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Simple Summary: Nowadays, many patients with chronic lymphocytic leukemia (CLL) are treated
with so-called novel agents, including BTK inhibitors, Bcl-2 inhibitors and PI3K inhibitors. As CLL
is a chronic disease, most patients will relapse on or after treatment with these drugs and various
mechanisms behind this resistance to novel agents have been described. In this review, we present
the current evidence on resistance to novel agents, discuss approaches to prevent its development
and provide guidance on the treatment of patients who have already acquired resistance.

Abstract: The approval of Bruton’s tyrosine kinase (BTK) inhibitors such as ibrutinib and acalabru-
tinib and the Bcl-2 inhibitor venetoclax have revolutionized the treatment of chronic lymphocytic
leukemia (CLL). While these novel agents alone or in combination induce long lasting and deep
remissions in most patients with CLL, their use may be associated with the development of clinical
resistance. In this review, we elucidate the genetic basis of acquired resistance to BTK and Bcl-2
inhibition and present evidence on resistance mechanisms that are not linked to single genomic alter-
ations affecting these target proteins. Strategies to prevent resistance to novel agents are discussed in
this review with a special focus on new combination therapies.
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1. Introduction

Over the last decade, the increasing knowledge on the pathogenesis and disease-
driving mechanisms of chronic lymphocytic leukemia (CLL) has finally translated into
a multitude of new treatment options for patients with CLL [1,2]. The approvals of the
Bruton’s tyrosine kinase (BTK) inhibitors ibrutinib and more recently acalabrutinib as well
as the B-cell lymphoma 2 (Bcl-2) antagonist venetoclax have transformed the treatment
paradigm in both treatment-naïve and relapsed/refractory CLL [3–12]. While venetoclax is
mostly used in combination with anti-CD20 antibodies for a fixed duration of one (firstline)
to two years (relapse setting), BTK inhibitors (BTKi) and PI3K inhibitors are exclusively
approved for continuous treatment and mainly prescribed as monotherapies.

Despite these new therapeutic options, CLL remains a chronic, incurable disease, with
allogeneic hematopoietic stem cell transplantation being the only treatment with confirmed
curative potential in a minority of patients [13–17]. Patients treated successfully with
kinase inhibitors or venetoclax eventually relapse/progress or have to stop treatment due
to intolerance. The mechanisms behind these clinical manifestations of resistance have
been studied, and are in part explained by genetic resistance mechanisms [18–20]. Besides
mutations in the drug-targeting proteins, several non-genetic mechanisms rendering CLL
cells resistant to treatment have been described [21–24]. In this article, we will review the
current state of research on resistance to novel agents, propose strategies to avoid resistance
and provide guidance on treating patients who relapse or progress on novel agents.
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2. Mechanisms of Resistance to BTK Inhibition

After proving exceptional activity in all analyzed patient groups, ibrutinib was ap-
proved for the treatment of CLL by the U.S. Food and Drug Administration (FDA) as
well as the European Medicines Agency (EMA) in the relapsed/refractory setting in 2014
and for frontline use in 2016 [3–5,9,12]. The second-generation BTKi acalabrutinib was
recently approved based on marked survival benefits in two randomized controlled trials
in treatment-naïve and relapsed/refractory CLL [10,25]. In the US a third BTKi, zanubruti-
nib, has been approved for the treatment of mantle cell lymphoma and is expected to be
approved for CLL soon [26].

While more recently, ibrutinib and acalabrutinib have been tested within fixed-
duration combinations, these combinations of novel agents are not yet approved. Hence,
their main use remains as monotherapy that is given until disease progression or unaccept-
able toxicity [27–30]. Adding to the financial burden and side effects associated with an
indefinite therapy, the continued exposure to BTKi seems to promote the acquisition of
resistance mutations.

2.1. Genetic Mechanisms of Resistance to BTK Inhibition

Ibrutinib, acalabrutinib and other covalent binding BTK inhibitors exhibit their main
inhibitory effect on the B-cell receptor (BCR) pathway by irreversibly binding to the C481
position of BTK and thereby inactivating the enzyme. Not surprisingly, the first discovered
mutations that conferred resistance to ibrutinib were mutations in the BTK gene at the
ibrutinib binding site [11]. Woyach and colleagues performed whole exome sequencing
on six patients progressing on ibrutinib and discovered that five of these patients had
acquired cysteine-to-serine mutations in BTK at position 481 (C481S) that were not present
before treatment with ibrutinib. Through the replacement of cysteine with serine, ibrutinib
can no longer bind to BTK irreversibly, leading to restored BCR signaling and clinical
resistance to ibrutinib [11]. Sequencing data from early trials have shown BTK mutations in
approximately 80% of patients progressing on ibrutinib [11,31–33]. By sequencing earlier
samples of those progressing patients, BTK-mutated clones were already detected at a
median of eight and nine months before clinical progression [31,33]. In a large cohort
comprising 373 patients treated with ibrutinib at the Ohio State University (OSU), BTK
mutations occurred in 23.3% at a median of 34 months following ibrutinib initiation [32].
More recently, an analysis of a French registry cohort has shown an incidence of BTK
mutations of 57% in patients who were still on ibrutinib, suggesting that a substantial
proportion of patients with CLL on ibrutinib monotherapy already harbors resistance-
conferring mutations when clinically still responding to treatment [34]. Importantly, the
acquisition of BTK mutations was clearly associated with the risk of subsequent clinical
progression in this study, confirming findings of Woyach et al. who had also studied this
phenomenon prospectively [33,34].

