
1 Department of Electrical and Computer Engineering, 
Northeastern University, Boston, MA 02115, USA; 2 Department of 
Pathology, Florida Hospital, University of Central Florida, Orlando, Fl 
32803, USA; 3 Department of Radiology, The Methodist Hospital 
Research Institute, Weill Medical College & Cornell University, Houston, 
TX 77030, USA. 

Jing Fan, Department of Electrical and Computer 
Engineering, Northeastern University, 360 Huntington Avenue, Boston, 
MA 02115, USA. Tel: +1鄄  857鄄  891鄄  1728; Fax: +1鄄  617鄄  373 鄄  8970; Email: 
fan.j@husky.neu.edu. 

10.5732/cjc.012.10113 

Chinese Anti鄄  Cancer A ssociation CACA 

Chinese Journal of Cancer 

www.cjcsysu.com 

Jing Fan 1 , Jennifer G. Dy 1 , Chung鄄  Che Chang 2 and Xiaobo Zhou 3 

Abstract 
Myelodysplastic syndromes have increased in frequency and incidence in the American population, but 

patient prognosis has not significantly improved over the last decade. Such improvements could be realized 
if biomarkers for accurate diagnosis and prognostic stratification were successfully identified. In this study, 
we propose a method that associates two state鄄  of鄄  the鄄  art array technologies要single nucleotide polymor鄄  
phism (SNP) array and gene expression array要with gene motifs considered transcription factor -binding 
sites (TFBS). We are particularly interested in SNP鄄  containing motifs introduced by genetic variation and 
mutation as TFBS. The potential regulation of SNP鄄  containing motifs affects only when certain mutations 
occur. These motifs can be identified from a group of co鄄  expressed genes with copy number variation. 
Then, we used a sliding window to identify motif candidates near SNPs on gene sequences. The 
candidates were filtered by coarse thresholding and fine statistical testing. Using the regression鄄  based 
LARS鄄  EN algorithm and a level鄄  wise sequence combination procedure, we identified 28 SNP鄄  containing 
motifs as candidate TFBS. We confirmed 21 of the 28 motifs with ChIP鄄  chip fragments in the TRANSFAC 
database. Another six motifs were validated by TRANSFAC via searching binding fragments on co鄄  
regulated genes. The identified motifs and their location genes can be considered potential biomarkers for 
myelodysplastic syndromes. Thus, our proposed method, a novel strategy for associating two data 
categories, is capable of integrating information from different sources to identify reliable candidate 
regulatory SNP鄄  containing motifs introduced by genetic variation and mutation. 

Key words Association study, genetic variation and mutation, transcription factor-binding sites, myelodysplastic 
syndromes 

Original Article 

Myelodysplastic syndromes (MDS) are a hetero鄄  
geneous group of clonal hematopoietic disorders charac鄄  
terized by peripheral cytopenia, morphologic dysplasia, 
and susceptibility to leukemic transformation [1,2] . Copy 

number variation detection, genotyping, and related 
studies of MDS with single nucleotide polymorphism 
(SNP) array are powerful tools for molecular karyotyping 
that have increasingly been used in recent years  [1,2] . 
Gene expression array is also employed to identify 
genetic biomarkers for MDS [3,4] . However, MDS arises 
from diseased stem cells (blasts) that induce dysplastic 
hematopoiesis of multiple cell lineages, including erythroid 
lineage, which leads to anemia; myeloid lineage, which 
leads to neutropenia/myeloid leukemia transformation; 
and megakaryocytic lineage, which leads to thrombo鄄  
cytopenia. That multi­lineage involvement has seriously 
hindered success in previous studies using SNP or 
expression microarray alone. Because genes showing 
both allelic imbalance and differential expression 
profiles要as determined by SNP array and  expression 
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array要could be valid targets for building biomarkers, we 
have integrated these two types of arrays for mechanistic 
and bioinformatic studies of MDS. One possible way that 
potential biomarkers work is through the regulatory 
pathway using SNP­containing transcription factor­ 
binding sites (TFBS) and other variation­related mecha鄄  
nisms. These two state­of­the­art technologies, high­ 
throughput genome­wide profiling using SNP array and 
gene expression (oligonucleotide) microarrays, have 
been associated and studied in other disease models [5­9] 

but not yet, to our knowledge, in the MDS model. In this 
study, we demonstrated an association analysis method 
that integrates information from two types of arrays and 
use this approach to identify genetic variation­induced 
regulation events. This approach considers SNP­contain鄄  
ing motifs potential biomarkers that change the normal/ 
standard regulatory events by functioning as TFBS. It 
takes advantages of both gene expression array and 
SNP array to identify differentially expressed genes as 
well as genes containing SNP sites to find potential 
biomakers in a data association study manner. 

Current association studies can be categorized into 
three classes: 1) gene­based association studies [10,11] , 2) 
region­based association studies [8,9,12] , and 3) whole 
genome association studies [13­15] . Gene­based association 
studies  are the most widely used approaches and are 
effective in identifying genes that cause disease when 
the underlying genetic defect, considered a genetic 
marker, resides in a specific biological pathway. On the 
other hand, region­based association studies are 
successful when a connection between disease 
phenotype and specific regions on a chromosome is 
established. The region­based approach can be used to 
identify novel genes by studying genetic markers in a 
target region with a certain density of SNPs to locate a 
disease­associated locus. Whole genome association 
studies extend the scope of region­based research for 
discovery of novel genes regulated genome­wide. Whole 
genome studies do not require a prior knowledge of 
candidate genes. A map between gene expression or 
phenotype traits and genetic locus can be established 
genome­wide. The goal of all three classes is to identify 
genetic markers that are possible disease­casual regions 
or specific alleles to perform popular linkage studies. 

In this paper, we propose a method that associates 
gene profiles and genetic variation or mutation in a 
motif­based manner. Our method can be categorized as 
a genome­wide association study. However, we focused 
on specific chromosomes要chromosomes 5, 7, and 8要 
that are considered highly suspicious disease causal 
chromosomes and show abnormal behaviors in MDS 
patients [2,16] . We employed the connection between gene 
expression, provided by gene expression array, and 
TFBS that contain genetic variations, identified by SNP 

array, to associate two types of arrays. Transcription is 
well known to be regulated through TFBS or motifs [17] . In 
the current literature, the most popular computational 
methods for TFBS identification are regression­based 
methods [18­20] . These methods represent gene expression 
as a linear combination [20] or logic regression [19] coefficients 
of candidate motifs, and the best subset of candidates 
are selected with feature selection methods or sparsity 
penalization during regression. Based on the knowledge 
that transcriptional regulation in eukaryotic organisms 
requires cooperation of multiple transcriptional factors, 
the ideal method for selecting potential TFBS or 
regulatory motifs should be capable of identifying groups 
of cooperating candidates. Keles  . [19]  applied logic 
regression to address this problem, but the binary 
restriction of logic regression limited method power by 
forcing motif frequency to be binary indicators of 
occurrence, resulting in information loss. The strategy of 
linear regression followed by variable selection suffered 
high computational complexity, and different feature 
selection methods yielded distinct results, which made 
the problem more confusing. 

