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Abstract

Objective: The  goal  of  this  study  was  to  get  preliminary  insight  on  the  intra-tumor  heterogeneity  in  colitis-

associated cancer (CAC) and to reveal a potential evolutionary trajectory from ulcerative colitis (UC) to CAC at the

single-cell level.

Methods: Fresh  samples  of  tumor  tissues  and  adjacent  UC  tissues  from  a  CAC  patient  with  pT3N1M0  stage

cancer were examined by single-cell RNA sequencing (scRNA-seq). Data from The Cancer Genome Atlas (TCGA)

and The Human Protein Atlas were used to confirm the different expression levels in normal and tumor tissues and

to determine their relationships with patient prognosis.

Results: Ultimately, 4,777 single-cell transcriptomes (1,220 genes per cell) were examined, of which 2,250 (47%)

and  2,527  (53%)  originated  from  tumor  and  adjacent  UC  tissues,  respectively.  We  defined  the  composition  of

cancer-associated  stromal  cells  and  identified  six  cell  clusters,  including  myeloid,  T  and  B  cells,  fibroblasts,

endothelial  and  epithelial  cells.  Notable  pathways  and  transcription  factors  involved  in  these  cell  clusters  were

analyzed and described. Moreover, the precise cellular composition and developmental trajectory from UC to UC-

associated colon cancer were graphed, and it was predicted that CD74, CLCA1, and DPEP1 played a potential role in

disease progression.

Conclusions: scRNA-seq  technology  revealed  intra-tumor  cell  heterogeneity  in  UC-associated  colon  cancer,

and might provide a promising direction to identify novel potential therapeutic targets in the evolution from UC to

CAC.
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Introduction

Colorectal cancer (CRC) is the third most common type of
cancer  worldwide,  and  approximately  147,950  new  cases

and  53,200  deaths  were  estimated  in  2020  in  the  United
States.  CRC  has  been  the  second  most  common  cause  of
cancer death, even including 17,930 cases and 3,640 deaths
in  patients  under  50  years  of  age  (1).  In  China,  the
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incidence and mortality  of  CRC have been on the  rise  (2)
and  CRC  incurs  a  heavy  economic  burden  on  the  society
and  individuals  (3).  Moreover,  patients  with  colitis-
associated  cancer  (CAC),  a  particular  type  of  CRC  that
develops from inflammatory bowel diseases (IBDs), have an
earlier morbidity and a poorer prognosis (4). CAC is often
thought to arise from flat dysplasia with indistinct margins,
in  a  field  of  concomitant  inflammation,  scarring,  and
pseudopolyposis, rather than development from a polypoid
adenoma,  which  is  the  major  cause  of  sporadic  CRC  (5).
Furthermore, at the molecular level, the sequence of events
leading  to  CAC  is  distinct  from  that  of  sporadic  CRC.  A
distinct  set  of  genes  in  sporadic  CRC,  including TP53 (6),
APC (7), and KRAS (8) contains more mutations than genes
in  CACs.  However,  the  molecular  process  underlying
colorectal carcinogenesis in IBDs is still poorly understood.
Ulcerative  colitis  (UC),  the  most  common  form  of  IBD,
has  become  increasingly  prevalent  worldwide  (9).  In  a
previously  performed  meta-analysis,  quantitative  estimates
of  CAC risk  in  UC patients  have been reported to  be 2%
after 10 years, 8% after 20 years, and 18% after 30 years of
disease (10), thereby indicating the importance of intensive
studies.

In the past, research on tumor origin only targeted the
genetic and epigenetic changes of tumor cells. However,
over  the  last  20  years,  the  tumor  micro-environment
(TME) has been shown to play an equally important role in
cancer development. Intra-tumoral heterogeneity among
malignant and non-malignant cells, and their interactions
within  the  TME  are  critical  to  tumor  initiation,
progression, metastasis, and many other diverse aspects of
tumor biology (11). Accurate TME information not only
helps to gain a better understanding of the tumor origin
and development, but also contributes to the development
of novel therapeutic targets.

In previous studies, genomic and transcriptomic studies
have  revealed  driver  mutations,  aberrant  regulatory
programs, and disease subtypes for major human tumors
(12).  However,  these  studies  relied  on  profiling
technologies that measure tumors in bulk, and resulted in
data that represent an “average” of all cells present, thereby
l imit ing  their  abi l i ty  to  capture  intra-tumoral
heterogeneity. Single-cell sequencing provides an avenue to
explore genetic  and functional  heterogeneity at  cellular
resolution (13). Single-cell RNA sequencing (scRNA-seq)
combined  with  computational  methods  for  functional
clustering of cell types provides a less biased approach to

the understanding of cellular heterogeneity. ScRNA-seq
has been used in many studies involving human tumors
(14),  circulating  tumor  cells  (15),  and  patient-derived
xenografts (16), and has exhibited its unique predominance
in studies of tumor composition, genomic evolution, cancer
stem cells, tumor metastasis, and drug resistance. Here, we
used  scRNA-seq  to  generate  phylogenetic  trees  and
determined  the  evolutionary  process  of  UC-associated
colon cancer.  To our  knowledge,  this  is  the  first  study
depicting the cellular landscape of TME in UC-associated
colon cancer at the single-cell transcriptome level.

Materials and methods

Human specimen collection

Fresh  tumor  tissues  and  non-malignant  tissues  (adjacent
UC tissues)  were  taken  from a  43-year-old  female  patient
with UC-related colon adenocarcinoma who had a history
of  UC  for  eight  years.  The  postoperative  pathology  was
classified  as  pT3N1M0  (IIIB  stage),  which  was  defined  as
median  differentiation  ulcerative  adenocarcinoma  and
microsatellite  stability.  Written  informed  consent  was
provided  by  the  patient.  This  study  was  approved  by  the
Research  and  Ethical  Committee  of  Peking  University
People’s  Hospital  and  complied  with  all  relevant  ethical
regulations.  Following  surgical  resection,  a  tumor  tissue
sample and a non-malignant colon tissue sample, which was
at  least  5  cm away  from the  neoplastic  foci  were  obtained
(Supplementary Figure S1).

Protocols of scRNA-seq and data quality control

Protocols  for  the  preparation  of  single-cell  suspensions,
droplet-based  scRNA-seq,  and  other  methods  related  to
single-cell  analysis,  are  described  in Supplementary
Materials. Single  cells  were  filtered  for  further  analysis
based upon the criteria, cells that had either fewer than 201
unique  molecular  identifiers  (UMIs),  over  6,000  or  under
101 expressed genes,  or over 10% UMIs derived from the
mitochondrial genome were excluded. Gene expression (in
UMI)  was  normalized  for  scale  and  transformed  in  log2
(UMI+1).