On rare occasions, other putatively resistance-conferring mutations have been reported
in BTK. Some also affect the ibrutinib binding site (e.g., C481F, C481Y) [32], while some
others affect BTK binding to B-cell linker protein (BLNK), enabling Phospholipase C gamma
2 (PLCy2) activation despite the presence of ibrutinib [35].

BTK mutations were often found to be accompanied by mutations in PLCG2, the gene
coding for PLCy2, the substrate downstream of BTK [11,31–34]. Most PLCG2 mutations
are gain-of-function mutations at the SH2/SH3 domain of the PLCG2 gene, leading to
autonomous BCR signaling despite BTK inhibition [32]. In two prospective studies, the
cumulative incidence of PLCG2 mutations was 13% after at least 3 years of ibrutinib
treatment and 10% after a median of 3 years after start of ibrutinib, respectively [32,34].
The majority of patients with PLCG2 mutations harbored concurrent BTK mutations that
occurred at similar time points in treatment (median 35 and 34 months after start of
ibrutinib, respectively). In the context of extensive sequencing efforts, other rare genetic
aberrations possibly conferring resistance to ibrutinib have been described, including
del(8p) and 2p gain with subsequent XPO1 overexpression [36,37].
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A recent study assessed the occurrence of BTK and PLCG2 mutations in a pooled
cohort of 388 patients without clinical progression from various ibrutinib trials by next-
generation sequencing [38]. With a median follow-up on treatment of 35 months (previously
untreated patients) and 36 months (relapsed/refractory patients), the analysis revealed
that the incidence of these resistance-conferring mutations strongly differed between
previously untreated patients and patients receiving ibrutinib in a relapsed/refractory
setting. Among patients on first-line ibrutinib, only 3% harbored BTK mutations while 30%
of the relapsed/refractory patients showed BTK mutations, consistent with differences in
clinical progression rates between these populations.

The pattern of genetically mediated resistance to acalabrutinib or other covalent
binding BTKis such as zanubrutinib is thought to be similar to ibrutinib due to their
formation of a covalent bond at the same binding site. The only study on resistance
mutations in CLL patients treated with acalabrutinib in the frontline as well as relapse
setting detected BTK C481 mutations in 69% of patients progressing on acalabrutinib, while
14% of these patients harbored concurrent subclonal PLCG2 mutations [39].

In patients with progressing CLL, BTK and PLCG2 mutations are often found in
clones/subclones of variable size with reported ranges between 0.2% and nearly 100% [11,31–34].
However, even small subclones might lead to clinical resistance, as studies in Walden-
ström’s macroglobulinemia (WM) and diffuse large B-cell lymphoma (DLBCL) suggest.
In vitro and in vivo assays in those entities showed that BTK-mutant cells protect wildtype
cells from ibrutinib-induced killing by releasing interleukin 6 (IL-6) and IL-10 and thereby
triggering strong prosurvival signaling including the JAK/STAT pathway, providing a
possible explanation for clinical resistance in patients with a BTK-mutated subclone [40].
Furthermore, the variant allele frequency (VAF) of BTK mutations in circulating CLL cells
appeared to be lower in patients with primarily nodal relapses indicating that genetic
aberrations detected in peripheral blood CLL cells are not necessarily representative for
clonal composition in other compartments [33].

2.2. Non-Genetic Mechanisms of Resistance to Ibrutinib

Despite comprehensive genetic analyses, a substantial part of clinical progressions
on ibrutinib are not explained by genetic alterations. Different non-genetic mechanisms of
adaptation to ibrutinib treatment have been described in CLL cells. The main mechanisms
are the maintenance of BCR signaling through alternative pathways and interactions of
CLL cells and the tumor microenvironment (TME).

Under the influence of BTK inhibition by targeted drugs, CLL cells and malignant
B-cells in other lymphoid neoplasms may adapt and compensate for the blocked BTK axis
by activating the PI3K/Akt/Erk pathway [21,22,41]. Functional analyses by Spina et al. in
cells from ibrutinib-treated patients revealed that the BCR pathway through Akt and Erk
was still inducible upon stimulation of the B-cell receptor in spite of effective inhibition of
the BTK/PLCy2 pathway [22]. The group also showed that in CLL cells persisting under
ibrutinib, genes involved in the MAPK/Erk pathway were upregulated [21]. Similarly,
CD40L stimulation of the non-canonical NF-kB pathway still led to nuclear translocation
of NF-kB while the canonical NF-kB pathway was inhibited by ibrutinib [22].