Our proposed strategy integrates SNP array 
information into gene and candidate motif selection while 
addressing limitations of these approaches. Increasing 
numbers of studies suggest that genetic variations at 
SNPs and mutations are driving factors for various 
diseases [21­23] . To associate gene expression profile and 
SNP information, we selected differentially expressed 
genes with covariant copy number gain or loss. Then, 
unlike most existing methods on regulatory TFBS 
identification, we did not perform exhaustive motif search 
but instead focused on SNP­containing motifs introduced 
by genetic variation and mutation identified by SNP 
array. These motifs are in the neighborhoods of SNPs 
and may not exist unless the variations or 
polymorphisms occur. In other words, instead of the 
general regulatory mechanism induced by transcription 
factors, we were particularly interested in regulatory 
events introduced by SNP genetic variations. Therefore, 
the SNP­containing motifs that act as TFBS reveal novel 
regulatory events that cannot be identified using 
traditional motif search and selection methods. Followed 
by SNP­containing motif candidate search, we employed 
least angle regression via elastic net (LARS­EN) [24]  to 
perform regression and derive a sparse solution 
simultaneously. Unlike least absolute shrinkage and 
selection operator (LASSO) [25] , LARS­EN takes the group 
effect into consideration and selects all good  feature 
components in a group instead of the best one. Thus, it 
takes the cooperation of selected motifs into 
consideration and is effective under the circumstance 
where features are not binary as in logic regression. As 
mentioned above, model fitting and selection are carried 
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out by  LARS­EN at the same time with much smaller 
computational cost. Our strategy does not conflict with 
the popular TFBS selection methods. Furthermore, it can 
be considered an important addition to conventional 
candidate sets selected by other methods. 

The major contribution of this work is that we model 
the relationship between SNP­introduced TFBS and gene 
expression levels in the MDS model and identify 
potential biomarkers as TFBS in regulatory events. As 
mentioned above, SNP­containing motifs, which 
potentially regulate genes with genetic variations and 
mutations, link information from SNP array and gene 
expression array. This is another contribution of this work 
to both regulatory motif or binding site studies and 
association studies. Genotypic variations at SNP 
positions bring new possible binding sites, which may 
introduce novel modes of gene regulation, altering gene 
expression and thereby impacting disease progression. 
On the other hand, compared with the traditional 
association study, we did not employ a single SNP or a 
group of SNPs as a marker; instead, motifs were the 
surrogate objects to study regulatory events and served 
as genetic markers as well. It is pellucid that when 
genetic variations take place at TFBS, gene expression 
is regulated to change their regular behaviors from its 
standard behavior. Therefore, in this study, 
SNP­containing motifs bridged two types of array data 
together, allowing us to infer a new set of candidate 
TFBS motifs and from which new regulatory relationship 
could be introduced. 

Instead of experimental verification, we used 
transcription factor library TRANSFAC Professional 
(BIOBASE GmbH, Wolfenbuttel, Germany) [26]  containing 
experimentally verified binding site information to validate 
the effectiveness of our proposed method. We also 
incorporated gene ontology (GO) information to infer the 
nature of co­regulated genes to validate newly identified 
motifs. Three level comparisons要biological process, 
cellular component, and molecular function要were 
respectively used to study the similarities of co­regulated 
genes and to validate our motifs together with 
TRANSFAC binding site information. 

Materials and Methods 

Experiment materials 

Fourteen SNP arrays and 14 gene expression arrays 
were generated from 14 samples of myeloid, lymphoid, 
and blast tissue, of which half were disease samples and 
the other half were controls. Genomic RNA was 
extracted from each sample with the Qiagen Allprep 
RNA/DNA Mini Kit (Qiagen Valencia, CA) and stored at 
­80益. The quantity of RNA was measured using 

NanoDrop ND­1000 (NanoDrop Technologies, Wilming鄄  
ton, DE), and the quality of RNA was further assessed 
using the Agilent 2100 Bioanalyzer (Agilent Tech鄄  
nologies, Foster City, CA) according to the manufac鄄  
turer爷s instructions. The flow­through was used for total 
RNA extraction with the RNeasy Micro Kit (QIAGEN) 
according to the manufacturer爷s protocol to ensure the 
recovery of adequately concentrated RNA for expression 
array. Genotyping was performed using 250K  I 
SNP­microarray chips (Affymetrix, UK) and processed 
according to the manufacturer爷s instructions. Samples of 
250 ng genomic DNA were digested with  I for 2 h at 
37益 , followed by adaptor ligation, polymerase chain 
reaction (PCR) amplification, fragmentation, labeling, 
and hybridization. Then, 3 滋  L of PCR product and 4.5 滋  L 
of fragmentation product were eletrophoresed to confirm 
DNA processing. The Affymetrix 2­cycle amplification 
protocol was used for expression array analysis using 10 
ng RNA to start. The Affymetrix 450 fluidics station and 
the Affymetrix gene scanner were used to wash, stain, 
and scan the arrays. 

Gene array processing and gene selection 

The raw data of gene expression were summarized 
using the robust multi­array analysis (RMA) algorithm [27] , 
a component of the Affymetrix Expression Console 
software (Affymetrix, CA, US). RMA starts with a 
non­linear background correction based on a single chip 
to detect the perfect match signal. Then, multiple chips 
are normalized and analyzed jointly to make the 
distribution identical across arrays. Following the 
normalization step, summarization translates perfect 
match values into expression measures. RMA assumes 
the probe affinity effects sum to zero and estimates the 
gene effect using median polishing to avoid outlier 
probes. This algorithm is computationally efficient and 
consistently variant in individual signal. We processed 
the MDS gene microarray data with RMA to take the 
advantage of cross­array normalization and low compu鄄  
tation intensity in log scale. 

Copy number variation and genotyping call are two 
categories of information provided by SNP arrays. 
Affymetrix Genotyping Console (Affymetrix, CA, US) was 
used to extract copy number variation and genotyping 
call from raw intensity files. The algorithm to summarize 
copy number is based on hidden Markov model, which 
identifies the dynamics of genomic copy number 
changes. The Viterbi­algorithm­based method is resilient 
to local copy number perturbations and is able to find 
globally optimal results. The non­diploid state deletion 
and amplification indicate either disease  susceptibility or 
resistance; thus, copy number variation explains not only 
genetic variation but also certain types of diseases. On 
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the other hand, Bayesian robust linear model with Maha鄄  
lanobis distance classifier (BRLMM) was employed in the 
Genotyping Console software to infer the geno鄄  typing. In 
our study, accurate identification of genotyping for each 
SNP was of significance in that this information would be 
utilized to identify SNP­containing motifs, a  major 
component of this work. Similar to the RMA  algorithm, 
BRLMM is also a multi­chip­based method that allows 
simultaneous estimation of both probe and allele signals 
for each SNP. In addition, by introducing multiple sample 
classification, the genotyping estimation takes advantage 
of several SNPs other than the current one to be more 
robust. Bayesian prior information further enables the 
desired performance of BRLMM by integrating posterior 
estimation. Genetic variant information provided by copy 
number variation and genotyping call is then linked to 
phenotypes and different traits of samples in later 
sections. 

