one (at most few) positive example(s). Coverage will not
suffice. Hence, we define a modified objective as follows.

T∗ = argmin
T∈τ

(

−LL(T)+ D(T/θX ,X)
)

(1)

where T∗ is the optimal theory, τ is the set of all candidate
theories, and D is the conceptual distance between the
instantiated candidate theory T/θX and the original example X.
Recall that a theory T is a disjunction of horn clause bodies (or
conjunction of clauses).

3.2.2. Distance Metric
Conceptual distance, D(T/θX ,X), is a penalty in our objective.
The key idea is that any learned first-order horn clause theory
must recover the given instance by equivalent substitution.
However, syntactic measures, such as edit distance, are not
sufficient since changing even a single literal, especially, literals
that indicate interconcept relations, could potentially result in a
completely different concept. For instance, in blocks-world, the
difference between a block being in the middle of a row and
one at the end of the row can be encoded by changing one
literal. Hence, a more sophisticated semantic distance such as
conceptual distance is necessary (Friend et al., 2018). However,
such distances require deeper understanding of the domain and
its structure.

Our solution is to employ interplan distances. Recall that
the concepts GOCI can induce are decomposable and, hence,
are equivalent to parameterized planning tasks. One of our key
contributions is to exploit this equivalence by using a domain-
independent planner to find grounded plans for both the theory
learned at a particular iteration i, Ti and the instance given as
input, X. We then compute the normalized compression distance
(NCD) between the plans.
NCD: Goldman and Kuter (2015) proved that NCD is arguably
the most robust interplan distance metric. NCD is a reasonable
approximation of Normalized Information Distance, which is not
computable (Vitányi et al., 2009). Let the plans for Ti/θX andX be
πT and πX . To obtain NCD, we execute string compression (lossy
or lossless) on each of the plans as well as the concatenation of the
two plans to recover the compressed strings CT ,CX , and CT,X ,
respectively. NCD between the plans can be computed as,

NCD(πT ,πX) =
CT,X −min(CT ,CX)

max(CT ,CX)
(2)

The conceptual distance between a theory T and X is the NCD
between the respective plans, D(T/θX ,X) = NCD(πT ,πX).
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This entire computation is performed by the conceptual distance
calculator as shown in Figure 3.

Observations: (1) Conceptual distance as a penalty term
in the LL score ensures that the learned theory will correctly
recover the given example/demonstration. (2) D(T/θX ,X)
generalizes to the Kolmogorov–Smirnov statistic between two
target distributions if we induce probabilistic logic theories. We
prove these insights theoretically.

3.2.3. Human Guidance
The search space in ILP is provably infinite. Typically, language
bias (modes) and model assumptions (closed world) are used
to prune the search space. However, it is still intractable with
one (or few) examples. So, we employ human expert guidance
as constraints that can directly refine an induced theory, acting
as a strong inductive bias. Also, we are learning decomposable
concepts (see Definition 2). This allows us to exploit another
interesting property. Constraints can now be applied over the
attributes of the known concepts that compose the target concept,
or over the relations between them. Thus, GOCI directly includes
such constraints in the clauses as literals (see Example 2). Though
such constraint literals come from the pre-declared language,
they are not directly observed in the input example(s). So an ILP
learner will fail to include such literals.

If the human inputs (constraints) are provided upfront before
learning, it can be wasteful/irrelevant. More importantly, it
places an additional burden on the human. To alleviate this, our
framework explicitly queries for human advice on the relevant
constraint literals, which are most useful. Let U be a predefined
library of constraint predicates in the language, and let U() ∈ U
be a relevant constraint literal. Human advice A can be viewed
as a preference over the set of relevant constraints {U()}. If UA

denotes the preferred set of constraints, then we denote the
theory having a preferred constraint literal in the body of a clause
as τA. (For instance, as per Example 2 GOCI queries “which of
the two sampled constraints Sub(hb,hs,1)& Greater(hb,hs)
is more useful.” Human could prefer Sub(hb,hs,1), since it
subsumes the other.) The scoring function now becomes:

FIGURE 3 | Highlevel overview of our Guided One-shot Concept Induction

(GOCI) framework.