Ibrutinib treatment was shown to effectively reduce chemokines involved in homing,
retention and adhesion of CLL cells in their growth- and survival-supporting microenviron-
ment [42,43]. During BTK inhibition CLL cells may adapt their phenotype by upregulation
of homing/adhesion proteins and increased surface IgM [22,44,45]. Protective nurse-like
cells (NLC) in the TME also seem to play a role in rescuing CLL cells from ibrutinib-induced
killing, as ibrutinib does neither seem to fully antagonize the CLL cell-supporting func-
tion of NLCs nor to effectively mobilize them from their lymph node or bone marrow
niches [46–48]. It has also been hypothesized that extracellular vesicles of bone marrow
stromal cells play a role in the development of drug resistance by rescuing CLL cells from
apoptosis and thereby increasing chemoresistance to different drugs, including ibrutinib,
idelalisib, venetoclax and fludarabine [49].
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3. Mechanisms of Resistance to PI3K Inhibitors

Two inhibitors of PI3K, idelalisib and duvelisib, have been approved for the treatment of
relapsed/refractory CLL. Both drugs are used as continuous therapies and mostly applied in
heavily pretreated patients, hence progression on these agents was observed comparably early
with a median PFS of 16.4 months for idelalisib plus rituximab and 13.3 months for duvelisib
in the trials leading to approval [50,51]. In spite of various sequencing efforts and in contrast
to BTKi and venetoclax, no resistance-conferring mutations were so far identified in the
gene coding the target protein PI3K [52,53]. Several mechanisms like activating mutations in
MAPK pathway genes, an upregulation of Igf1r and an amplification or activating mutations of
PI3KCA have been associated with resistance to idelalisib [53–56]. However, in the absence of
comprehensive analyses, it remains largely unclear whether these mechanisms are responsible
for clinical resistance in a substantial proportion of patients.

4. Mechanisms of Venetoclax Resistance

B-cell lymphoma-2 (Bcl-2) is an anti-apoptotic protein and part of a family of proteins,
regulating B cells disposition to undergo apoptosis. In CLL, overexpression of Bcl-2
results in an inhibition of pro-apoptotic BH3-only proteins ensuring survival of the CLL
cell [57–59]. Venetoclax, a BH3 mimetic, has been developed to bind Bcl-2 at the same
site as BH3-only proteins to effectively inhibit Bcl-2 [60]. After clinical studies in CLL
have consistently shown impressive activity of venetoclax in all therapeutic settings as
monotherapy as well as in combinations, it has been approved for the treatment of patients
with previously untreated and relapsed/refractory CLL [7,8,27–30,61–66].

4.1. Mutations in BCL2 and Alterations in Cancer-Related Genes

The first discovered resistance-conferring mutation in the context of venetoclax treat-
ment affects the binding site of the target protein, Bcl-2. In a study of 15 patients progressing
on venetoclax, Blombery and colleagues could identify the BCL2 single-nucleotide variant
G101V in seven of 15 patients by next-generation sequencing (NGS) and digital-droplet
polymerase chain reaction (ddPCR) [20]. The variant was not detected in these patients
before initiation of venetoclax treatment and in a large group of venetoclax-unexposed
patients with CLL. Using earlier samples of the seven patients, the mutation could already
be found up to 25 months before clinical relapse [20]. In a functional analysis, Blombery
et al. could demonstrate that the ability of venetoclax to compete with BH3-only proteins
for binding of Bcl-2 was strongly impaired in the presence of the G101V mutation [20].
Structural analyses revealed the molecular basis of this reduction in affinity by reporting
the crystal structure of Bcl-2 in complex with venetoclax [67].

Recently, a more sensitive sequencing approach revealed the presence of numerous
other BCL2 mutations in patients with G101V variants who clinically progressed on vene-
toclax monotherapy administered as relapse treatment [68]. Ten out of 11 (91%) of the
analyzed patients harbored additional acquired BCL2 mutations in different CLL cells with
strongly varying cancer cell fractions [68]. Another report identified a putatively resistance-
conferring D103Y mutation in BCL2, also affecting the binding site of venetoclax [18].

Given the often subclonal nature of the identified mutations in clinically progressing
patients and the lack of BCL2 mutations in a large proportion of patients who relapse on
venetoclax, it is questionable if BCL2 mutations are the sole cause of clinical resistance to
venetoclax [69,70].

Another study of eight high-risk CLL patients carrying del(17p) and/or TP53 mu-
tations progressing on venetoclax revealed other recurrent aberrations with resistance-
conferring potential and described a rather heterogeneous clonal evolution in venetoclax-
treated CLL [19]. Whole exome sequencing in this cohort identified acquired homozygous
CDKN2A/B deletion in 3/8 (38%) and BTG1 missense mutations in 2/8 (25%) patients.
Single patients harbored mutations in BRAF, SF3B1, RB1, MLL3, BIRC3 and a high-level
focal amplification of CD274 (PD-L1) [19]. While further functional analyses showed no
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increased resistance in CDKN2A/B-mutated cells, the BRAF mutation was associated with
elevated Mcl-1 expression and showed resistance in transduced cell lines.

4.2. Changes in Cellular Metabolism/Bcl-2 Family Members

Resistance to venetoclax treatment has also been detected on a non-mutational basis
through upregulation of other anti-apoptotic Bcl-2 family members. As the sensitivity to
BH3 mimetics depends largely on the ratio of the expression of proapoptotic and anti-
apoptotic proteins, it was hypothesized early on that an increase in anti-apoptotic proteins
following venetoclax exposure would confer resistance to Bcl-2 inhibition [71,72]. Various
studies have demonstrated that venetoclax-associated overexpression of Mcl-1 and Bcl-XL
can confer resistance to the drug in vitro and in vivo [23,24,72–76]. Recently it has been pos-
tulated that among the Bcl-2 family members, Bcl-XL is more relevant for the development
of venetoclax resistance, as functional analyses have shown that proapoptotic proteins
preferably interact with Bcl-XL when both anti-apoptotic proteins are present [24]. Guièze
and colleagues have performed an extensive analysis including genome-scale screens in a
Bcl-2-driven lymphoma cell line and integrated expression profiling and identified Mcl-1
overexpression and BIM sequestration as a resistance-conferring mechanism to venetoclax
treatment [23]. The group has also shown that reprogramming of the biology of the mito-
chondrial outer membrane can result in altered expression of Bcl-2 family members and an
increase in oxidative phosphorylation (OXPHOS) activity, with both leading to resistance
to Bcl-2 inhibition [23].