After translating probe intensities into genetic traits of 
gene expression and SNPs, statistical analysis was then 
performed on expression data using significance analysis 
of microarrays (SAM) to select differentially expressed 
genes. SAM selects genes with statistical significance 
according to a score describing the relationship between 
gene expression and standard deviation of repeated 
measurements [28] . Both up­regulated and down­regulated 
genes with equal or larger magnitude of scores were 
identified for further study; these genes that were 
differentially regulated between the control and disease 
groups were considered important in the mechanism of 
disease. 

SNPs are associated with genes if they are located 
in the expanded gene region要the region containing the 
gene as well as 20 kb upstream and 1 kb downstream. 
The upstream region is large enough to include 
promoters, which contain TFBS and therefore regulate 
gene transcription. The downstream extension includes 
untranslated regions, which are dominant contents on 
gene expression arrays. We denoted SNPs located in 
the expanded gene region as SNPs related to the gene. 

Because copy number variation regions are target 
regions of MDS research, the gene list containing 
up­regulated and down­regulated genes could be further 
shortened by integrating copy number variation infor鄄  
mation. For each SNP located within an amplified 
expanded gene region, we determined whether the 
expression files were associated with copy number 
variations. It is equivalent to the case in which copy 
number status was determined to be in either the diploid 
or non­diploid state for each differentially expressed 
gene. If copy number was covariant with expression, the 
gene was reserved for further application, whether there 
was a gain or loss in copy number. These reserved 
genes with 野oncogene­like冶 properties indicated dys­ 

regulated mechanisms other than gene dosage 
alteration. Therefore, the genetic trait copy number 
decreased the size of candidate gene set by filtering 
genes with expression files uncorrelated to genetic copy 
number variations. 

Following the previous stringent filtering, a more 
parsimonious set of genes was regarded as the potential 
candidate set for MDS. These genes were clustered 
according to their expression profile; thus, genes that 
behaved similarly across the sample set were clustered 
as a group of co­expressed genes. The hierarchical 
clustering algorithm [29]  represents the data in a tree 
structure without prior information of number of clusters. 
The cut­off value is a threshold of similarity measure鄄  
ment between each pair of branches across the dendro鄄  
gram, which thus separates the dendrogram into several 
clusters with a similarity value higher than the cut­off. 
For each cluster with a group of co­expressed genes 
with similar behavior, we then developed a method to 
find the regulatory mechanism with respect to SNPs. 

SNP鄄  containing motif search 

Genotyping call represents true sequence compo鄄  
sition at SNP positions. The genotype is the specific 
allele constitution of an individual SNP that comprises 
most genetic variations. Variant genotypes are the 
dominant reason for variety of phenotypes. SNPs with 
different allele compositions in control and disease 
samples are highly suspected to carry potential factors 
that are closely associated with disease pathogenesis 
and could be considered biomarkers. Typically, there are 
four different types of genotyping call from SNP arrays: 
AA, BB, AB, and no call. For each gene, we had its 
flank expanded gene region and genotypes of its related 
SNPs, allowing us to obtain accurate individual 
genotypes. 

We integrated allelle genotype information into the 
expanded gene region by introducing the terminology 
野twin expanded gene region.冶 Twin expanded gene 
region refers to two expanded gene regions whose allele 
constitutions are different only at AB call SNPs. The 
standard sequences of genes and their flanks are 
available in all popular gene databases from which 
expanded gene regions are obtained. For each sample, 
we first duplicated each expanded gene region in forms 
of  standard sequence; that is, two twin sequences were 
created. For AA call and BB call SNPs, the identified 
genotyping calls replace allele contents in both twin 
sequences at SNP positions. On the other hand, for AB 
calls, allele contents at SNP positions of twin sequences 
are substituted by A and B, respectively. In the no call 
case, which is rare, SNP compositions retain their 
contents as obtained from database. With this 
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Figure 1. 
Here, single nucleotide polymorphisms (SNPs) introduce 
potential novel motifs. For one gene, the potential motif (red 
box) has exactly the same DNA sequence except the 
heterozygous SNP position (G and A) in gene A. The motif will 
be missed if the heterozygous SNP position is G. 

procedure,  genotyping information was integrated into 
twin sequences for each gene and expanded gene 
region. Therefore, a pair of twin expanded gene regions 
of a single gene was identical except for the AB call 
SNP alleles. We illustrated the concept of expanded 
gene region in Figure 1. In this example, if the allele on 
gene A appears in form of AA call or BB call as G, the 
motif candidate might not be considered because of the 
low frequency. In other words, the AB call enables some 
of the short sequence to be a candidate TFBS. 

We collected twin sequences of different samples of 
each gene in a co­expressed group into a single 
sequence set. More specifically, assume we have 
instances and  genes in a co­expressed cluster. Then 
the size of combined sequence set is 2  . Motif search 
was employed to find shared patterns across the set. 
Here, we were interested in the SNP­containing motifs 
that include SNPs in the shared patterns. It was 
convenient to separate the sequence set into two 
subsets: disease and control. In addition, because we 
assumed the variations and mutations cause MDS, we 
considered the SNPs in the disease group only. 

Assuming the motif length is  , then for each SNP, 
upstream flank,  downstream flank, and SNP 

position were extracted to be a short sequence of length 
. A window of length  slides over the short 

sequence, and sequences within the window are stored. 
Thus for each SNP, we obtained  sequences with 
length  as candidate motifs. This procedure is illustrated 
by Figure 2. Then we repeated the same procedure for 
all SNPs in the combined sequence subset of disease 
samples. These  ­length sequences carried at least one 
SNP and were considered the candidate SNP­containing 
motifs. We then searched frequencies of candidate 
motifs in the combined sequence set of disease and 
control obtained earlier. Because there were pairs of twin 
sequences and AA call, BB call and no call, there were 
some identical candidate motifs. We kept the unique 

candidates and calculated their frequencies. Assuming 
there are  candidate motifs and if we consider 
frequency as features, the size of the feature matrix is 

伊   . 
We had a pair of twin expanded gene regions for 

each gene of a certain sample. For the related SNPs of 
each gene, frequencies of elements in a twin pair are 
very similar and sometimes identical. We took average 
frequencies of SNPs for a pair of twin sequences, and 
thus the size of feature matrix was 伊   . This step 
eliminated the duplicate effect of twin sequences. 
Because of the existence of AB call, it is possible that 
certain frequencies are decimals instead of integers. 