T∗ = argmin
T∈τ

(

−LL(T)+ D(T/θX ,X)
)

: τ ⊆ {τA} (3)

Thus, we are optimizing the constrained form of the same
objective as Equation (1), which aims to prune the search space.
This is inspired by advice elicitation approaches (Odom et al.,
2015). While our framework can incorporate different forms of
advice, we focus on preference over constraints on the logical
variables. The formal algorithm, described next, illustrates how
we achieve this via an iterative greedy refinement (Figure 3,
query-advice loop shown in left).

3.3. The GOCI Algorithm
Algorithm 1 outlines the GOCI framework. It initializes a theory
T0 by variablizing the “bottom clause” obtained from X and
background knowledge [lines 3 and 5]. Then it performs
a standard ILP search (described earlier) to propose a candidate
theory [line 6]. This is followed by the guided refinement
steps, where constraint literals are sampled (parameter tying
guides the sampling) and the human teacher is queried for
preference over them, such that the candidate theory can
be modified using preferred constraints [lines 7-9]. The
function NCD() performs the computation of the conceptual
distance by first grounding the current modified candidate theory
T′ with the same parameter values as the input example X, then
generating grounded plans and finally calculating the normalized
compression distance between the plan strings (as shown in
Figure 3 and Equation 2) [line 10]. The distance-penalized
negative log-likelihood score is estimated and minimized to
find the best theory at the current iteration [lines 11-14],
which is then used as the initial model in the next iteration.
This process is repeated either until convergence (no change in
induced theory) or maximum iteration bound (L).

Connection to plan induction: Evaluation, both in traditional
ML and ILP, generally predicts the value of ŷX for a test
instance X represented as a fixed (ML) or arbitrary (ILP) length
feature vector. In GOCI, however, the notion of evaluation of an
instance X depends on successful construction of a valid/correct

Algorithm 1: Guided one-shot concept induction.

1: procedure GOCI(Instance X)

2: Initialize: Set Iteration ℓ← 1

3: Initialize: Bootstrap theory T0 ← X/θ−1

4: repeat

5: Use Tℓ−1 as initial model

6: Candidate theory Tℓ ← SEARCH(T ∈ τ |Tℓ−1)

7: Sample applicable constraints U ∈ U
8: UA ← QUERY(human,U)

9: T′ ← Tℓ ⊕ UA ⊲ ∀ UA ∈ A

10: Dℓ(T
′/θX ,X)← NCD(πT′/θX ,πX)

11: Score Sℓ ←
(

−LL(T′)+ D(T′/θX ,X)
)

12: if Sℓ < Sℓ−1 then ⊲minimize

13: Retain T′: Update Tℓ = T′

14: end if

15: until ℓ ≤ L OR Tℓ = Tℓ−1

16: end procedure
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plan πX (Figure 4). Thus, while learning, most research aim
to maximize coverage of positive instances E+ (max P(ŷx =
true|yx ∈ E+)) and minimize coverage of negatives E−, [i.e.,
min P(ŷx = true|yx ∈ E−)]. GOCI evaluates a candidate concept
representation by allowing the agent to realize that concept—
by computing a valid plan for the goal/task implied by the
instance x. This is akin to plan induction, since we are learning
parameterized plan for realizing the concept as a surrogate for the
concept itself. Additionally, planning has long been shown to be
conceptually same as logic programming (Preiss and Shai, 1989)
and hence induction of logic programs (theories) is the same as
plan induction where the examples are trajectories (plan traces)
in this case.

3.4. Theoretical Analysis
3.4.1. Validity of Distance Metric
NCD δ(x, y) between two strings x and y is provably a valid

distance metric (Vitányi et al., 2009): δ(x, y) =
maxK(x|y),K(y|x)
maxK(x),K(y)

,

where K(x) is the Kolmogorov complexity of a string x and
K(x|y) is the conditional Kolmogorov complexity of x given
another string y. NCD is a computable approximation of the
same [D(x, y) ≈ δ(x, y)]. Thus, we just verify if δ is a correct
conceptual distancemeasure. Let TY and TZ be two theories, with
same parameterizations (i.e., same heads). Let TY/θ and TZ/θ be
their groundings with identical parameter values θ . Our learned
theories are equivalent to planning tasks. Assuming access to a
planner 5() which returns Y = 5(TY/θ) and Z = 5(TZ/θ), the
two plan strings with respect to the instantiations of concepts are
represented by TY and TZ , respectively.

Proposition 1 (Valid Conceptual Distance). Normalized
information distance δ(Y ,Z) is a valid and sound conceptual
distance measure between TY and TZ , that is, δ(Y ,Z) = 0 iff the
concepts represented by TY and TZ are equivalent.