The above outlined mechanisms of resistance and potential approaches to overcome
them are summarized in Figure 1.
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gamma 2, BLNK: B cell linker protein, PKCß: Protein kinase C beta, MALT1: Mucosa-associated lymphoid tissue lymphoma
translocation protein 1, Mcl-1: myeloid cell leukemia 1, BCL-XL: B-cell lymphoma-extra large, CDK9: Cyclin-dependent
kinase 9, Bcl-2: B-cell lymphoma 2, NFkB: Nuclear factor kappa B, FOXO: Forkhead transcription factors, NFAT: Nuclear
factor of activated T-cells, BsAb: Bispecific Antibody. This figure was produced by Moritz Fürstenau using servier medical
art (smart.servier.com, accessed on 1 February 2021).
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5. Strategies to Prevent Resistance to Novel Agents

The above cited studies have demonstrated that resistance to novel agents in CLL,
especially when caused by acquired BTK and BCL2 mutations, appears to occur rather late
in the course of treatment, though some reports show the detection of these mutations as
early events [31]. A recent analysis by Wiestner and colleagues showed that resistance
mutations in BTK or PLCG2 seem to appear later in patients receiving ibrutinib as first-line
therapy in comparison to patients in a relapsed/refractory situation [38]. There are various
promising strategies to possibly circumvent resistance to BTKi and Bcl-2 inhibitors.

1. In the pivotal studies, acquired BTK and BCL2 mutations could be detected months
and even years [11,21] before the patients fulfilled the iwCLL criteria [77] of clinical
disease progression. Following these observations, Woyach and colleagues initiated a
prospective study on 112 patients receiving ibrutinib monotherapy and performed
serial screening for known resistance mutations [33]. They demonstrated that mu-
tations in BTK and PLCG2 occurred early and clearly correlated with consequent
clinical disease progression and could thus be used as a biomarker for relapse and
an opportunity to adapt treatment [33]. Hence, a future strategy could be to monitor
resistance similarly to strategies in antiviral treatments as for example HIV.

2. Constant selection pressure by administering continuous monotherapies with BTKis
or Bcl-2 inhibitors might contribute to the acquisition of resistance mutations in a
significant number of patients. Hence, avoiding constant drug exposure and selection
of BTKi- and venetoclax-resistant clones by using time-limited treatment approaches
could be another option to circumvent the development of resistance.

3. Another promising strategy to circumvent the acquisition of resistance to novel agents
is the development of next generation inhibitors which bind non-covalently to the
target kinase and are therefore still active in CLL cells harboring the most common
resistance mutations.

The strategies of time-limited combination as well as the current status of the develop-
ment of non-covalent BTK inhibitors is discussed in the following segment.

5.1. Time-Limited Combination Treatments

Time-limited approaches include combinations of different drugs, as monotherapies
usually do not achieve sufficiently deep responses that would allow drug discontinua-
tion [78,79]. Combination therapies would possibly also reduce the selection of BTK- or
BCL2-mutated clones, as e.g., BTK C481S-mutated cells could still be eliminated by con-
comitant venetoclax or an anti-CD20 antibody while they would likely outgrow under
ibrutinib monotherapy. On the other hand, it has been shown that the combination of
venetoclax with a BTKi was able to reprogram apoptotic dependencies and venetoclax
resistance could be overcome in malignant B cells [24,80,81]. Also, resistance-mediating
upregulation of Bcl-2 under ibrutinib monotherapy can increase the sensitivity towards
venetoclax [82,83]. Another probable advantage of combination therapies would be the
lower minimal residual disease (MRD) these combination treatments could achieve. A
CLL cell count of <10−6 which was shown to be achieved by a substantial fraction of
patients receiving a time-limited combination of venetoclax and obinutuzumab correlates
to 10,000 times less measurable CLL burden compared to a MRD-positive (≥10−2) patient
under ibrutinib monotherapy [84]. It is conceivable that in a substantially smaller CLL
cell pool, resistance-conferring genetic alterations are less likely to develop. In addition,
avoiding resistance by limiting duration and combining different drugs would possibly
allow for re-exposure to the same drug combination. Data from studies evaluating the
most promising time-limited combination treatments is listed in Table 1, while currently
ongoing trials are shown in Table 2.
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Table 1. Selected results of studies on time-limited combination strategies.