The desired candidate motifs should spread out 
among different genes. To identify TFBS from these 
candidates, we first filtered candidate motifs with 
frequencies smaller than a given threshold, which was 
equal to the number of samples. This procedure is a 
coarse process that removes candidates highly unlikely 
to be TFBS. Then, a fine statistical process was 
performed based on the filtered frequency matrix with 
statistical testing. Here, we employed the similar method 
of hypothesis testing in microarray experim ents [30] . The 
random perturbation generates sequences with the same 
length and ATGC proportions as original genes. 
Assuming that the number of permutation is  and that 
there are  genes in a co­expressed set, we randomized 
the sequence order and rearranged the sequence 
according to the random order for each permutation. 
Then we repeated the same procedure for each 
permutation as previously described to generate the 
averaged frequency matrix. In comparing the frequencies 
of actual gene sequences and randomly permutated 
sequences, the null hypothesis is that the summation of 
averaged frequencies of a motif in the real gene sample 
set is consistent with the motif distribution of the 
summation of averaged frequency of randomized 
sequenc es. The test statistics are the summation of 

Figure 2. 
The SNP is 

noted in red. A total of 8 candidate motifs are generated while 
the sliding window cruises from left to right. 
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averaged frequencies for different motifs. For two­side 
alternative hypotheses, we calculated the  value as 
follows: 

(1) 

For the i­th permutation, i = 1, 噎 , N, we computed 
the  test statistics ti,1 噎 ti,m for each null hypothesis Hj , j = 
1, 噎 ,m, where m is the number of motifs after coarse 
filtering. I is the indicator function, which is equal to 1 if 
the condition is satisfied and 0 otherwise. 

Given that the null hypothesis is true, the  value is 
the probability of getting a statistical testing value as 
extreme as the observed instance. We selected motifs 
with  value smaller than 0.05 to indicate statistical 
significance. This fine filtering step reduces the size of 
candidate motifs by removing motifs occurring as 
random incidents. The whole procedure of motif search 
and candidate motif frequency matrix calculation is 
illustrated in Figure 3. 

In this study, we constrained the length of SNP­ 
containing motifs from 6 to 11 bp, but the range could be 
easily extended. However, a longer length is  accompa鄄  
nied with more special sequences, which are sparse in a 
co­expressed gene group. In our study, with a group of 
10 genes, the length of candidate motifs ranged from 6 
to 10, and motifs with length of 11 bp were filtered 
mainly in the coarse thresholding step due to the sparsity 
of the frequency matrix. Increasing the length of motifs 
would require enlarging the number of  co­expressed 
genes in a cluster. This could only be achieved by 
relaxing the rule of differentially expressed gene 

selection or loosening the similarity measurement in the 
gene cluster group, both of which would falsely detect 
genes and result in false positives during SNP­containing 
motif identification. 

Association model with regression 

With gene expression data and averaged motif 
frequency matrix of corresponding genes, it is natural to 
fit a regression model to discover the latent relationship 
between motifs as variables and expression as 
response. Regression is capable of causal relationship 
modeling, prediction, and inference without knowledge of 
the underlying procedures that produced the data. In our 
studies, we aimed to model the causal relationship and 
more specifically, the regulatory mechanism between 
gene expression and SNP­containing motifs generated 
from SNP array. Thus, the regression model can be 
presented as follows: 

(2) 

For simplicity, we present this formula with only one 
example, but the model is easily extended to multiple 
samples. In the simplified formula, y i is the expression 
value of i­th gene in the co­expressed gene cluster; X ij is 
appearance frequency of j­th SNP­containing motif in i­th 
gene; aj is the weight or regression coefficient of j­th 
motif; and b i is incorporated to perform as other possible 
regulatory mechanisms or other TFBS effects not 

Figure 3. Details are provided 
in the Method section. 
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included in candidate set. 
As discussed above, SNP­containing motifs are short 

sequences with a certain length, which, in our studies, 
ranged from 6 to 11 bp and contained SNPs at least at 
one of its location genes. In other words, it is 
unnecessary or impossible that all the motif location 
genes contain the same SNP. For example, for a certain 
motif, only one of its location genes contains the SNP 
whereas other locations are sequences without SNPs on 
shared pattern. Another case is that the SNP enables 
the motif to appear in the gene that may not contain the 
motif unless specific allele expression occurs at the SNP 
position. This indicates that the gene variations at SNPs 
may introduce a motif that is not originally contained in 
the gene as a regulatory factor. This is illustrated by 
Figure 2. Another aspect of the mutation events is that 
the gene variation at SNPs increases the frequency of a 
certain motif and leads to changes in gene expression. 
Under this circumstance, if the variation in frequency 
across the co­expressed gene cluster is consistent with 
the variation in gene expression, this motif is highly 
probable to be a regulatory factor. Therefore, it is 
unnecessary for the same SNP­containing motif to have 
that exact SNP at all its located genes across the 
co­expressed gene cluster. 

Motif selection and ranking 

With the previously described regression model, any 
fitting process that generates coefficients can be 
adopted, such as ordinary least square error base 
method, ridge regression with a L2 norm penalization and 
LASSO with a L 1 norm term [25] . In addition to residual sum 
of square errors, prediction accuracy and interpretation 
capability of the model are also key elements to evaluate 
a fitting procedure. Unfortunately, ordinary least square 
method suffers both prediction accuracy and interpre鄄  
tation ability problems. Ridge regression fails to achieve 
a parsimonious set of predictors, which fails to provide 
good interpretation of model, though it reaches higher 
prediction accuracy than ordinary least square 
regression. LASSO, in which L 1 norm penalization term 
helps correct both issues, however, suffers other 
problems: 1) it fails in the  >  case in which the number 
of features  is larger than that of samples  , and 2) it 
does not consider the grouping effect and is vulnerable 
to select only a single feature from a highly correlated 
desired feature group. 

Instead of these procedures, a surrogate strategy is 
LARS­EN (least angle regression via elastic net  [24] ), 
which performs continuous shrinkage and automatic 
variable selection simultaneously. LARS­EN is a compro鄄  
mise between ridge regression and LASSO. It includes 
L2 norm penalization from ridge regression to shrink 

coefficients of correlated features towards each other by 
allowing them to borrow power from each other [24] , and it 
also includes L1 norm penalization from LASSO to 
guarantee the sparsity. It handles the  >  case well. In 
our case, we had a much larger number of SNP­ 
containing motif candidates than co­expressed genes of 
different samples. In addition, the grouping effect 
enables the algorithm to select all desired variables from 
a highly correlated feature group. Moreover, the 
magnitudes of regression coefficients are employed as 
the criteria to rank the SNPs in both models. 