Principle  component  analysis  (PCA)  and  t-distributed
stochastic neighbor embedding (tSNE)

PCA  was  used  to  summarize  the  resulting  variably
expressed  genes  to  reduce  the  dimensionality  of  this  data
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set. tSNE was applied to recalculate the sample distance by
the  conditional  probability  of  random  neighbor  fitting
based on Student’s t-distribution in high dimensional space,
which  was  further  conducted  for  the  above  principle
components  dimensionality  reduction  via  the  default
settings  of  the  Run  tSNE  function,  in  order  that  sample
presents  a  clearly  separated  cluster  in  a  low  dimensional
space.

Pathway and functional annotation analysis

Kyoto Encyclopedia  of  Genes  and Genomes  (KEGG) is  a
database  resource  for  understanding  high-level  functions
and effects of the biological system (http://www.genome.jp/
kegg/),  and  performed  via  DAVID  (https://david.ncifcrf.
gov/). Enriched  pathways  with  a  Q  value  ≤0.05  were
considered  significantly  different,  like  the  functional
annotation through the Gene Ontology database, for which
the  Fisher’s  exact  test  was  used  to  select  only  significant
categories  including  biological  process,  cellular
components,  and  molecular  function  classifications.  Q
value ≤0.05 was considered significantly different.

Gene  prognostic  performance  in  The  Cancer  Genome
Atlas (TCGA) data

To evaluate the role of cell type in a larger compendium of
tumors, we assessed their expression in bulk RNA-seq data
from the TCGA (http://www.cbioportal.org/). Specifically,
we  downloaded  preprocessed  gene  expression  data  as  well
as  clinical  data  for  primary  solid  tumors  and  normal  solid
tissues  for  colon  and  rectal  adenocarcinoma  using  the
Bioconductor  TCGA  biolinks  package  (http://www.
bioconductor.org/).  A  total  of  598  CRC  samples  were
included and divided into high- and low-expression groups
based  on  median  gene  expression  level.  Z  scores  from the
TCGA and the validation cohort were combined using the
weighted  Z  method.  For  Kaplan-Meier  analysis,  marker
gene expression categorization was optimized.

Immunohistochemical  (IHC)  staining  in  The  Human
Protein Atlas

To  confirm  the  expression  change  in  these  genes  along
with  disease  progression,  IHC  staining  was  used  for
assessment  of  the  different  expression  level  of  a  specific
gene between normal and tumor tissues from The Human
Protein Atlas (https://www.proteinatlas.org/).

Results

scRNA-seq  and  cell  typing  of  non-malignant  and  CAC
tissues

Fresh tumor and non-malignant tissues were taken from a
43-year-old  Chinese  female  patient  with  colon
adenocarcinoma  classified  as  pT3N1M0,  and  this  patient
had  been  diagnosed  with  UC  for  8  years.  Once  non-
malignant  and  CAC  tissues  were  obtained  (Supplementary
Figure  S1),  it  was  rapidly  digested  to  a  single-cell
suspension  and  analyzed  using  scRNA-seq  involving  a
single-tube  protocol  with  unique  transcript  counting
through  barcoding  with  UMIs  (Figure  1A).  To  obtain
detailed  cellular  genetic  information  on  this  tumor,  over
1.6  billion  post-normalization  reads  were  performed  for
subsequent analysis, which were obtained from 4,777 cells;
a  median  of  1,220  genes  per  cell  were  expressed.  Of  the
sample  cells,  2,250  (47%)  originated  from  tumor  tissues
and  2,527  (53%)  originated  from  non-malignant  tissues
(Figure  1B).  Following  gene  expression  normalization  for
read depth and mitochondrial read count, PCA was applied
to genes that  were variably expressed across  all  4,777 cells
(n=1,220 genes).  Subsequently,  cells  were  classified by cell
type  using  graph-based  clustering  on  the  informative
principle components (n=12). This approach identified cell
clusters  that,  through  marker  genes,  could  be  readily
assigned to known cell lineages. In addition to cancer cells,
myeloid  cells,  T cells,  B  cells,  fibroblasts,  endothelial  cells
and  epithelial  cells  were  identified  (Figure  1B,C,
Supplementary  Table  S1).  The  transcript  analysis  showed
that  these  cells  differed  considerably  in  transcriptional
activity,  either  between  different  cell  types  or  between
regions of the same type. This approach also distinguished
the sample origin and numbers between diverse subgroups
(Figure 1D).

Different  angiogenesis  pathways  in  tumor  and  non-
malignant endothelial cells

A  total  of  228  endothelial  cells  were  detected  and  four
clusters  were  revealed  (Figure  2A).  We  next  aimed  to
identify marker genes for each of these clusters and assign
them  to  known  endothelial  cell  types  (Figure  2B,
Supplementary  Table  S1).  This  revealed  three  sets  of
vascular  endothelial  cells:  two  were  mostly  tumor-derived
(clusters 1 and 3; ACKR1+ and CA4+, respectively) and one
was  mostly  non-malignant  tissue-derived  (cluster  2;
CYR61+). Another set of 25 lymphatic endothelial cells was
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Figure  1 scRNA-seq  and  cell  typing  of  non-malignant  and  CAC tissues.  (A)  Overview  of  the  study  design;  (B)  tSNE of  the  4,777  cells
profiled here, color-coded by (left to right) cell type, sample origin (tumor or non-malignant tissue) and transcripts counts detected in that
cell (log scale as defined in the inset); (C) Expression of marker genes for cell types defined above each panel. In addition to cancer cells, we
identified myeloid cells, T cells, B cells, fibroblasts, endothelial cells and epithelial cells; (D) For each of the cell subclusters (left to right):
fractions of original cells, and number of cells. scRNA-seq, single-cell RNA sequencing; CAC, colitis-associated cancer; tSNE, t-distributed
stochastic neighbor embedding; UMI, unique molecular identifier.
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Figure  2 Different  angiogenesis  pathways  in  tumor  and  non-malignant  endothelial  cells.  (A)  tSNE  plot  of  228  endothelial  cells  (top  to
bottom), color-coded by their associated cluster, the sample type of origin, and the number of transcripts detected in each cell; (B) tSNE
plot  color-coded  for  expression  (gray  to  red)  of  marker  genes,  (cluster  1, ACKR1+;  cluster  2, CYR61+;  cluster  3, CA4+ and  cluster  4,
LYVE1+);  (C)  Differences  in  pathway  activities  scored  per  cell  by  GSVA among the  vascular  clusters.  The  KRAS signaling  pathway  was
significantly down-regulated in cluster 2, but up-regulated in clusters 1 and 3, while the Myc target pathway showed contrasting results; (D)
Violin  plots  show  the  expression  distribution  of  selected  genes  involved  in  the  KRAS  and  Myc  pathways;  (E)  SCENIC  analysis  of  the
involved transcription factors involved among the clusters. Many transcription factors took part in attending angiogenesis, including FOXP1
and ETS1;  (F)  Exhibition  of  the  involved  pathways  (KRAS,  Myc)  and  transcription  factors  (FOXP1, ETS1)  and  their  target  genes,
corresponding  to  the  degree  of  expression.  tSNE,  t-distributed  stochastic  neighbor  embedding;  GSVA,  gene  set  variation  analysis;
SCENIC, single-cell regulatory network inference and clustering.
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found in the tumor sample (cluster 4; marker genes LYVE1+
and CCL21+),  however,  interestingly,  no distinct cluster of
lymphatic endothelial cells from the non-malignant sample
was identified.