Proof Sketch for Proposition 1: Let TY and TZ be 2 induced
consistent first-order Horn clause theories, which may or may
not represent the same concept. Let θ be some substitution.
Now let TY/θ and TZ/θ be the grounded theories under the
same substitution. This is valid since we are learning horn clause
theories with the same head, which indicates the target concept
being learned. As explained in the paper, a theory is equivalent to
a planning task. We assume access to a planner 5(), and we get

plan strings Y = 5(TY/θ) and Z = 5(TZ/θ) with respect to the
planing tasks TY/θ and TZ/θ .

Friend et al. (2018) proved that Conceptual Distance is the step
distance between two consistent theories in a cluster network
(T,⇄,∼), where T is the class of consistent theories, ⇄ is the
definitional equivalence relation (equivalence over bidirectional
concept extensions) and ∼ implies symmetry relation. We have
shown in the paper that, given the class of concepts we focus on,
a concept is a planning task.

Let there be a theory T∗, which represents the optimal
generalization of a concept C. If step distance 〈TY ,T

∗〉 = 0 in
a cluster network and 〈TZ ,T

∗〉 = 0, then 〈TY ,TZ〉 = 0, that is,
they represent the same concept C and they are definitionally
equivalentTY ⇄ TZ . Thus, bothTY/θ andTZ/θ will generate the
same set of plans as T∗, since they will denote the same planning
tasks (by structural induction). Thus,

TY ⇄ TZ ⇐⇒ [5(Y) ∩5(Z) = 5(Y) = 5(Z)] (4)

up to equivalence of partial ordering in planning. Let π∗() be
a minimum length plan in a set of plans 5(). Let y and z be
strings indicating plans π∗(Y) and π∗(z) ignoring partial order.
If 5(Y) = 5(Z), then π∗(Y) = π∗(z). Hence, the conditional
Kolmogorov complexities K(y|z) and K(z|y) will both be set to 0,
if the strings x and y are equivalent (ignoring partial ordering).
This is based on the principle that if they are equivalent, then
a Universal prefix-Turing machine will recover one string given
the other in 0 steps.

∴
max

(

K(y|z),K(z|y)
)

max
(

K(y),K(z)
) = 0 = δ(Y ,Z)

Proposition 2 (Generalization to Kolmogorov–Smirnov). In
generalized probabilistic logic, following Vitányi (2013), δ(Y ,Z)
corresponds to 2-sample Kolmogorov–Smirnov statistic between
two random variables TY/θ and TZ/θ with distributions PTY and
PTZ , respectively, [v(TY ,TZ) = supθ∈F

∣

∣FTY (θ)− FTZ (θ)
∣

∣], where
FT() is the cumulative distribution function for PT and supθ∈F is
the supremum operator. In a deterministic setting, δ is a special
case of the Kolmogorov–Smirnov statistic v, δ(Y ,Z) � v(FTY , FTZ ).

Proof Sketch for Proposition 2: This can be proved by
considering the connection between NID and the distributions

FIGURE 4 | Difference in evaluation of a concept instance across different learning paradigms.
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induced by the concept classes we are learning. NID is defined

as δ(x, y) =
maxK(x|y),K(y|x)
maxK(x),K(y)

, where, K(a|b) is the conditional

Kolmogorov complexity of a string a, given b. There is no
provable equivalence between Kolmogorov complexity and
traditional notions of probability distributions.

However, if we consider a reference universal semi-
computable semi-probability mass function m(x), then there is
a provable equivalence − logm(x) = K(x) ± O(1). Similarly for
conditional Kolmogorov complexity, by Conditional Coding
Theorem, − logm(y|x) = K(y|x) ± O(1) (Vitányi, 2013).
By definition,

m(y|x) =
∑

j≥1

2−K(j)−cjPj(y|x)

where cj > 0 are constants and Pj(y|x) is the lower
semi-computable conditional. A lower semi-computable semi-
probability conditional mass function is based on the string
generating complexity of a Universal prefix-Turing machine.
Thus,m(y|x) is greater than all the lower semi-computable. Note
that our compressed plans are equivalent to a string generated by
Universal prefix-Turing machines. The conditional case implies,
if a compressed plan string x is given as an auxiliary prefix tape,
how complex it is to generate compressed string y = θ .