Name/Identifier Experimental Treatment Arm Phase TN vs. R/R Efficacy (Experimental Treatment Arm) Reference

Venetoclax + anti-CD20 antibody

MURANO
NCT02005471 Venetoclax + rituximab 3 R/R Post-treatment uMRD rate: 62%

5-year PFS/ 5-year OS: 51.1%/82.1% Seymour et al. 2018 [8]

CLL14
NCT02242942 Venetoclax + obinutuzumab 3 TN Post-treatment uMRD: 75.5%

4-year PFS/ 4-year OS: 74%/85.3% Fischer et al. 2019 [7]

CLL2-BAG
NCT02401503

(Bendamustine) + venetoclax +
Obinutuzumab 2 TN, R/R Post-treatment uMRD: 87%

15-month PFS/ 15-month OS: 92%/95% Cramer et al. 2018 [63]

Venetoclax + BTK inhibitor

CAPTIVATE
NCT02910583 Venetoclax + ibrutinib 2 TN 1-year uMRD rate: 73%

30-month PFS: >95% Wierda et al. 2020 [85]

NCT02756897 Venetoclax + ibrutinib 2 TN 1-year uMRD rate: 61%
1-year PFS/1-yeary OS: 98%/99% Jain et al. 2019 [28]

CLARITY
2015-003422-14 Venetoclax + ibrutinib 2 TN 1-year uMRD rate: 53% Hillmen et al. 2019 [27]

VISION
NCT03226301 Venetoclax + ibrutinib 2 R/R 15-month uMRD rate: 55% Niemann et al. 2020 [29]

Triple combinations

NCT02427451 Venetoclax + ibrutinib +
obinutuzumab 2 TN, R/R Post-treatment uMRD rate TN: 67%

Post-treatment uMRD rate R/R: 50% Rogers et al. 2020 [30]

CLL2-GIVe
NCT02758665

Venetoclax + ibrutinib +
obinutuzumab 2 TN Post-treatment uMRD rate: 81% Huber et al. 2020 [86]

CLL-003
NCT02296918

Acalabrutinib + venetoclax +
obinutuzumab 1b TN, R/R 10-month uMRD rate: 71%

18-month PFS/18-month OS: 100%/100% Woyach et al. 2020 [87]

NCT03580928 Acalabrutinib + venetoclax +
obinutuzumab 2 TN 16-month uMRD rate: 84% Davids et al. 2020 [88]

NCT03824483 Zanubrutinib + venetoclax +
obinutuzumab 2 TN Overall uMRD rate: 92% Soumerai et al. 2020 [89]

TN: treatment-naïve, R/R: relapsed/refractory, uMRD: undetectable minimal residual disease (<10−4), PFS: progression-free survival, OS:
overall survival.

Table 2. Selected currently ongoing studies assessing time-limited combination approaches.

Name/Identifier Experimental Treatment Arm Phase TN vs. R/R

FLAIR
2013-001944-76 Venetoclax + ibrutinib 3 TN

GLOW
NCT03462719 Venetoclax + ibrutinib 3 TN

CLL13/GAIA
NCT02950051

Venetoclax + rituximab
Venetoclax + obinutuzumab
Venetoclax + ibrutinib + obinutuzumab

3 TN

CLL17
NCT04608318

Venetoclax + obinutuzumab
Venetoclax + ibrutinib 3 TN

ACE-CL-311
NCT03836261 Acalabrutinib + venetoclax ± obinutuzumab 3 TN

PreVent-ACaLL
NCT03868722 Venetoclax + acalabrutinib 2 TN

CLL2-BAAG
NCT03787264 (Bendamustine) + acalabrutinib + venetoclax + obinutuzumab 2 R/R

CLL2-BZAG
NCT04515238 (Bendamustine) + zanubrutinib + venetoclax + obinutuzumab 2 R/R

CLLRUmbrella1
NCT02968563 Tirabrutinib + idelalisib ± obinutuzumab 2 R/R

CLLRUmbrella2
NCT02983617 Tirabrutinib + entospletinib ± obinutuzumab 2 TN, R/R

COSMOS
NCT02639910 Tafasitamab + idelalisib/venetoclax 2 R/R

TN: treatment-naïve, R/R: relapsed/refractory.

Two time-limited combinations have recently been approved for the treatment of CLL.
After the MURANO study demonstrated significantly superior survival in relapsed/refractory
patients treated with 24 months of venetoclax and rituximab compared to bendamustine and
rituximab, the scheme was approved and widely adopted in the relapsed/refractory setting [8].
Follow-up publications showed durable responses in patients treated with venetoclax and
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rituximab with 57% of the patients still being progression-free 4 years after the start of
treatment [90]. No information on the occurrence of BCL2 mutations has been published so
far, but first data of patients being retreated with the same combination at progression suggest
that a large part of patients can respond to a re-exposure after time-limited venetoclax and
rituximab [91].

More recently, the one-year combination treatment of venetoclax and obinutuzumab
was approved after yielding impressive PFS advantages and high rates of undetectable
MRD (uMRD) when compared to chlorambucil and obinutuzumab [7,61]. The latest
update showed durable and deep responses and it could even be demonstrated that the
rate with which MRD increases after the end of treatment is lower in the venetoclax and
obinutuzumab arm, suggesting that not only the depth but also the quality of the response
is improved [84]. As only a few patients have progressed after this combination, retreatment
data is scarce, but it is conceivable that patients might respond again to venetoclax and
obinutuzumab, as they have only been exposed for one year. Clinical trials evaluating
retreatment after time-limited combinations are currently being planned.

There are currently numerous studies ongoing testing combination approaches in
all stages of clinical development [92]. The most promising combination therapies con-
sist of a BTKi in combination with venetoclax with or without the anti-CD20 antibody
obinutuzumab and are currently studied in phase 3 trials.