Except  for  lymphocyte-composed  cluster  4,  we  used
hallmark  pathway  gene  signature  analysis  to  identify
different characteristics  among the other three clusters,
which were all from vascular endothelial cells (Figure 2C).
Interestingly, the KRAS signaling pathway was significantly
down-regulated in cluster 2, but up-regulated in clusters 1
and 3, whereas the Myc target pathway showed contrasting
results (Figure 2D). Detailed analysis has shown that the
two pathways were angiogenesis-related, however, different
tissue-derived clusters seemed to have diverse mechanisms.
The  role  of  KRAS  oncogenes  in  promoting  cellular
transformation  is  well  described,  and  KRAS modulates
tumor-stroma interactions and supports cancer invasiveness
by influencing the expression of metalloproteinases and
cytokines involved in angiogenesis (17). In our study, the
high  enrichment  of  KRAS pathway  observed  in  tumor
tissues was in accordance with the hyper-vascular nature of
tumors.

Next,  single-cell  regulatory  network  inference  and
clustering (SCENIC) analysis (18) was applied, in which
differentially  expressed  genes  were  scanned  for  over-
expressed  transcription  factor  binding  sites,  the  co-
expression of transcription factors and their putative target
genes  were  analyzed  (Figure  2E,F).  Many transcription
factors play a role in angiogenesis, including FOXP1 and
ETS1.  Of  note,  FOXP1  can  stimulate  angiogenesis  by
repressing semaphorin 5B in endothelial cells, and regulate
angiogenesis through the circ-SHKBP1/miR-544a/FOXP1
pathway (19). Furthermore, ETS1 enables angiogenesis in
several ways (20).

Cancer  associated fibroblasts  (CAFs)  play  various  roles  in
tumorigenesis

Fibroblasts have long been suggested to be a heterogeneous
population,  but  the  extent  of  heterogeneity  has  yet  to  be
explored.  Fibroblast  phenotypes  are  considered  highly
context-dependent and unstable in culture. In our samples,
857  fibroblasts  were  detected  (Figure  3A).  Sub-clustering
revealed  six  distinct  subtypes:  clusters  1  and  4  (cluster  1,
PCOLCE2+ and cluster 4, CXCL6+) were strongly enriched
in tumor tissues, while cluster 2 (PLAT+) was fully enriched
in non-malignant tissues. In addition, other clusters (cluster
3, ARHGDIB+;  cluster  5, MYH11+;  cluster  6, STMN2+),

however,  were  derived  from a  mixture  of  tumor  and  non-
malignant  tissues,  but  were  mostly  enriched  in  non-
malignant  tissues  (Figure  3B).  Remarkably,  fibroblasts
(CD34+  and KLF4+)  were  generally  enriched  in  tumor
tissues. The marker genes of CAFs, PCOLCE2 and CXCL6
were significantly up-regulated in tumor tissues by the bulk
RNA-seq data from TCGA data (Figure 3C).

The prime role of CAFs is promoting the proliferation
of cancer cells. Clusters 1 and 4 were enriched in Wnt and
KRAS  signaling,  and  are  closely  related  with  tumor
proliferation (21) (Figure 3D,E). SCENIC analysis showed
that  KLF12,  which  promotes  CRC  growth,  was  highly
expressed in cluster 1 (22) (Figure 3G, Supplementary Figure
S2).  Furthermore,  cluster  4  showed  high  expression  in
TGFβ and Wnt signaling, which are also related to cancer
invasion  and  metastasis  (23).  Another  remarkable
characteristic  of  CAFs  is  extracellular  matrix  (ECM)
remodeling, and collagens, important ECM components,
participate  in  tumor  progression  (24).  We  found  that
various collagens were highly expressed in fibroblasts, and
different  clusters  seemed  to  have  different  expression
inclinations (Figure 3F).  In addition to collagens,  many
other  ECM components,  such as  fibronectin,  periostin,
hyaluronan,  and  proteoglycans  (marker  genes  PRG4,
POSTN,  HAS2  and  FN1,  respectively)  were  also  up-
regulated by CAFs (25,26). The corresponding genes were
highly  expressed  in  CAFs  (Figure  3G).  CAFs  also
influenced  the  drug  resistance  of  tumors,  and  CXCR4
expression  predicted  patient  outcome  and  recurrence
patterns after hepatic resection for colorectal cancer with
liver metastases. CXCL12 can mediate drug resistance by
combining with CXCR4 that is expressed in cancer cells
(27).  In  addition,  FAP+  CAF  can  mediate  immune
suppression by CXCL12 (28).