The elastic net coefficient is a proven scaled version 
of the na觙  ve elastic net [24] . The na觙  ve elastic net estimator 
is defined as: 

(3) 

where 

(4) 

姿  1 and 姿  2  are fixed positive weights that put different 
emphasis on L 1 norm and L2 norm penalization to 
balance the  sparsity and the grouping effect. Thus, the 
method possesses the desired properties of both LASSO 
and ridge regression. 

Solving 覾 in equation 3 is equivalent to optimize the 
following problem: 

(5) 

Where and 
is the elastic net penalty. Least angle regression (LARS) 
was employed to resolve elastic net solution path to 
efficiently find the estimators. The relationship between 
elastic net estimator and na觙  ve elastic net estimator is 

(6) 

To make the computation feasible and efficient, the 
response  , which is a vector of gene expressions in our 
case, is centered. The features are standardized as 
follows: 

for j =1, 2,噎袁 M (7) 
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are gene expressions of sample p . 
is the feature matrixthat provides frequency information for 

each motif, where 
is the feature vector that describes the frequency 

of a certai n motif of co­expressed genes across all 

samples. is the frequency of motif j appearing in the 
gene i in the p­th sample. 

The LARS­EN algorithm finds solutions with any 
user­defined sparsity, which is equal to the desired size 
of the selected features. In our study, prior information 
on the size of the selected motif set was unknown. 
Therefore, cross validation was employed to estimate the 
optimal size of selected motifs. For each fixed 姿  2 , the 
tuning parameter s is chosen by 10­fold cross validation 
to derive the smallest cross validation error. s is 

standardized bound represented as , 

which is an indication of the fraction of the L 1 norm. is 

the ordinary least square regression coefficient. The size 
of optimal subset of motifs is calculated by multiplying 
with the number of total steps of optimization. 

The LARS­EN method identifies 覾 sparse solution 
with good prediction accuracy, encourages the grouping 
effect, and introduces a clear interpretation of the model. 
Non­zero elements in 覾 indicate the effect of features, 
which is the regulatory effect in our case, and the 
magnitude denotes the significance or how strong the 
motif regulates the gene expression. 

Motif combination 

Because a sliding window was used to build the 
candidate set of motifs of different lengths, overlaps may 
exist between motifs selected by LARS­EN. Similar to 
secondary structure prediction of protein sequences [31] , a 
level­wise motif combination strategy was employed here 
to remove highly overlapped motifs. In the LARS­EN 
selected motif candidate set, if a motif M=c 1 , c 2 , 噎 , c n 

and both of its sub­patterns m1 =c 1 , 噎 , c nI1 and m2 =c 2 , 噎 , 
c n are included in the same set, we discarded the two 
shorter sub­patterns and kept the longer motif. The 
sub­patterns mi,i=1, 2 and motif M were kept if only one 
subsequence appeared at any end of the motifs. Then, 
motif length grew further until it reached the upper length 
limit. 

Results 

Selected gene cluster 

Recent studies reported that abnormal behaviors (for 
example, copy number gain or loss) on sections of 

chromosomes 5, 7, and 8 are highly probable as disease 
causal factors for MDS. We focused on chromosome 7 
and selected one co­expressed gene cluster. There were 
54,675 probes representing genes with duplications on 
gene expression array across the genome. We selected 
397 probes that satisfied both differential expression, 
with  value less than 0.05, and covariance, with copy 
number variation on chromosome 7. Then, 98 probes 
were selected in one cluster according to their 
expression similarities, with a cut­off value at 0.83 for the 
hierarchical cluster. To reveal the regulatory effect of 
SNPs, prerequisites of the number of related SNPs 
located in a gene爷s expanded gene region were used to 
filter some probes, and the threshold of SNP quantity we 
used here was 6. Then, 10 genes represented by 22 
probes on the gene expression array were identified, and 
the expression values of duplicated probes of the same 
gene were averaged. The brief functional description, 
length, and number of related SNP for each gene are 
listed in Table 1. 

Figure 4 shows every selected gene, their expanded 
gene region and related SNPs, and their relative 
positions, as well as box plots of copy number around 
each SNP in 7 disease samples. Copy number gain was 
only observed at gene  , whereas other genes 
consistently suffered copy number loss in disease 
samples. The copy number change events on these 
differentially expressed genes indicate there are some 
biological insights, such as different regulatory effects 
from control cases, which can help biologists further 
explain the mechanism of MDS. 

Selected SNP鄄  containing motifs 

Sliding window generated 8,340 unique SNP­ 
containing motif candidates on twin expanded gene 
regions of different samples with length ranging from 6 to 
11 bp. Then candidates that did not widely spread were 
discarded. The motifs that appeared more than twice in 
each sample were reserved for further use. After the 
coarse thresholding step, statistical testing with random 
permutation sequences selected 2,159 candidates with 
value less than 0.05. At this step, the number of motifs 
was highly reduced, compared with the original number, 
which lessened the computational cost. 

With a parsimonious set of candidate motifs, we 
predicted the causal relationship between the motif 
frequency and gene expression profiles with LARS­EN. 
The parameter setting in LARS­EN followed the standard 
strategy in the study by Zou  . [24] . In our case, we set 
姿  2  to 1,000 because of the large number of motifs 
(features) and implemented cross validation to identify 
the best size of  the optimal subset. Finally, 30 motifs 
were selected and are listed in Table 2. The length of 
these selected motifs  ranges from 6 to 10 bp. Motifs 
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Gene name Description Length Number of SNPs 

EIF2AK1 
MCA2_HUMAN 
CBX3 
TES 
CALU 
HBP1 
MDH2 
WNT2 
PIK3CG 

Eukaryotic translation initiation factor 2鄄  alpha kinase 1 
Multisynthetase complex auxiliary component p38 
Chromobox protein homolog 3 
Testin (TESS) 
Calumenin precursor 
High mobility group (HMG) box鄄  containing protein 1 
Malate dehydrogenase, mitochondrial precursor 
Protein Wnt鄄  2 precursor 
Phosphatidylinositol鄄  4,5鄄  bisphosphate 3鄄  kinase catalytic subunit 
gamma isoform 

36,906 
14,583 
12,195 
48,255 
32,092 
33,514 
18,536 
46,062 
41,642 

7 
6 
6

12 
7 
7 
7 
9 
6 

TTTCAC and TTCACT  were discarded according to 
level­wise motif combination rules because high­level 
motif TTTCACT appears in the selected set. 

In Table 2, we listed regression coefficients, 
distributions (the number of different genes where motifs 
locate) and  values for each motif based on the 
random permutation, as well as the binary vector 
denoting whether a certain motif could be traced in the 
TRANSFAC database on its location genes. The rank of 
the 28 selected motifs according regression coefficients 
is listed in the last column of Table 2. 