Jain and colleagues published an early interim analysis of their phase 2 trial of a
fixed-duration treatment with ibrutinib and venetoclax in treatment-naïve patients with
CLL [28]. Ibrutinib was given alone for 3 cycles (28 days each) followed by 24 cycles
of combined treatment. After one year of combination treatment, 88% of the evaluable
patients had a complete remission or complete remission with incomplete count recovery
and 61% of the evaluable patients showed uMRD (<10−4). However, due to the early
read-out, longer observation is required. An overview on selected other studies is shown
in Table 1. Results from the Phase 3 FLAIR (2013-001944-76) and GLOW (NCT03462719)
trials, testing this combination in a randomized setting, are eagerly awaited and expected
soon. The phase 3 CLL17 trial of the German CLL Study Group (GCLLSG) (NCT04608318)
is currently evaluating the approved options ibrutinib monotherapy and venetoclax plus
obinutuzumab against ibrutinib and venetoclax.

The shorter triple combination of ibrutinib, venetoclax and obinutuzumab was stud-
ied extensively as well. A phase 2 study of the combination in treatment-naïve and
relapsed/refractory patients with CLL was recently published and yielded high response
rates, high rates of uMRD and durable remissions [30]. The same combination was studied
in the phase 2 CLL2-GIVe trial, in which patients with detectable post-treatment MRD
could continue ibrutinib treatment until cycle 36. After 15 months of combined treatment,
33 of 41 patients (81%) achieved uMRD in the peripheral blood and 22 patients stopped
treatment at this time point due to uMRD and CR/CRi [86]. The same concept was tested
in the randomized phase 3 GAIA/CLL13 trial (NCT02950051) by the GCLLSG against
standard chemoimmunotherapy and other fixed-duration venetoclax combinations. The
study will also be the first to show results on the efficacy of the time-limited combinations
of venetoclax plus obinutuzumab in fit patients as well as venetoclax plus rituximab in the
first-line setting.

Similar combination treatments using acalabrutinib instead of ibrutinib have yielded
similarly promising results in phase 2 trials and are currently being evaluated against
standard chemoimmunotherapy in a large phase 3 trial (NCT03836261) [87,88].

The GCLLSG currently runs two trials evaluating time-limited, MRD-driven com-
bination treatments of venetoclax, obinutuzumab and acalabrutinib/zanubrutinib after
an optional debulking with bendamustine (NCT03787264, NCT04515238). The trials are
accompanied by an extensive real-time screening program for the occurrence of known
resistance mutations to BTKi and venetoclax as well as other potentially druggable targets
using ddPCR on circulating tumor DNA (ctDNA). In the induction phase, the screening is
performed monthly followed by every three months and in the case of occurring resistance



Cancers 2021, 13, 1336 9 of 18

mutations, the individual results are discussed by the sponsor and the treating physician.
The concept is currently too labor-intensive and costly to apply it in clinical practice, but it
will certainly provide valuable information on the relevance of known resistance mutations
and their early detection in time-limited combination approaches.

5.2. Non-Covalent BTK Inhibitors and BTK Degraders

Second-generation BTK inhibitors like acalabrutinib and zanubrutinib have demon-
strated their efficacy and safety in different B-cell malignancies and might be consid-
ered as an alternative to ibrutinib due to fewer off-target effects and different safety pro-
files [6,10,25,93,94]. However, they also bind irreversibly to BTK at the same binding site as
ibrutinib and are also not able to inhibit BTK in patients with the most common mutation
associated with ibrutinib resistance (BTK C481S).

Novel, third-generation, non-covalent BTK inhibitors have been designed to overcome
this mechanism of resistance by reversibly binding to BTK without interacting with C481.
Two of the new third-generation BTKi, vecabrutinib and fenebrutinib, have shown initial
proof of concept but do not seem to be further evaluated in CLL [95,96]. Two other third-
generation BTKi, ARQ 531 and LOXO-305, have yielded promising results in their early
clinical trials and were advanced to the next stage of clinical testing [97,98]. ARQ 531
is a non-covalent BTKi that binds to the ATP-binding region of BTK and has shown its
activity in a phase 1 study in relapsed/refractory CLL patients [98]. In a heavily pretreated
population with 22/26 (85%) patients harboring BTK C481S mutations, seven patients
achieved a partial response (PR). The phase 2 part of the study is currently ongoing. LOXO-
305 is a non-covalent BTKi that has demonstrated its efficacy in a phase 1/2 trial of patients
with relapsed/refractory CLL [97]. In the BRUIN study, of 65 patients with CLL/SLL
(58 BTKi-pretreated, 7 previously BTKi-naïve) who had a response assessment, 37 (57%)
either had a PR or PR with lymphocytosis and only one patient progressed so far. The
median follow-up of the study is still short and responses are thought to improve over
time, as seen in other BTK inhibitors.