CRC-related pathways are enriched in tumor-derived B cells

In our study, we detected 1,100 B lymphocyte cells. B cells
are  the  most  prevalent  type  of  stromal  cells  (Figure  4A).
Clustering  revealed  five  clusters,  including  two  clusters
(clusters  4  and  5; REG3A+  and MS4A1+,  respectively)  that
were  mostly  tumor  enriched,  whereas  the  other  three
clusters (cluster 1, IGHM+; cluster 2, IGLL5+ and cluster 3,
IGHGP+,  respectively)  were  composed  of  both  tumor  and
non-malignant  cells  (Figure  4B).  Moreover,  clusters  1,  2
and 3 showed plasma properties and were not grouped into
distinct  clusters.  Although  all  cells  expressed
immunoglobulin  A,  tumor-derived  cells  showed  higher
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Figure 3 CAF plays various roles in tumorigenesis. (A) tSNE plot of 857 fibroblast cells (top to bottom), color-coded by their associated
cluster, the sample type of origin, and the number of transcripts detected in each cell; (B) tSNE plot color-coded for expression (gray to red)
of  marker  genes  (cluster  1, PCOLCE2+;  cluster  2, PLAT+;  cluster  3, ARHGDIB+;  cluster  4, CXCL6+;  cluster  5, MYH11+;  cluster  6;
STMN2+); (C) CAFs marker genes, PCOLCE2 and CXCL6 were confirmed to be significantly up-regulated in tumor tissues, as confirmed in
bulk RNA-seq data from TCGA; (D) Differences in pathway activities scored per cell by GSVA among the clusters. Clusters 1 and 4 were
enriched  in  Wnt  and  KRAS  signaling,  which  have  a  close  relationship  with  tumor  proliferation;  (E)  Violin  plots  show  the  expression
distribution of selected genes involved in Wnt and KRAS pathways; (F) Different fibroblast clusters expressed different kinds of collagens;
(G) The involved marker genes (FN1, HAS2, CXCL12, POSTN, PRG4), and transcription factor KLF12 and its target genes, corresponding to
the  degree  of  expression.  tSNE,  t-distributed  stochastic  neighbor  embedding;  CAF,  cancer  associated  fibroblast;  TCGA,  The  Cancer
Genome Atlas; GSVA, gene set variation analysis; COAD, colon adenocarcinoma.
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Figure 4 CRC-related pathways are enriched in tumor-derived B cells. (A) tSNE plot of 1,100 B cells (top to bottom), color-coded by their
associated cluster, the sample type of origin, and the number of transcripts detected in each cell; (B) tSNE plot color-coded for expression
(gray to red)  of  marker  genes  (cluster  1, IGHM+;  cluster  2, IGLL5+;  cluster  3, IGHGP+;  cluster  4, REG3A+ and cluster  5, MS4A1+);  (C)
Exhibition  of  the  marker  genes  (REG3A, PRSS2, ITLN2, HLA-DRB1, MS4A1, LTB)  corresponding  to  the  degree  of  expression;  (D)
Differences  in  pathway  activities  scored  per  cell  by  GSVA  among  the  clusters.  Pathway  analyses  showed  that  peroxisome  signaling  was
highly  expressed  in  tumor  cells.  CRC,  colorectal  cancer;  tSNE,  t-distributed  stochastic  neighbor  embedding;  GSVA,  gene  set  variation
analysis.
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levels of IgM expression, while non-malignant-derived cells
showed  a  higher  IgA  expression.  Cluster  4  significantly
expressed  many  innate  immunity-related  genes,  such  as
REG3A, PRSS2, ITLN2 and LYZ,  but  had  a  negative  CD5
expression.  Therefore,  these  cells  were  identified  as  B1
cell-like  cells.  Cluster  5  showed  a  high  expression  of
MS4A1, LTB and HLA-DRB1,  which were characteristics  of
follicular B cells (Figure 4C).

Pathway analyses showed that peroxisome signaling was
highly  expressed  in  tumor  cells  (Figure  4D).  Moreover,
peroxisome signaling was closely related to CRC risk (29)
and was positively correlated with lymph node metastasis
and poor prognosis of CRC (30). The results also showed
that the oxidative phosphorylation pathway was enriched in
non-malignant-derived cells, which might be attributed to
the impact of colitis. SCENIC analysis failed to identify
differences  between  non-malignant  tissue-derived  and
tumor-derived plasma cells (Supplementary Figure S3). In
addition,  no  differences  were  observed  in  transcript
numbers  in  tumor-associated  vs.  non-malignant  tissue-
associated plasma cells, however, the plasma cells showed a
higher transcription trend than clusters 4 and 5 (Figure 4A).

Different  derived  myeloid  cells  show  diverse  expressing
properties

The  362  myeloid  cells  clustered  into  four  subsets,  which
were  not  completely  separated  (Figure  5A).  One  cluster
corresponded to  macrophages  (cluster  1, CAPG+),  another
cluster to monocytes (cluster 2, CXCL2+). There was also a
dendritic  cell  cluster  (cluster  3, IDO1+)  and  a  granulocyte
cluster (cluster 4, CCL20+) (Figure 5B). Dendritic cells and
granulocytes were typically more abundant in tumors than
in  non-malignant  tissues.  In  contrast,  macrophages  were
more  abundant  in  non-malignant  tissues.  In  both  tissues,
monocytes were detected at similar numbers.

The  cell  numbers  of  macrophages  and  monocytes
displayed extensive heterogeneity in tumors compared with
those in non-malignant tissues, however, SCENIC analysis
did not show significance among different derived cells
(Supplementary Figure S4). Furthermore, the pathways of
the differently derived cells were analyzed and revealed a
tumor-associated  increase  in  tumorigenesis,  cell
proliferation, and low-oxygen metabolism pathways (that
is,  pathways  associated  with  tumor  necrosis  factor  α
signaling, KRAS signaling and hypoxia). Non-malignant
tissue-derived  preferred  oxidative  phosphorylation  and
biomass production pathways (pathways associated with

phosphorylation and protein secretion) (Figure 5C).

Several  typical  species  of  T  cells  identified  in  multiple
analysis

With  318  cells  detected,  T  cells  were  mainly  divided  into
three clusters, and were designated as naive T cells (cluster
1, YPEL5+),  cytotoxic  T  cells  (cluster  2, GZMA+),  and
natural  killer  T  cells  (cluster  3, PIGR+)  (Figure  6A,B).  In
cluster  1,  the  significantly  expressed  genes,  including
YPEL5 and GPR18, were closely related to proliferation and
cell differentiation (31). Pathway analysis showed that many
proliferation- and differentiation-related pathways,  such as
Myc  targets,  G2M  checkpoints  and  E2F  targets,  were
highly expressed in cluster 1 (Figure 6C). SCENIC analysis
also  showed  that  T  cell-specific  differentiation-related
transform  factor  ELF-1  was  significantly  up-regulated
(Figure 6D,E). In cluster 2, we found that cytotoxic T cell-
specific  genes,  such  as GZMA and GNLY,  were  highly
expressed.  Additionally,  the  glycolysis  pathway  was  most
highly expressed in cluster 2 among the three clusters, and
a  related  gene, PKM,  was  also  highly  expressed  (32).
Furthermore, in cluster 2, a small number of populations of
cells were detected expressing higher levels of the immune
checkpoint  molecule  HAVCR, which acts  in  the tolerance
and exhaustion of  T cells  (33)  and is  currently  targeted in
clinical  trials  of  immunotherapy  for  cancers  (34).  At  the
meantime,  this  subtype  of  cells  showed high expression of
MKI67, which encoded proliferation-related proteins (35),
and  the  notable  transcription  numbers  also  reflected  their
high proliferative activity (Figure 6A,B).

Heterogeneity of epithelial cells was demonstrated

In  total,  1,912  epithelial  cells  were  characterized  and
divided into six clusters; two tumor-derived clusters (cluster
1, ENPEP+;  cluster  3, OLFM4+,  respectively),  and  four
clusters were almost exclusively from non-malignant tissues
(cluster  2, PI3+;  cluster  4, MUC1+;  cluster  5 CA4+;  cluster
6, HMGB2+,  respectively)  (Figure  7A,B).  Pathway  analysis
showed  significant  differences  between  tumor-  and  non-
malignant-derived  tissues  (Figure  7C).  In  particularly,
cluster  1  typically  exhibited  malignant  properties.  High
proliferation-  and  embryonic  developmental  process-
related  pathways  were  highly  expressed  (Wnt  signaling,
Myc  targets  and  EMT  signaling)  (36),  and  lesions  repair-
associated  pathways,  including  the  DNA  repair  pathway,
were down-regulated (37) (Figure 7D).