We used the motif GTGCCAC, which was 
distributed in all genes in the selected cluster, as an 

example (Figure 5). This motif was introduced to the set 
by SNP rs2345060, whose allele polymorphisms are C 
and T at the end of the motif GTGCCAC. This motif was 
found in samples S3, S4, S7, S9, S11, S13, and S14, 
and 4 of its 6 appearances are in MDS cases. In all 
other samples, the SNP positions are T and the 
sequence is regarded as GTGCCAT. Thus, the SNP 
variation introduces the SNP­containing motif that is 
present in more than half of the disease samples. 
Therefore, this type of motif may introduce the regulatory 
effect through TFBS to disease  samples. We drew the 
box plot in Figure 5 to illustrate how this motif distributes 
in 10 genes across the 14  sample set. The motif was 

Figure 4. The box plots describe copy numbers of 
each SNP across 7 disease samples. 
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SNP, single nucleotide polymorphism. 
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Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 

Motifs a 

AATGGG 
CATTGC 
TCAGGG 
CACTTT 
ATTTCTC 
TTTCACT 
TTCACTT 
GTGCCAC 
CTGTGTCA 
TTTAGAAA 
CTGTCACT 
GAGTTCCA 
TTTTGGAG 
AGGAAAAT 
TTACTGAG 
GGCAGATT 
CTTAAAAT 
CATGTGAA 
TGTGCCAC 
AAAAAGAA 
CCCTGCAGA 
TTTTGGAGT 
CTTGCTGCC 
AGGCAGATT 
CAGGTTCAC 
CTCATTTGAC 
ATCTCCTGCC 
ATTTCATTTT 

Weight 

1.040,5 
1.128,8 
2.064,7 
2.460,3 
2.172,1 
2.348,5 
2.475,0 
1.430,1 
2.615,9 
0.948,3 
1.693,5 
4.330,4 
1.742,8 
0.116,7 
2.934,2 
0.111,7 
4.426,2 
2.382,9 
1.730,1 
1.379,6 
2.002,4 
1.273,4 
2.549,5 
3.328,2 
0.097,3 
2.440,1 
0.058,5 
0.716,2 

Distribution 

10
10
10
10
10
10
10
10 

8
10 

8 
9 
9

10 
9 
9

10
10 

9
10 

3 
4 
5 
6 
4 
3 
2 
6 

P value 

约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.02 
约 0.01 
约 0.02 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.01 
约 0.04 
约 0.01 
约 0.01 
约 0.03 
约 0.03 
约 0.01 
约 0.01 
约 0.02 
约 0.01 
约 0.02 
约 0.01 

TRANSFAC 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
0 
0 

Rank 

22
21
13 
8

12
11 
7

18 
5

23
17 
2

15
25 
4

26 
1

10
16
19
14
20 
6 
3

27 
9

28
24 

a TTTCAC (weight, 0.875,0) and TTCACT (weight, 2.822,1) were filtered according the level鄄  wise combination rule, so no detailed information 
is provided except for the regression weights. Distribution indicates the number of genes the motif located among the 10 co鄄  expressed gene 
groups. Rank is defined by the absolute value of weight decreasingly. 

Figure 5. The index 
of MDS samples are marked in red. S stands for samples. 
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Motif GTGCCAC 

S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11  S12  S13  S14 
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consistently distributed in all samples in the gene region; 
however, due to the  introduction of a SNP, this 
SNP­containing motif varies in frequency in the upstream 
region, the most important region for genetic regularity. 
To conclude, based on the  location information of 
SNP­containing motifs, we  observed the situation that 
these motifs, especially the ones located in the promoter 
regions, were differentially  distributed in control and 
disease cases and are therefore highly likely to be TFBS 
or similar regulators of gene expression. 

Validation by TRANSFAC 

The TRANSFAC database comprises transcription 
factors, their experimentally verified binding sites, and 
the genes they regulate. TRANSFAC professional 
version 12.1 contains 11,080 factors as well as 141,595 
DNA fragments verified by ChIP­chip and related 
experiments that indicate the  binding events of 
transcription factors. It also provides transcriptional 
information for 32,296 genes. Among the 10 co­expressed 
genes in our experiments listed in Table 1, there was no 
available information for the genes  ,  , or 

because TRANSFAC failed to provide profiles in 
Therefore, the results presented herein 

describe the other 7 genes. 
TRANSFAC did not provide experiment­specified 

transcription factors for the genes selected in our 
experiment. Instead, the ChIP­chip validated DNA­ 
binding fragments were used to validate our findings for 
SNP­containing motifs that appeared in these fragments. 
We found that 21 of 28 motifs were located in ChIP­chip 
fragments at least twice. Each fragment is accompanied 
by a related transcription factor. The number of 
fragments and suggested transcription factors for each 
gene are listed in Table 3. All seven selected genes with 
TRANSFAC records shared transcription factor T00759, 
and 5 of 7 had T00781 in common. This observation 
further suggests a relationship between the co­expressed 

and co­regulated genes. 

Similarity measurement of co鄄  regulated genes 

According to TRANSFAC, regulated genes or binding 
fragments can be assigned to each transcription factor. 
Of the 4 transcription factors we traced back to the 
selected 21 motifs from the ChIP­chip fragments, 
T03828 has 20 human gene records, whereas T00759, 
shared by all of our selected genes, has 161 records. 
T03826 and T00781 do not have named gene records 
but have some short sequences. Therefore, we focused 
on T03828 and T00759. We considered the similarity 
between our selected 7 genes with TRANSFAC and 
regulated genes of transcription factors in terms of 
biological process, molecular function, and cellular 
component, 3 features used by Gene Ontology (GO) to 
describe genes. In GO, 2 genes or 2 groups of genes 
with either common functional or location information are 
considered similar in any of the 3  features. The 
web­based toolkit WebGestalt is a useful software that 
incorporates information from different publicly available 
databases and enables users to find desired patterns [32] . 
We applied this toolkit by comparing each gene 
regulated by T03828 and T00759  with the 7 selected 
genes and performing statistical tests to measure their 
similarities. We choose the  hypergeometric test [32]  to 
calculate the statistics and selected comparable pairs 
with  values less than 0.01. Details of  value 
calculation were previously provided by Zhang  . [32] . 
The results are listed in Tables 4 and 5. 

The first column in both tables lists genes or gene 
groups that share properties listed in the third columns, 
with the regulated genes recorded in the second column. 
Genes set off by semi­colon were analyzed in the same 
statistical test that showed similarities. In the second 
column, genes are separated by diagonal marks, and 
this denotes these genes share properties with candidate 
genes listed in column 1 based on independent test. In 

Gene name 

CBX3 
TES 
CALU 
HBP1 
MDH2 
PIK3CG 
NT5C3 

Number of fragments 

18 
6

21
17
12 
5 
6 

Transcription factor 

T00759, T03286, T03828 
T00759, T00781 
T00759, T00781 
T00759, T00781, T03286, T03828 
T00759, T00781, T03828 
T00759 
T00759, T00781, T03828 
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other words, the transcription factor co­regulated genes 
were tested one­by­one with the selected set and are 
presented together in the tables. 