Proteolysis targeting chimera (PROTAC) have been developed to target proteins that
are otherwise difficult to inhibit. They consist of a ligand directed against the target of
interest coupled with a ligand for binding of an E3 ubiquitin ligase and act by facilitating
degradation of the target by the proteasome [99]. Multiple BTK-targeting PROTACs were
developed and the first analysis specifically examining their activity in BTK C481S-mutated
CLL demonstrated activity of the construct MT-802, whereas ibrutinib expectedly showed
no relevant activity in mutant cells [100]. Another BTK-targeted PROTAC, L18I, was able
to induce degradation of BTK C481S-mutated cells as well as other BTK variants with
Thr, Gly, Trp or Ala substitutions at Cys [101]. Compared with ibrutinib, PROTACs also
seem to more selectively target BTK, whether this translates to less clinical toxicity will
however only be clear when PROTACs are tested in clinical trials. PROTACs against Bcl-XL
have also been reported and could be promising drugs for patients resistant to BTKi and
venetoclax [102]. Due to its Von Hippel-Lindau E3 ligase it is thought to not relevantly
degrade Bcl-XL in platelets, which might lead to less thrombocytopenia when compared to
previous Bcl-XL inhibitors like ABT263 and might therefore be more tolerable [102].

6. Treatment Options in Case of Clinical Resistance to Novel Agents

Time-limited combination treatments might effectively prevent the acquisition of
certain types of resistance, but currently indefinite monotherapies are widely used in the
frontline setting and it is important to know how to best treat patients with acquired
resistance to those drugs. The next section will focus on experimental treatment options
for patients relapsing or progressing on approved novel agents but begin with a short
overview of the current evidence on optimal sequencing of approved treatment options.
Approved and experimental cellular treatment options like allogeneic hematopoietic stem
cell transplant (allo HCT), Chimeric Antigen Receptor (CAR) T-cell and CAR NK-cell
therapies will not be discussed in this review.
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6.1. Optimal Sequencing of Approved Agents

Some patients may be resistant to either BTKi or venetoclax but have not yet been
exposed to the other and studies have recently demonstrated that both, venetoclax after
ibrutinib and BTKi after venetoclax are effective treatment options for patients who have
discontinued treatment with either of the drugs [103,104]. In earlier retrospective analyses
by Mato and colleagues, idelalisib appeared inferior to both, ibrutinib after venetoclax and
venetoclax after ibrutinib [105]. Given the overall superior efficacy data of venetoclax and
BTKi compared to PI3K inhibitors in CLL, a sequencing approach using venetoclax-based
regimens after progression on ibrutinib and BTKi after progression on venetoclax is the
current standard of care [92,106]. While patients discontinuing ibrutinib due to toxicities
can be treated with acalabrutinib as the efficacy and safety of this approach has recently
been demonstrated, this is not the case for patients who progress on ibrutinib and likely
harbor BTK mutations, as the binding site of ibrutinib and acalabrutinib is identical [107].

Despite the durable responses that can be achieved by optimally sequencing novel
agents, combinations might be even more promising. Recently, concurrent BTK, PLCG2
and BCL2 mutations were found in patients who were treated with continuous ibrutinib
monotherapy, had relapsed and then received continuous single-agent venetoclax [108].
Upon progression on venetoclax, four of eight evaluable patients with CLL-type progres-
sion harbored both BTKi-specific (BTK/PLCG2) and venetoclax-specific (BCL2) resistance
mutations, suggesting that sequencing of single agents might lead to a situation in a sub-
stantial fraction of patients in which re-exposure to either of the drugs would probably be
unsuccessful.

6.2. Other B-Cell Receptor Pathway-Targeting Approaches

PI3K inhibitors have been investigated as monotherapy (duvelisib) or in combination
(idelalisib plus rituximab, umbralisib plus ublituximab) [50,51,109,110]. However, no
specific information on their efficacy in patients progressing on ibrutinib and/or venetoclax
has been published so far, as patients who were pretreated with BTKi or venetoclax were
excluded from most of these studies.

In the setting of ibrutinib-resistant CLL mediated by PLCG2 mutations, in vitro anal-
yses have shown that inhibition of SYK and LYN, both upstream of BTK, can overcome
persistent survival signaling [111]. In a recent phase 2 study, the SYK inhibitor entosple-
tinib has produced responses in patients previously treated with B-cell receptor pathway
inhibitors, even in patients harboring BTK and PLCG2 mutations [112]. The overall re-
sponse rate was however low (33%) and the progression-free survival was short. In the
CLLRUmbrella2 study, a combination treatment of entospletinib and the BTK inhibitor
tirabrutinib with or without the addition of obinutuzumab was evaluated in patients with
relapsed/refractory CLL [113]. The overall response rates at week 25 were 100% for the dou-
ble combination and 90% for the triple combination, undetectable MRD was only achieved
by 10% of patients in the triple combination group [113]. Cerdulatinib, a SYK/JAK-STAT
inhibitor has shown activity specifically in ibrutinib-resistant CLL samples [114]. In the
first in human study, the drug showed promising activity against CLL, although not in
patients that had progressed on ibrutinib before starting cerdulatinib treatment [115].

The inhibition of other proteins within the B-cell receptor pathway has also produced
encouraging results. PKCβ inhibitors as well as MALT1 inhibitors have been shown to
effectively kill ibrutinib-resistant CLL cells in vitro, though clinical data on these drugs
have not been published yet [116,117].