Through SCENIC analysis, we demonstrated that the
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transcription factors CDX2 and STAT3 were significantly
up-regulated in cluster 1, and showed almost no expression
in other clusters except for cluster 3 (Supplementary Figure
S5). CDX2 inhibits aggressive phenotypes of colon cancer
cells both in vitro and in vivo (38) and might be a prognostic
marker related to the benefit  of adjuvant chemotherapy
(39).  STAT3 is  essential  for the transduction of tumor-
promoting signals of the IL-6/STAT3 pathway, which is
highly  activated  in  CAC  (40).  Collectively,  different
clusters exhibited obviously diverse properties even in the
same tissues (Figure 7E).

Evolutionary  trajectory  of  disease  development  and
internal variation in crucial genes

Complete  transcriptome  data  for  many  epithelial  cells
allowed us to gain insights into the functional states of and
relationship  among these  cells.  Carcinogenesis  follows  the
principles  of  Darwinian  evolution,  whereby  somatic  cells
acquire  genomic  alterations  that  provide  them  with  a
survival  and/or  growth  advantage  (41).  Therefore,  the
dynamic information of  gene expressions could be used to
track the progress of the disease. Transcriptional similarity-

 

Figure 5 Different derived myeloid cells showed diverse expression properties. (A) tSNE plot of 362 myeloid cells (top to bottom), color-
coded by their associated cluster, the sample type of origin, and the number of transcripts detected in each cell; (B) tSNE plot color-coded
for  expression  (gray  to  red)  of  marker  genes  (cluster  1, CAPG+;  cluster  2, CXCL2+;  cluster  3, IDO1+ and  cluster  4, CCL20+);  (C)
Differences  in  pathway  activities  scored  per  cell  by  GSVA  among  the  clusters.  Tumor-associated  cells  increased  in  tumorigenesis,  cell
proliferation and low-oxygen metabolism pathway (that is, pathways associated with TNFα signaling, KRAS signaling and hypoxia), while
the non-malignant tissue-derived cells preferred the oxidative phosphorylation and biomass production pathways (pathways associated with
phosphorylation  and  protein  secretion).  tSNE,  t-distributed  stochastic  neighbor  embedding;  GSVA,  gene  set  variation  analysis;  TNF,
tumor necrosis factor.
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Figure 6 Several typical species of T cells are identified in multiple analysis. (A) tSNE plot of 318 T cells (top to bottom), color-coded by
their  associated  cluster,  the  sample  type  of  origin,  and  the  number  of  transcripts  detected  in  each  cell;  (B)  tSNE  plot  color-coded  for
expression  (gray  to  red)  of  marker  genes,  naive  T  cells  (cluster  1, YPEL5+),  cytotoxic  T  cells  (cluster  2, GZMA+)  and  natural  killer  and
natural killer T cells (cluster 3, PIGR+); (C) Differences in pathway activities scored per cell by GSVA among the clusters. Pathway analysis
showed that many proliferation- and differentiation-related pathways, such as Myc targets, G2M checkpoints and E2F targets, were highly
expressed in cluster 1; (D,E) SCENIC analysis of transcription factors involved among the clusters, and SCENIC analysis showed that the
T  cell-specific  differentiation-related  transform  factor  ELF-1  was  significantly  up-regulated.  tSNE,  t-distributed  stochastic  neighbor
embedding.
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Figure 7 Heterogeneity of epithelial cells was demonstrated. (A) tSNE plot of 1,912 epithelial cells (top to bottom), color-coded by their
associated cluster, the sample type of origin, a+nd the number of transcripts detected in each cell; (B) tSNE plot color-coded for expression
(gray  to  red)  of  marker  genes  (cluster  1, ENPEP+;  cluster  2, PI3+;  cluster  3, OLFM4+;  cluster  4, MUC1+;  cluster  5, CA4+;  cluster  6,
HMGB2+);  (C)  Differences  in  pathway  activities  scored  per  cell  by  GSVA  among  the  clusters.  Pathway  analysis  showed  significant
differences  between  the  tumor-  and  non-malignant-derived  tissues.  In  particularly,  cluster  1  and  3  existed  typically  exhibited  malignant
properties; (D) Violin plots show the expression distribution of selected genes involved in the Wnt and DNA repair pathways. In cluster 1
and 3, high proliferation- and embryonic developmental process-related pathways were highly expressed (Wnt signaling, Myc targets and
EMT  signaling),  and  lesions  repair-associated  pathways,  such  as  the  DNA  repair  pathway,  were  down-regulated;  (E)  Exhibition  of  the
involved  transcription  factors  (CDX2, STAT3)  and  their  target  genes,  corresponding  to  the  degree  of  expression.  tSNE,  t-distributed
stochastic neighbor embedding; EMT, epithelial-mesenchymal transition.
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based  pseudotime  analysis  was  applied  (42)  to  order
epithelial  cells  and  indicated  their  developmental
trajectories  (Figure  8A).  All  cells  from  each  cluster
aggregated into nine states based on expression similarities,
and  different  states  formed  a  trajectory  by  pseudotime
analysis  that  began with  states  4,  7  and 8  (non-malignant-
derived cells), followed by states 2, 3 and 5 (mixed derived
cells), and ended with states 1, 6 and 9 (tumor-derived cells)
(Figure  8A,B).  Following  this  trajectory,  the  differentially
expressed genes were identified, and these genes might play
crucial  roles  in  the  evolution  from  colitis  to  cancer.
Therefore,  in  the  subsequent  analysis,  we  focused  on  the
top three differentially expressed genes, CD74, CLCA1 and
DPEP1 (Figure  8C).  Different  degrees  of  IHC  staining
between normal and tumor tissues for CD74, CLCA1 and
DPEP1  from  the  public  data  website  of  The  Human
Protein  Atlas  confirmed  the  change  in  expression  in  these
genes along with disease progression (Figure 8D).

CD74, cluster of differentiation 74, also known as HLA-
DR antigen-associated invariant chain and encoded by the
CD74  gene,  is  a  polypeptide  that  is  involved  in  the
formation and transport of MHC class II protein, which is
found  in  several  types  of  cancer  cells  (43,44).  In  CRC,
stimulation of CD74 by MIF induces a signaling cascade,
leading to up-regulation of Bcl-2, thereby resulting in a
significantly  increased  survival  of  patients  with  colon
cancer. The MIF/CD74 axis is a target for novel therapies
(45). Taken together, our data demonstrated that CD74
was down-regulated as tumorigenesis progressed, which
was  consistent  with  the  findings  presented  in  previous
reports.  TCGA data  showed that  CD74 expression was
significantly high in normal tissues (P<0.05) (Figure 8D,E),
and  patients  with  high  CD74  expression  had  a  better
survival (P<0.01) (Figure 8F).