Given two grounded theories TY/θ and TZ/θ , let PTY/θ , PTX/θ

be the respective distributions when learning probabilistic logic
rules. Now let us define the semantics of a distribution PT/θ

in our case: PT/θ = P(π(T/θ)), that is, distribution over the
plan strings, which can be considered as lower semi-computable
probability based on coding theory. We know,

∑

j≥1

2−K(j)−cjPj(y) ≈ F(y|x) (5)

where F(y) is the cumulative distribution. So, NID

δ(Y ,Z) now becomes, δ(Y ,Z) =
max(K(y|z),K(z|y))
max(K(y),K(z))

We

know that max
(

K(y),K(z)
)

is a normalizer. Thus,
δ(Y ,Z) < max

(

K(y|z),K(z|y)
)

max
(

K(y|z),K(z|y)
)

= max
(

−logm(y|z),−logm(z|y)
)

= max

(

−log
m(y, z)

m(z)
,−log

m(y, z)

m(y)

)

= max
([

− logm(y, z)+ logm(z)
]

,
[

− logm(y, z)+ logm(y)
])

Under partial ordering max yields supremum

≈ sup
∣

∣logm(y)− logm(z)
∣

∣

≈ sup
∣

∣log F(y)− log F(z)
∣

∣

≈ sup
∣

∣F(y)− F(z)
∣

∣ log is monotonic

Significance of Propositions 1 and 2: Proposition 1 outlines how
our proposed NCD-based metric is a valid conceptual distance. It
is well understood that the true measure of conceptual distance is
not straightforward and is subject to the semantic interpretation

of the domain itself. But designing a unique distance metric
based on the semantics of every domain limits the generality of
any learning system. So NCD acts as a surrogate “conceptual
distance.” It is based on the notion that “if two concepts are
fundamentally same the complexity of optimal action plans
to realize the concepts should also be fundamentally same.”
NCD (or NID) essentially measures the difference in generative
complexities of two plans. Also note that other types of distances
that are limited to a syntactic level such as edit distance (or
literal distance) will fail to capture the similarity or diversity
between concept representations since the same concept can be
represented with more than one theories that may vary in one or
more literals.

Proposition 2, on the other hand, proves that our proposed
metric is not limited to our specific scenario. It positions
our work in the context of known statistical distance metrics
and establishes its credibility as a valid solution. It proves
how in a nondeterministic setting, that is, probabilistic logic
formulation, our proposed metric generalizes to Kolmogorov–
Smirnov statistic.

3.4.2. PAC Learnability
PAC analysis of GOCI follows from GOLEM for function-free
horn clause induction (Muggleton and Feng, 1990). Let initial
hypothesis space beH0 and the final beH∗ (s.t.T∗ ∈ H∗).

Proposition 3 (Sample Complexity). Following Valiant (1984)
andMooney (1994), with probability (1−δ), the sample complexity
of inducing the optimal theory T∗ is:

n∗ = O

(

1

ǫ

[

dLji ln((tfm))+ ln(
1

δ
)

])

(6)

where ǫ is the regret, n∗ - sample complexity of H∗, i is the
maximum depth of a variable in a clause and & j is the maximum
arity. m - number of distinct predicates, t is the number of terms, p
is the place and d is the distance of the current revision from the last
known consistent theory, and L is the upper bound on the number
of refinement steps (iterations).

Proof Sketch for Proposition 3: In our learning setting, the
learned theory will always have nonzero uncertainty. To
understand the properties, we build upon the PAC analysis for
recursive rlgg (Relative Least General Generalization) approach
for function-free Horn clause learning shown by Muggleton
and Feng (1990) in GOELM. With some restrictions, it applies
here as well. Let n: denote the sample size and H: the hypothesis
space. Our approach can be considered as an rlgg approach with
refinement steps. Note that constraint predicates that refine the
clauses are not part of K.