As shown in both Tables 4 and 5,  was the 
most active gene in several similarity measurements. As 
a mitochondrial precursor, it is included in the process of 
metabolism and catabolism together with several other 
genes.  , which cooperates in chromosome organi鄄  

zation and chromatin locations, was also very  active in 
terms of similarity. Furthermore, we observed  that 
shares its mobility function in cell cycle and receptor 
pathways with genes regulated by T00759. A group of 4 
genes, 3 of which have not been mentioned, showed up 
with dozens of genes at cytoplasmic parts (Tables 4 and 
5, bottom). They were  all related to  intracellular 
activities. 

Selected gene (s) 

MDH2 

NT5C3;CALU 
PIK3CG;MDH2;NT5C3;CALU 

Similarities 

Oxidoreductase activity a 

Cofactor catabolism b 

Alcohol Metabolism b 

Mitochondrial part c 

Endoplasmic reticulum c 

Cytoplasmic part c 

P value of similarity 

1.19E-03 
8.95E-05 
5.99E-03 
7.72E-03 
3.80E-03 
4.62E-03 

TF鄄  regulated genes 

AKR1C4 
AMBP 
GK 
GK 
CYP2D6/CYP3A4/CYP8B1 
CYP27A1/CYP2D6 

Selected gene (s) 

MDH2 

NT5C3 

HBP1 

CALU 
CBX3 

NT5C3;CALU 

PIK3CG;MDH2; 
NT5C3;CALU 

Similarities 

Alcohol metabolism a 

Oxidoreductase activity b 

Glucose catabolism a 

Cellular carbohydrate metabolism a 

Mitochondrial part c 

Nucleotide metabolism a 

Phosphoric monoester hydrolase activity b 

Negative regulation of progression a through cell cycle a 

Cell cycle arrest a 

Wnt receptor signaling pathway a 

Golgi apparatus c 

Chromatin binding b 

Chromosome organization and biogenesis a 

Chromatin c 

Chromosomal part c 

Endoplasmic reticulum c 

Cytoplasmic part c 

P value of similarity 

5.99E-03 
1.19E-03 
3.39E-04 
8.63E-03 
7.72E-03 
3.34E-03 
6.76E-03 
2.65E-03 
4.35E-04 
1.09E-03 
8.73E-03 
5.20E-04 
8.47E-03 
3.21E-03 
8.09E-03 
3.80E-03 

4.62E-03 

TF鄄  regulated genes 

ABCA2/ DBH/LDLR/MAOA/MAOB/SOAT1 
HSD17B1/HSD3B1/HSD3B2 
GPD2 
HPSE 
HSD3B1/HSD3B2 
ADORA2A/DHFR 
INPPL1 
BRCA1/EGFR/VHL 
CDKN1B/CDKN1A/TP53 
CSNK1A1/GPD2 
F2R/PSEN1 
MPO/TOP2B 
PSEN1/PTTG1/TERT 
SOX3/TOP2B 
TERT 
CYP3A4/ CYP3A7/CYP4B1/MGST1 
/PSEN1/SOAT1/VHL 
ABCA2/BRCA1/CASP8/CTSL/ 
CYP27A1/DFFB/EGFR/GPD2/ 
HPSE/MAOA/ MAOB/MPO/ 
MYH7/TP53/SPHK1/TOP2B 

T03828 regulates 20 genes; 7 of 20 have similar properties to our gene set. a , molecular function; b , biological process; c , cellular component. 

T00759 regulates 161 genes; 38 of 161 have similar properties to our gene set. a , biological process; b , molecular function; c , cellular 
component. 
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Indirect verification of seven motifs 

We next identified shared properties of the genes 
regulated by T03828 and T00759 and the 7 selected 
genes. TRANSFAC could only directly verify 21 of 28 
candidate motifs with ChIP­chip fragments, leaving 7 
unconfirmed. However, we extended the scope wider by 
incorporating properties shared by co­regulated genes 
found in previous steps. Because co­regulated genes 
share genetic sequence compositions, we  followed the 
strategy illustrated in Figure 6 to verify these 7 motifs. If 
ChIP­chip fragments were unable to  directly verify motif 
, we started from its location genes (for example, gene 

A in Figure 6) where the SNP is  located. We first 
employed fragments to infer  experimentally verified 
transcription factors, as each  fragment in TRANSFAC is 
mapped to a transcription factor. Then, by previously 
described similar gene search  of the co­regulated gene 
suggested by transcription factor, we reduced the 
number of co­regulated genes with similar properties with 
a statistical test  value lower than a threshold. GO 
information was then incorporated. Then, we used 
TRANFAC to search motif  in the binding fragments or 
transcription factor database of the chosen co­regulated 
genes. If motif  is traced back to any of these genes, 
specifically binding fragments, we confirmed that motif 
was not random noise or false detection. 

We selected co­regulated genes with similar 
properties to  , on which 5 of 7 unverified motifs 
locate, and the four­gene group containing  , 

,  , and  , which has common 
candidate co­regulated genes. In addition, this group and 
the co­regulated genes with similar properties to 
have a number of genes in common (Tables 4 and 5). 
Thus, although  has a larger number of genes in 
common, we chose HBP1 and the four­gene group to 
search for binding fragments for the 7 unverified motifs. 
From these ChIP­chip sequences, we identified motifs 
19, 21, 22, 25, 26, and 28, whereas motif 27, which is 
short in number of location genes, could not be verified. 
Therefore, in 28 SNP­containing motifs among a group 
of 10 co­expressed genes, 21 motifs were verified 
directly with ChIP­chip fragments of their location genes, 
whereas 6 were confirmed with an indirect strategy using 
TRANSFAC. Only one motif, CAGGTTCAC, could not 
be validated with either method. Though this does not 
necessarily indicate false  detection, further experimental 
validation is still needed. 