CLCA1, calcium-activated chloride channel regulator 1,
is a protein that is encoded by the CLCA1 gene in humans
and plays many roles, including the regulation of mucus
production  and  secretion  in  goblet  cells  (46).  CLCA1
regulates  tissue  inflammation  in  the  innate  immune
response (47) and tumor suppression in CRC (48), and can
suppress CRC aggressiveness via inhibition of the Wnt/β-
catenin  signaling  pathway.  Low  expression  of  CLCA1
predicts  a  poor  prognosis  in  CRC (49).  Thus,  our  data
demonstrated that  CLCA1 was  first  up-regulated,  then
down-regulated during the late period of the pseudotime
analysis.  TCGA  data  indicated  no  significance  for  the
expression of CLCA1 between tumor and normal tissues
(P=0.07) (Figure 8D,E), and no relevance between CLCA1

expression and patient prognosis (P=0.11) (Figure 8F).
DPEP1,  dipeptidase  1,  encoded  by  the  DPEP1  gene,

hydrolyzes a wide range of dipeptides and plays a role in
many biological  processes,  including the metabolism of
glutathione and β-lactam hydrolysis in the kidney (50). In
CRC, the expression of DPEP1 has been shown to affect
cancer cell invasiveness in early stage cases, and can act as a
candidate  tumor-specific  molecular  marker  for  the
detection of  rare disseminated colorectal  tumor cells  in
peripheral venous blood and intraperitoneal saline lavage
samples (51). Our data demonstrated that DPEP1 was up-
regulated  as  tumorigenesis  progressed,  which  was
consistent  with  the  data  presented  in  previous  reports.
TCGA data  showed that  the  expression of  DPEP1 was
significantly higher in tumor tissues (P<0.05) (Figure 8D,E),
however,  no  relevance  was  observed  between  DPEP1
expression and patient prognosis (P=0.09) (Figure 8F).

Discussion

In  previous  studies,  cell  identity  was  defined  by  various
methods, such as morphological appearance, tissue context,
and  marker  gene  expression.  As  mRNA  encodes  cellular
function  and  phenotype,  single-cell  transcriptomics  could
precisely  refine  the  cellular  identity  based  on
comprehensive  and  quantitative  readout  of  mRNA  (52).
Thus,  scRNA-seq  technology  has  attracted  significant
attention since its inception, and a large number of applied
study  results  have  been  published  recently  (53).  In  the
context of human cancer, scRNA-seq was used to reveal the
intra-tumor  heterogeneity  and  transcriptional  trajectories
of malignant transformation (54).

In this study, 4,777 single-cell transcriptomes of human
colon tumorous tissues  and non-malignant tissues  from
UC-associated colon cancer were analyzed. Furthermore,
the  composition  of  cancer-associated  stromal  cells  was
defined,  the  different  subgroups  of  tumor  cells  were
analyzed,  and  the  notable  pathways  and  transcription
factors involved in the disease were described. Many of the
tumor-derived  cell  types  identified  by  a  scRNA-seq
approach,  including  B  cells,  T  cells,  endothelial  cells,
myeloid cells, fibroblasts, and epithelial cells (summarized
in Figure 9), presented an altered gene expression profile
with pro-tumoral properties compared with non-malignant
cells.  Of  note,  the  evolutionary  trajectory  of  tumor
development  was  graphed,  and  pseudotime  analysis
revealed  the  cellular  composition  of  CAC  and  its
developmental trajectory. The TME might play a crucial
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Figure  8 Evolutionary  trajectory  of  disease  development  and  internal  variation  in  crucial  genes.  (A)  Transcriptional  similarity-based
pseudotime  analysis  was  used  to  order  epithelial  cells  and  indicated  their  developmental  trajectories.  All  the  cells  from  each  cluster
aggregated into nine states based on pseudotime analysis; (B) Distribution of the cells originally from the tumor and non-malignant tissues
into six clusters (left to right); (C) Following this trajectory, the differentially expressed genes were identified, and these genes might play
crucial roles in the evolution from colitis to cancer. Top 3 differential expressed genes (CD74, CLCA1 and DPEP1) were showed along with
evolutionary trajectory; (D) Different degrees of immunohistochemical staining between normal and tumor tissues for CD74, CLCA1 and
DPEP1 from the public data website of The Human Protein Atlas; (E) Different expression of genes (CD74, CLCA1 and DPEP1) in tumor
and  normal  tissues  from TCGA.  TCGA data  showed  that  the  expression  of CD74 was  significantly  high  in  normal  tissues  (P<0.05),  the
expression of DPEP1 was significantly high in tumor tissues (P<0.05), but there was no significance for the expression of CLCA1 between
tumor and normal tissues (P=0.07); (F) Relationships between gene expression levels and survival time. Patients with high CD74 expression
had  better  survival  (P<0.01),  but  there  were  no  relevance  between CLCA1 or DPEP1 expression  and  the  prognosis  of  patients  (CLCA1,
P=0.11; DPEP1, P=0.09).
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role  in  the  evolutionary  process  from a  UC to  a  CAC.
Moreover,  we  identified  the  top  three  differentially
expressed genes that played a role in disease progression,
CD74, CLCA1 and DPEP1. These results may represent a
promising  strategy  that  identifies  novel  potential
therapeutic targets in the evolution from UC to CAC and
may prevent the development of CRC.

Changes  in  gene  expression  in  the  tumorigenesis
trajectory suggest  directions for the design of  therapies
(55).  For instance,  CD74 is  abundant in non-malignant
cells, but is down-regulated in tumor endothelial cells. In
addition, tumor-derived epithelial cells up-regulate Wnt
signaling,  but  down-regulate  DNA  repair  pathways.
Likewise,  SCENIC  analysis  in  fibroblasts  predicts
transcription factors  responsible  for  the transformation
toward  CAFs,  and  patients  might  acquire  therapeutic
benefits  when  these  conversion  processes  are  blocked.
Distinctive  features  of  tumor  cells  may  represent
vulnerabilities and provide potential entry points for the
design of novel therapies.

To  our  knowledge,  a  study  which  focused  on  the
spatiotemporal evolution from UC to CAC was published
(56). In this study, the authors dissected the evolutionary
history of CAC using multi-region exome sequencing, but
did  not  perform  scRNA-seq  and  the  landscape  of  cell
heterogeneity and evolutionary trajectory in UC-associated
CRC  revealed  by  scRNA-seq  was  absent .  I t  i s
acknowledged that this is the first study depicting the cell
landscape of UC-associated colon cancer at the single-cell
transcriptome  level,  which  describes  the  intra-tumoral
heterogeneity mainly from three different viewpoints: gene

expression, pathway enrichment, and transcription factor
analysis.  This  provides  a  more  accurate  perspective  for
analyzing the evolutionary progress of UC-associated colon
cancer when compared to an average calculation (57).