To begin with, we are interested in regret bounds for
the initially learned hypothesis by the ILP learner H0, before
refinement. We know from Valiant (1984), that with probability
(1− δ) the sample complexity n forH0 is,

n ≥
1

ǫ

(

ln(|H0|)+ ln(
1

δ
)

)

(7)
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where ǫ is the regret. Now, our ILP learner induces ij-determinate
clauses (Muggleton and Feng, 1990), where i is the maximum
depth of the clause and j is the maximum arity. In our problem

setting, it can be proven that |H0| = O((tpm)j
i
), where m is the

number of distinct predicates in the language. t is the number of
terms, and p is the place (for details about place, refer Muggleton
and Feng, 1990). Also note that if j & i is bounded, then ji ≤
c). Mooney (1994) shows that for theory refinement/revision,
sample complexity is expressed as,

n∗ = O

(

1

ǫ

[

dk ln
(

|H0| + d +m
)

+ ln(
1

δ
)

])

(8)

where distance d to be the number of single literal changes in a
single refinement step and k is the number of refinement/revision
iterations. In Algorithm 1, we observe that at each iteration ℓ ≤

L, updates are with respect to the preferred constraint predicates

UA ∈ U. Thus, we know that k = L. Substituting |H0| = (tfm)j
i

and ji = c constant)in Equation (8) and ignoring the additive

terms d +m since (tfm)j
i
>> d +m, we get,

n = O

(

1

ǫ

[

dLc ln(tpm)+ ln(
1

δ
)

])

(9)

Proposition 4 (Refinement Distance). d is upper bounded by
the expected number of literals that can be constructed out of the
library of constraint predicates with human advice E∼A [|U|] and
lower bounded by the conceptual distance between theory learned
at two consecutive iterations since we adopt a greedy approach.
If PrA(U) denotes the probability of a constraint predicate being

preferred, then |Dℓ − Dℓ−1| ≤ d ≤
∑2(|U|−1)×tPq

i=1 PrA(Ui) where

2(|U|−1)×tPq is the maximum possible number of constraint literals
and q is the maximum arity of the constraints. In case of only
pairwise constraints, q =2.

Proof Sketch for Proposition 4: The proof is straightforward and
hence we present it in brief. In our setting to show that,

|Dℓ − Dℓ−1| ≤ d ≤

2(|U|−1)×tPq
∑

i=1

PA(Ui) (10)

(where 2(|U|−1) × tPq is the maximum number of constraint
literals possible, since U is the library of constraint predicates)
consider that the number of constraint predicates that can be
picked up at any iteration is 2(|U|−1). To form constraint literals,
we need to tie arguments to existing logical variables in the
current theory. We have defined t to be the number of terms in
the existing theory. Let q be the max arity of a constraint, thus
total possible number of constraint literals are 2(|U|−1) × tPq. So
if the distribution induced on the constraint literals by human

adviceA be PA, then
∑2(|U|−1)×tPq

i=1 PA(Ui) is the expected number
of literals added given the advice. Now this is the upper bound
of d. Again d should at least be the conceptual distance between
the new theory after constraint addition and the last consistent
theory. Note d and conceptual distance D is not the same. Thus,

it is the difference between the NCD of last theory to original
example and current updated theory to the original example
|Dℓ − Dℓ−1|.

Observe that if at each layer ℓ ≤ L we add constraint
predicates Uℓ, then at layer ℓ, d =

∣

∣{U}ℓ
∣

∣ ≤ 2mtPq (assuming
q is maximum arity of the constraint predicates). Also, as per
our greedy refinement framework, at each layer ℓ, distance new
theory Tℓ should at least be the change in conceptual distance.

Significance of Propositions 3 and 4: Propositions 3 and 4 aim
to illustrate what the general sample complexity would be for
a theory refinement-based RLGG clause learner such as GOCI

and how the conceptual distance controls the complexity by
establishing bounds on the refinement distance. Furthermore, the
complexity is also subject to the maximum refinement iterations,
which in turn is affected by human guidance. Thus, we establish
the theoretical connection between the two dimensions of the
contribution of this work.

Proposition 5 (Advice Complexity). From Equations (6) and (8),

at convergence ℓ = L, we get n∗−|X|
L examples, on an average, for a

concept C to be PAC learnable using GOCI.

The proof is quite straightforward and hence we just discuss
the brief idea behind it. Our input is sparse (one or few
instances). GOCI elicits advice over constraints to acquire
additional information. Let |X| be the number of input examples.
We query the human once at each layer and hence the maximum
query budget is L. Given that the sample size is |X|, each query

to the human must acquire information about at least n∗−|X|
L

examples, on an average, for our a concept C to be PAC learnable
using our approach.

4. EVALUATION

We next aim to answer the following questions explicitly:

(Q1) Is GOCI effective in “one-shot” concept induction?
(Q2)How sample efficient is GOCI compared to baselines?
(Q3) What is the relative contribution of the novel scoring
function versus human guidance toward performance?