Another example of myeloid data analysis 

To illustrate the effectiveness of the proposed 
method, we performed another analysis focusing on 
myeloid samples only要4 disease and 3 controls. 
Following the methodology described above, we 
identified a gene set with 21 genes, illustrated in Table 6. 
The candidate motifs and their statuses were validated 
using the TRANSFAC database (Table 7). Based on the 
results, we concluded that by using samples from the 
same tissue category, we obtained a larger co­expressed 
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AATGGG 
CATTGC 
GGACTC 
TCAGGG 
CACTTT 
TGCAGAT 
ATTTCTC 
TTTCACT 
TTCACTT 
GTGCCAC 
CTGTGTCA 
TTTAGAAA 
TATGTTAT 

Direct 
Direct 
Direct 
Direct 
Direct 
Indirect 
Direct 
Direct 
Direct 
Direct 
Direct 
Direct 
Indirect 

CTGTCACT 
GAGTTCCA 
TTTTGGAG 
ATAAATGA 
AGGAAAAT 
GGCAGATT 
CTTAAAAT 
CATGTGAA 
CTTGGATA 
TGTGCCAC 
TGGGAGCG 
AACACCTC 
GAGCAACC 

Direct 
Direct 
Direct 
Direct 
Direct 
Direct 
Direct 
Direct 
Indirect 
Indirect 
Direct 
Indirect 
indirect 

TTTTGGAGT 
AAAAAGAA 
CCCTGCAGA 
GGTATGTTG 
CTTGCTGCC 
AGGCAGATT 
CAGGTTCAC 
CATTTGGTA 
CTCATTTGAC 
ATCTCCTGCC 
ATTTCATTTT 
CCTGCCTCC 

Indirect 
Direct 
Indirect 
Direct 
Direct 
Direct 
Unverified 
Indirect 
Indirect 
Indirect 
Indirect 
Indirect 

Motif Status Motif Status Motif Status 

Status indicates whether the motif can be directly or indirectly verified by TRANSFAC, or unverified. 

MCA2_HUMAN 
PON1 
WNT2 

EIF2AK1 
CALU 
TAX1BP1 

PSCD3 
KLHL7 
PIK3CG 

SCIN 
HBP1 
NT5C3 

CBX3 
HIPK2 
JAZF1 

DNAH11 
MDH2 
CDK6 

TES 
OSBPL3 
BPGM 

Gene names 

gene set as well as a larger candidate TFBS set 
containing most of the genes and motifs derived using all 
samples. The results are very consistent except that the 
pure tissue type tended to include more genes in the 
co­expressed gene set. As  shown in Table 7, all motifs 
in Table 2 except for GAGTTCCA were identified in the 
myeloid example. The consistency between different 
data using the same methodology illustrates the 
capability of the proposed strategy. 

Discussion 

We would like to briefly discuss some methodology 
and result­related issues in the following paragraphs. 
The first topic is the application of the proposed 
association  method. As previously suggested, this 
strategy focuses on genetic variations in TFBS  and the 
regulatory events introduced by these genetic variations. 
Generally, SNP studies look for bases that have greater 
than a certain minor allele frequency (e.g., 10% of the 
population has the minor allele) to show that the SNP is 
informative. On the other hand, mutation can also occur 

as a one­off event at few individual sites. Therefore, 
SNPs can be considered a special case similar to 
genetic mutations that occur in a  population. Moreover, 
mutation­related disease rates are  far lower than the 
threshold that we normally use to define SNPs (10%); in 
mutation­related disease studies, the genetic variations 
are actually mutations. Thus, the proposed strategy 
could be applied to studies assuming genetic  variations, 
including mutations and SNPs, that are highly involved in 
the disease mechanism and progression. 

Many feature selection methods can be applied for 
motif selection, including support vector regression with 
recursive feature elimination, Bayesian methods, and 
piecewise linear networks. All of these approaches can 
be adopted in our strategy. Stepwise regression is the 
most popular form of feature selection in statistics. 
LASSO and its generalization, LARS­EN, use cross 
validation to identify the best size of subgroups obtained 
by these greedy algorithms. Considering the complexity 
of computation and time required for the previously 
mentioned feature selection and subset identification 
methods, as well as their unproven superiority to LARS­ 
EN in solving the motif selection problem, LARS­EN is a 
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very suitable strategy that is simple and  takes advantage 
of simultaneous shrinkage and model  selection to track 
the group effect. 

As mentioned above, one cluster comprised  of 10 
genes was investigated to obtain the motifs and derive 
conclusions. However, there were other clusters that fit 
the predefined conditions of SNP number and copy 
number variations. We used the selected genes as an 
example to illustrate our methodology, and all results 
were obtained based on this group. Identification of a 
complete list of candidate genes and TFBS motifs to 
select important biomarkers will  require additional 
studies. For example, the same strategy could be 
performed on all co­expressed clusters  genome­wide, 
followed by selection candidate biomarkers and 
validation experiments. In addition,  possible TFBS 
identified in this  work are based on a cluster of genes 
and concept of motifs. Therefore, they are shared events 
in a predefined set. In addition, regulatory candidates for 
individual  genes may be filtered in the motif selection 
process. Therefore, our strategies are not guaranteed to 
identify all the TFBS candidates, especially binding 
events for a single gene, because the system is 
designed based on co­expressed gene clusters. 

Conclusions 

The frequency and incidence of MDS are increasing 
in  the American population, which has an estimated 
annual incidence of about 3.5 to 10 per 100,000 in the 
general population and 12 to 50 per 100,000 in the 
elderly  population [33] . However, the prognosis of MDS 
patients has not shown any significant improvement over 
the last decade [34] . Therefore, the success of identifying 
biomarkers for accurate diagnosis and prognostic 
stratification of MDS will eventually lead to significant 
improvement in patient outcome. In this study, we 
associated SNP array data and gene expression array 
data to evaluate genes with genetic variations and 
mutations that may be the causal mechanism for 
different RNA expression profiles. In particular, we 
identified candidate motifs introduced by genetic 
variations and mutations in transcription binding  events, 
which could be considered biomarkers for the  disease, 

with additional information. To do this,  differentially 
expressed genes with copy number gain or  loss were 
selected and clustered. Then we concentrated on a 
co­expressed group and introduced SNP­containing 
motifs as possible TFBS. Based on the assumption that 
only a specific genetic variation would introduce certain 
biological events (e.g., binding of a special regulatory 
transcription factor may alter gene expression and drive 
disease pathogenesis), we identified 28 SNP­containing 
motifs in the selected  gene group. The TRANSFAC 
database, which is a collection of experimentally verified 
transcription factor and binding sequences, was used to 
verify the 28 motifs. ChIP­chip fragments verified 21 
motifs directly. Then we studied genes co­regulated by 
the same transcription factor as indicated by ChIP­chip 
fragments and their functional similarities. With co­ 
regulation and functional similarity, the selected gene 
group and the co­regulated gene group were employed 
to infer proofs for the 7 unverified motifs. This step 
verified 6 of 7 motifs that could not be directly located in 
TRANSFAC. These selected genes and candidate TFBS 
integrated copy number variation and genotyping 
information to complete a list of candidate biomarkers to 
be further tested experimentally. To summarize, the 
method we suggest serves as a linkage between two 
types of array profiles of the same disease model and 
identifies regulatory motifs introduced by genetic 
variations. Our results suggest SNP­containing motifs as 
TFBS may be another direction  for mechanistic study 
and biomarker discovery for MDS. 
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