However, there are also some limitations.  Firstly,  the
results  of  the study have been determined based on the
evolutionary process from UC to CAC in a single patient,
which obviously lacks more patients with CAC to compare
the obtained results. Secondly, the methods used to classify
the cell types are based on distinct and highly-expressed
genes,  coupled  with  previous  reports.  Therefore,  an
authorized  or  unified  standard  should  be  established.
Thirdly,  the patient  was  diagnosed with UC-associated
colon cancer and samples from an UC-associated tumor
and adjacent inflamed tissues were collected to show the
intra-tumor landscape via scRNA-seq. However, the cohort
of the TCGA database has sporadic CRC patients, which
might cause bias for UC-associated colon cancer. Lastly,
three genes (CD74, CLCA1 and DPEP1) were found to be a
potential  role  in  colon  cancer  disease  progression.
However, it is obviously limited and biased since there is
only  one  case  and  no  experiments  were  done  to
demonstrate their function in the evolutionary process. To
show reliable gene panels,  the results  should be further
validated  in  larger  cohorts  in  the  future,  which  will  be
helpful to yield more accurate and convincing results.

Conclusions

This  study  primarily  elucidates  the  composition  of  TME
and  developmental  trajectory  of  UC-associated  colon

 

Figure 9 Intra-tumor landscape and statement of TME of UC-associated colon cancer. (Red words mean the cluster of tumor cells, while
blue words represent the cluster of non-malignant tissues and others belong to the mixed both tumorous- and non-malignant tissue cells).
TME, tumor micro-environment; UC, ulcerative colitis.

Chinese Journal of Cancer Research, Vol 33, No 2 April 2021 285

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(2):271-288



cancer.  Furthermore,  these  results  may  represent  a
promising  strategy  that  identifies  novel  potential
therapeutic  targets  in  the  evolution  from  UC  to  CAC.  In
the  future,  the  researchers  should  confirm  whether  the
transcriptome  of  CAC  is  associated  with  consensus
molecular  subtypes  of  CRC,  and  determine  whether  the
transcriptome  of  the  tumor  cells  could  be  a  signature
related to UC among more patients.
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Supplementary   materials

Methods and protocols of single cells

Preparation of single-cell suspensions
Following  resection  in  the  operating  room,  samples  of  the  tumor  and  adjacent  non-malignant  colon  tissues  at  maximal
distance (>5 cm) (Supplementary Figure S1), which were isolated and saved in Dulbecco’s Modified Eagle Medium (DMEM,
Gibco) and transported rapidly to the research facility. On arrival, samples were cut into smaller pieces of less than 1 mm3

and rinsed with Hanks’ balanced salt solution (HBSS, ThermoFisher Scientific), and then transferred to 10 mL of digestion
medium containing 0.2% collagenase IV (ThermoFisher Scientific) in DMEM. Samples were incubated for 75 min at 37 °C,
with manual shaking every 5 min. Next, 30 mL of ice-cold HBSS was added and samples were filtered using a 40-μm nylon
mesh  (ThermoFisher  Scientific).  Following  centrifugation  at  120,000  r/min  and  4  °C  for  3  min,  the  supernatant  was
decanted and discarded, and the cell pellet was resuspended in 2 mL of red blood cell lysis buffer and transferred to a 2-mL
DNA low-binding tube. Following a 5-min incubation at room temperature, samples were centrifuged (120,000 r/min, 4 °C,
5 min) using a swing-out rotor. And then resuspended in 2 mL of HBSS and centrifuged (120,000 r/min, 4 °C, 2 min) using a
swing-out rotor. Subsequently, samples were resuspended in 2 mL of DMEM containing 10% fetal bovine serum (Gibco).

Droplet-based single-cell RNA sequencing (scRNA-seq)
Single-cell suspensions were converted to barcoded scRNA-seq libraries by using the Chromium Single Cell 3’ Library, Gel
Bead  &  Multiplex  Kit  and  Chip  Kit  (10×  Genomics),  aiming  for  an  estimated  5,000  cells  per  library  and  following  the
manufacturer’s instructions. Samples are processed using kits pertaining to either the V1 or V2 barcoding chemistry from 10x
Genomics. Single samples are always processed in a single well of a polymerase chain reaction (PCR) plate, allowing all cells
from a sample to be treated with the same master mix and in the same reaction vessel. All samples (non-malignant and tumor)
were processed in parallel on the same thermal cycler. Libraries were sequenced on an Illumina HiSeq4000 and mapped to
the human genome (build hg19) using CellRanger (10× Genomics).

Single-cell gene expression quantification and determination of major cell types
Raw  gene  expression  matrices  generated  per  sample  using  CellRanger  (Version  2.0.0; https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines)  were  combined  in  R  (Version  3.3.2; https://www.r-project.org/),  and
converted  to  a  Seurat  object  using  the  Seurat  R  package  (Version  1.4.0.7; https://cran.r-project.org/web/packages/Seurat/
index.html).  From this,  all  cells  were  excluded which had either  fewer  than 201 unique molecular  identifiers  (UMIs),  over

 

Figure S1 A tumor tissue sample and a non-malignant colon tissue sample (>5 cm away from the neoplastic foci) were obtained following
surgical resection. N, non-malignant colon tissue; T, tumor tissue.
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6,000 or under 101 expressed genes, or over 10% UMIs derived from the mitochondrial genome. From the remaining cells,
gene expression matrices were normalized to total cellular read count and to mitochondrial read count using linear regression
as implemented in Seurat’s Regress Out function. As a result, none of the principle components subsequently identified were
correlated  with  transcript  count.  From the  remaining  cells,  variably  expressed  genes  were  selected  as  having  a  normalized
expression between 0.125 and 3 and a quantile-normalized variance exceeding 0.5. To reduce the dimensionality of this data
set, the resulting variably expressed genes were summarized by principle component analysis (PCA), and the first six principle
components  were  further  summarized  using  t-distributed  stochastic  neighbor  embedding  (tSNE)  dimensionality  reduction
using  the  default  settings  of  the  Run  tSNE  function.  Cell  clusters  in  the  resulting  two-dimensional  representation  were
annotated to known biological cell types using canonical marker genes.