Our framework extends a Java version of Aleph (Srinivasan,
2007). We modified the scoring function with NCD penalty
computed via a customized SHOP2 planner (Nau et al., 2003).
We added constraint sampling and human guidance elicitation
iteratively (Algorithm 1).

4.1. Experimental Design
We compare GOCI with Aleph with no enhancements. We
focus on the specific task of "one-shot concept induction,”
with a single input example for each of the several types
of concepts and report aggregated precision. We consider
precision because preference queries are meant to eliminate
false positives in our case. To demonstrate general robustness
of GOCI, beyond one-shot case, we experimented with varying
sample sizes for each concept type and show learning curves
for the same. We perform an ablation study to show
the relative contribution of two important components of
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GOCI: (a) novel scoring metric and (b) human guidance,
that is, we compare against two more baselines (ILP+Score
and ILP+Guidance). For every domain, we consider 10
different types of concepts (10 targets) and aggregate results
over 5 runs.

Note that human guidance was obtained from distinct human
experts for every run. The expertise level of all the advice
providers was reasonably at par since they were chosen from
the same pool of candidates with zero visibility and knowledge
of our proposed framework. However, for all the human advice
providers we assumed a basic level of knowledge in geometry
or fundamentals of logic and reasoning. Additionally, we also
explained each of the experimental domains to the human
participants to create a similar level of awareness about the
domains among all of them.

4.1.1. Domains
We employ four domains with varying complexity. Note
that we have selected the below domains based on multiple
considerations. The domain encoding need to be such
that target concepts can be learned in a modular fashion
(i.e., decomposable). Thus, the first two domains are
structure construction domains either spatial (Minecraft)
or chemical/molecular (CheBI). Spatial structures are implicitly
modular (such as the L-structure in Figure 1). Chemical entities,
molecules/compounds/complexes, are similarly modular as well.
The last two domains are fundamentally planning domains.
However, they are also compositional in nature, that is, any
planning goal is a composition task. For instance, machine
structure in “Assembly” domain and cocktails, etc., in “Barman”
domain. So these two domains do not just demonstrate learning
modular/decomposable concepts but they also illustrate the plan
induction feature of GOCI.

1. Minecraft (spatial structures): The goal is to learn discrete
spatial concepts in a customized (Narayan-Chen et al., 2019)
Project Malmo platform for Minecraft. Dialogue data in
Malmo are available online, and we converted them into a
logical representation. All structures are in terms of discrete
atomic unit blocks (cubes). Figure 5 shows examples of some
spatial structures that GOCI was able to learn.

2. Chemical Entities of Biological Interest (ChEBI):

ChEBI (Degtyarenko et al., 2007) is a compound database
containing important structural features and activity-based
information, for classification of chemicals, such as (1)
molecular structure and (2) biological role. We model the
Benzene molecule prediction task as molecular-compositional
concepts. The data have predicates such as SingleBond,
DoubleBond, and HasAtom.

3. Assembly (planning domain): Assembly is a planning
domain, where different mechanical structure concepts are
compositions of different parts and resources. Input is
a conjunction of ground literals indicating ground plan
demonstration (assuming total ordering).

4. Barman (planning domain): A standard planning domain
where a bartender is supposed to follow certain recipes and
sequence of techniques to create cocktails. The different
cocktails are decomposable concepts in this setting.

4.2. Experimental Results
[Effective One-shot (Q1)] Table 1 shows the performance of
GOCI on one-shot concept learning tasks as compared to
standard ILP. GOCI significantly outperforms ILP across all
domains answering (Q1) affirmatively. Also, note that GOCI

is very “query” efficient as observed from the small average

TABLE 1 | Results for one-shot concept learning.

Domain Approach Avg. precision #Queries

Minecraft Goci 0.85 5.5± 3

ILP 0.35 –

Assembly Goci 0.65 16.5± 4

ILP 0.2 –

ChEBI Goci 0.615 13.1± 2.13

ILP 0.45 –

Barman Goci 0.7 10.5± 5.4

ILP 0.51 –

FIGURE 5 | Instances of spatial concepts in Minecraft. (Left) Upright Tee, (Middle) Upright L, (Right) Orthogonal overlapping Ls.
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number of queries posed in the case of each domain. Note
that in the case of CheBI, the number of queries is the
highest among all the domains. This can be attributed to that
fact that CheBI is a domain, which requires a certain degree
of understanding of fundamental chemistry (chemical bonds
and their types, molecules, atoms, etc.). Thus, some of the
human participants requiredmore iterations (consequently more
queries) to converge to the most relevant set of constraint
literals, given the difference of their prior understanding of
school chemistry.