6.3. Other Currently Investigated Non-Cellular Experimental Treatments

Based on the observations that venetoclax resistance appears to be mediated by an
upregulation of the anti-apoptotic proteins Mcl-1 and to a lesser extent Bcl-XL these proteins
are considered as promising targets to overcome resistance to Bcl-2 inhibition [23,24,73,75].
AMG-176, a direct Mcl-1 antagonist has shown activity in a preclinical setting by effectively
killing CLL cells while sparing normal blood cells and showing synergy with venetoclax;
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however, a phase 1 study of the drug had to be suspended due to safety concerns [118].
Another direct Mcl-1 inhibitor, AZD5991, is currently studied in a phase 1/2 trial after
demonstrating potent antitumor activity in vitro and in preclinical models of acute myeloid
leukemia (AML) and multiple myeloma [119]. CDK9 is the transcriptional regulator of
Mcl-1 expression and the CDK9 inhibitor voruciclib has indeed shown to effectively reduce
Mcl-1 expression in preclinical studies, a phase 1 study in patients with B-cell malignancies
or AML is currently recruiting [120,121]. The above mentioned Bcl-XL degrader might also
be a promising approach to target upregulation of anti-apoptotic proteins often observed
under venetoclax treatment [102].

Another therapeutic approach is targeted by cirmtuzumab, which is a humanized
monoclonal antibody targeting Receptor Tyrosine Kinase Like Orphan Receptor 1 (ROR1).
ROR1 is highly expressed on CLL cells but not on normal tissue and it acts as a receptor
for Wnt5a which was found to enhance CLL cell proliferation [122,123]. The antibody has
been evaluated in patients with relapsed/refractory CLL alone and in combination with
ibrutinib [122,124,125]. While single-agent cirmtuzumab has not produced any objective
responses, it led to decreasing lymphocyte counts in the majority of patients [122]. In
combination with ibrutinib it showed an overall response rate of 67%. Whether this was
solely attributable to the BTK inhibitor will be shown in a randomized phase 2 study of
ibrutinib vs. ibrutinib plus cirmtuzumab that is currently ongoing.

Another promising target on the B-cell surface is the receptor of the B-cell activat-
ing factor (BAFF-R), that appears to be constantly expressed throughout treatment with
ibrutinib in contrast to CD20 [126]. The anti-BAFF-R antibody VAY-736 was found to
enhance antibody-dependent cellular toxicity and block BAFF-mediated survival signaling
in preclinical models of CLL [126]. In a phase 1 trial, VAY-736 was added to ibrutinib
in patients with BTKi-specific resistance mutations (mainly BTK C481S) or insufficient
responses to ibrutinib [127]. Six of 15 (40%) patients, including patients with resistance
mutations, achieved complete remissions and three patients achieved undetectable MRD,
allowing for ibrutinib discontinuation [127].

Other drug candidates have yielded encouraging activity in preclinical studies but
have not yet been tested in clinical trials. For instance, a bromodomain and extra-terminal
(BET) protein inhibitor, GS-5829, has demonstrated preclinical activity in CLL [128]. It
effectively induced apoptosis and reduced proliferation in primary CLL cells while also
inhibiting growth of NLCs, suggesting activity against the CLL-supportive microenviron-
ment. Another BET inhibitor, JQ1, was shown to increase venetoclax-induced apoptotic
effects in vitro and exhibit anti-tumor activity in venetoclax-resistant CLL cell lines [129].
Preclinical activity was also shown for Histone Deacetylase 6 (HDAC6) inhibition in CLL
cell lines and euTCL1 transgenic mouse models, leading to the development and clini-
cal testing of the selective HDAC6 inhibitor ACY-1215 in relapsed/refractory lymphoid
malignancies [130,131].

Bispecific antibodies that are able to simultaneously bind antigens on effector and
malignant cells, have also shown antitumor activity in CLL. A novel bispecific antibody
targeting CD3 and CD19 induced potent T-cell mediated killing of CLL cells in vitro and
in a patient-derived xenograft mouse model, whereas the established anti-CD3/CD19
antibody blinatumomab failed to induce a response in the same mouse model [132]. The
bispecific anti-CD3 and anti-CD20 antibody epcoritamab has been shown to be highly
active in different lymphoma entities ex vivo and is currently being evaluated within a
clinical phase I trial for CLL patients with multiple relapses, as well as other lymphoma
entities [133].

7. Conclusions

A steadily increasing number of patients with CLL is treated with novel agents, partic-
ularly BTK inhibitors and venetoclax with or without anti-CD20 antibodies. These patients
will eventually relapse/progress and many of them will harbor resistance-conferring muta-
tions, mostly in the genes encoding the target proteins of these novel agents. New treatment
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options are emerging for patients with resistance mutations, most prominently and cur-
rently most promising third-generation BTK inhibitors that appear to be effective after
progression on ibrutinib and in patients with the most common acquired BTK mutations.
However, most of these new options have not been tested in phase 3 trials yet and patients
who sequentially progress on BTKi and venetoclax still pose a major challenge and are
currently mostly offered cellular therapies.

As BTK/PLCG2 and BCL2 mutations are frequently acquired rather late in the course
of mostly single-agent treatment, time-limited combination approaches aiming at unde-
tectable MRD might be an excellent way to avoid the development of resistance mutations.
In the absence of resistance-conferring mutations, patients could be successfully retreated
with the same regimen. Systematic genetic analyses of patients relapsing after time-limited
combinations and results of retreatment studies will provide answers to the question if time-
limited combination treatments are indeed superior or equal to continuous monotherapy.
The development of new treatment approaches in order to overcome resistance to targeted
agents will be one of the major challenges in CLL research in the chemotherapy-free era,
which has already begun.
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