Query efficiency is an important consideration in any learning
paradigm that leverages human guidance, since controlling the
cognitive load on the human expert is critical. So, in general,
the observed average query numbers being reasonably low
across all domains corroborates our theoretical advice complexity
(section 3.4.2).
[Sample Efficiency (Q2)] In Figure 6, we observe that GOCI

converges within significantly smaller sample size across all
domains, thus, supporting our theoretical claims in section 3.4. In
ChEBI, though, quality of planner encoding might explain mildly
lower precision yet GOCI does perform significantly better than
vanilla ILP learner. In ChEBI, we see that the sample efficiency
is not vastly distinct. One of the possible reasons could be the
sub-optimal encoding of the planning domain language, which is
necessary for NCD computation, for this task. If we can improve
the planner setup for this domain, then we will likely be able to
observe enhanced performance.
[Relative contribution (Q3)] Figure 7 validates our intuition
that both components (scoring function and human-guidance)
together make GOCI a robust one-shot (sample-efficient) concept
induction framework. Though human guidance, alone, is able

to enhance the performance of a vanilla ILP learner in sparse
samples, yet it is not sufficient for optimal performance. In
contrast, although the advantage of our novel distance-penalized
scoring metric is marginal in sparse samples, it is essential for
optimal performance at convergence.

5. DISCUSSION

The most important conclusion from the experiments is that
when available, the guidance along with the novel score leads to a
jump-start, better slope and in some cases, asymptotically sample

FIGURE 7 | Results of ablation study on Minecraft domain. Relative

contribution of our distance-penalized score vs. human guidance.

FIGURE 6 | Learning curves for varying sample size to compare the sample efficiency of Guided One-shot Concept Induction (GOCI) and inductive logic program

(ILP). Top two plots are with respect to structural composition domains-Minecraft & ChEBI and the bottom two are for planning domains: Assembly and Barman (best

viewed in color).

Frontiers in Robotics and AI | www.frontiersin.org 11 November 2020 | Volume 7 | Article 122

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Das et al. GOCI

efficient with a fraction of the number of instances needed than
merely learning from data.

Another important aspect to note here is that our
experimental setup did not attempt to ensure in any way
that the quality of guidance provided by the human participants
is optimal. The formulation of the objective function, itself,
in GOCI is designed to handle sub-optimal human advice
implicitly in a seamless manner. The two primary features
in the design that make GOCI robust to advice quality are
as follows:

1. As explained earlier and shown in Equation (3), human advice
and conceptual distance deal with two distinct aspects of the
search process. Human advice controls the size and nature of
the search space while conceptual distance ensures the quality
of the candidates. Advice and distance have a balancing effect
on each other, and thus, it is our novel conceptual distance that
makes GOCI robust to bad advice.

2. Also, the nature of human advice in our setting is of choosing
the most useful set of “constraint predicates” among the set
of candidate constraints. Now the candidates are generated by
GOCI in a conservative fashion selecting only the ones that are
logically valid for the theory learned at the current iteration
of revision. Thus, human experts have very little option of
choosing an invalid or extremely unlikely constraint predicate.

Our ablation study in Figure 7 also supports our analysis. On
closer inspection, we see that it is due to our novel distance
penalized scoring function (ILP+Score) that ensures convergence
to an optimal solution. Human advice (ILP+Guidance)
contributes to sample efficiency.

6. CONCLUSIONS

We developed a human-in-the-loop one-shot concept learning
framework in which the agent learns a generalized representation
of a concept as FOL rules, from a single (few) positive example(s).
We make two specific contributions: deriving a new distance
measure between concepts and allowing for richer human

inputs than mere labels, solicited actively by the agent. Our
theoretical and experimental analyses show the promise of GOCI

method. An exhaustive evaluation involving richer human inputs
including varying levels of expertise and analyzing our claim
that learning performance of GOCI is robust to expertise levels
(which should only affect query efficiency) is an immediate
future research objective. Integration with hierarchy learning also
remains an interesting direction for future research.
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