Subclustering of major cell types
To identify  subclusters  within  these  six  cell  types,  we  reanalyzed  cells  belonging  to  each  of  these  six  cell  types  separately.
Specifically,  we  applied  dimensionality  reduction  using  principal  component  analysis  (PCA)  in  each  cell  type  on  variably
expressed  genes  as  described above.  To identify  which principle  components  were  informative,  we  applied  Horn’s  parallel
analysis  for  PCA  as  implemented  in  the  R  paran  package  (Version  1.5.1; https://cran.r-project.org/web/packages/paran/
index.html), selecting those principle components having eigenvalues that exceed the eigenvalues generated using ten random
permutations by >50%. Using the graph-based clustering approach implemented in the Find Clusters function of the Seurat
package, with a conservative resolution of 0.5 and otherwise default parameters, each cell type was reclustered by its principle
components. Notably, subclustering was robust to alterations in the number of principle components, in the resolution or in
the K parameter. Moreover, few of the subclusters identified contained many cells wherein less than 300 genes were detected,
indicating  that  increasing  the  threshold  of  100  genes  would  not  affect  our  results.  This  yielded  28  subclusters  in  total,  as
listed  in Supplementary  Table  S1.  For  visualization  purposes,  these  informative  principle  components  were  converted  into
tSNE plots as above.

Identification of marker genes
To identify marker genes for each of these 28 subclusters within these six cell types, we contrasted cells from that subcluster
to all other cells of that subcluster using the Seurat Find Markers function. Marker genes were required to have an average
expression  in  that  subcluster  that  was  >2.5-fold  higher  than  the  average  expression  in  the  other  subclusters  from that  cell
type, and a detectable expression in >15% of all cells from that subcluster. Additionally, marker genes were required to have
the highest mean expression in that subcluster.

Single-cell regulatory network inference and clustering (SCENIC) analysis
SCENIC  analysis  was  run  as  previously  described  on  the  4,777  cells  that  remained  after  filtering,  using  the  20-thousand
motifs database for RcisTarget and GRNboost (SCENIC Version 0.1.5, which corresponds to RcisTarget 0.99.0 and AUCell
0.99.5; with RcisTarget.hg19.motifDatabases.20k).

Analysis of differential pathway or regulon activities
To assess the differential activities of pathways (GSVA) or regulons (SCENIC) between cell sets (for example, derived from
tumor  or  normal  samples,  or  belonging  to  different  subclusters),  we  contrasted  the  activity  scores  for  each  cell  using  a
generalized  linear  model.  To  avoid  inflating  signals  because  of  inter  individual  differences  (for  example,  in  the  relative
frequencies of cells from different patients), we always included the patient of origin as a categorical variable. The results of
these  linear  models  were  visualized  using  bar  plots  or  heat  maps.  For  the  latter,  pathways  or  regulons  that  did  not  show
significant  changes  (Benjamini-Hochberg-corrected  P>0.05)  in  any  of  the  cell  sets  that  were  contradictory  in  one  analysis
were not visualized.

Statistics and reproducibility
No  statistical  method  was  used  to  predetermine  sample  sizes.  For  all  experiments,  samples  from  a  single  patient  were
processed in  parallel,  and cells  for  each sample  of  one patient  were  processed for  scRNA-seq (10× Genomics)  at  the  same
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time, but in separate lanes and vials. Box plots were generated using the R base package and default parameters. Hence, the
boxes  span  the  interquartile  range  (IQR;  from the  25th  to  the  75th  percentiles),  with  the  centerline  corresponding  to  the
median.  Lower  whiskers  represent  data  minimum  or  the  25th  percentile  minus  1.5×IQR,  whichever  is  greater.  Upper
whiskers  represent  the  data  maximum  or  the  75th  percentile  plus  1.5×IQR  (lower),  whichever  is  lower.  Violin  plots  were
generated using the bean plot R package, and the data distribution band width was estimated by kernel density estimation, as
per the built-in “nrd0” option. Bar plots indicate the mean ± standard error of the mean and include individual data points.
Given the number of data points represented on box and violin plots, we opted not to display each data point, as this would
obscure the overall  distribution. Comparisons between two groups were performed using unpaired two-tailed t-tests.  One-
way  analysis  of  variance  (ANOVA)  with  Tukey’s  multiple  comparisons  tests  were  used  for  multiple  group  comparisons.
Linear  models  were  generated  when  multiple  parameters  were  taken  into  account.  Fitting  of  Cox  proportional  hazards
regression  models  was  performed  using  the  Cox  Proportional  Hazards  (CoxPH)  function  in  the  R  survival  package
(https://cran.r-project.org/web/packages/survival/index.html),  with tied death times handled using the Breslow method.  All
statistical analyses and presentation of data were performed using R (https://www.r-project.org/).
 
 
 
 
 
 
 

 

Figure S2 SCENIC analysis of transcription factors involved among the fibroblasts clusters, and showed that KLF12, which promotes CRC
growth, was highly expressed in cluster 1. SCENIC, single-cell regulatory network inference and clustering; CRC, colorectal cancer.
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Figure  S3 SCENIC analysis  of  transcription  factors  involved  among  B  cell  clusters,  and  SCENIC analysis  failed  to  identify  differences
between non-malignant tissue-derived and tumor-derived plasma cells. SCENIC, single-cell regulatory network inference and clustering.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  S4 SCENIC  analysis  of  transcription  factors  involved  among  myeloid  cell  clusters.  The  cell  numbers  of  macrophages  and
monocytes  displayed  extensive  heterogeneity  in  tumors  compared  with  those  in  non-malignant  tissues,  but  SCENIC analysis  showed no
significance among different derived cells. SCENIC, single-cell regulatory network inference and clustering.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S5 SCENIC analysis of transcription factors involved among the epithelial clusters. The transcription factors CDX2 and STAT3
were  significantly  up-regulated  in  cluster  1,  but  showed  almost  no  expression  in  other  clusters  besides  cluster  3.  SCENIC,  single-cell
regulatory network inference and clustering.



 
 
 

Table S1 Maker genes for cell types and subclusters

Cluster/sub
sets

Annotated
name

Cells
(N)

Tumor cells
[n (%)]

Maker
genes Full spelling of abbreviation

Endothelial
cells-1

Vascular
endothelial
cells

  66   50 (75.76) ACKR1 Atypical chemokine receptor 1

AKAP12 A-Kinase anchoring protein 12

SELE Selectin E

CCL2 C-C motif chemokine ligand 2

Endothelial
cells-2

Vascular
endothelial
cells

  74     7 (9.46) CYR61 Cellular communication network factor 1

IGHG1 Immunoglobulin heavy constant gamma 1 (G1m Marker)

IGHG3 Immunoglobulin heavy constant gamma 3 (G1m Marker)

IGHG4 Immunoglobulin heavy constant gamma 4 (G1m Marker)

Endothelial
cells-3

Vascular
endothelial
cells

  63   49 (77.78) CA4 Carbonic anhydrase 4

CD32 Fc fragment of IgG receptor IIa (FCGR2A)

FLT1 Fms related receptor tyrosine kinase 1

Endothelial
cells-4

Lymphatic
endothelial
cells

  25   25 (100) LYVE1 Lymphatic vessel endothelial hyaluronan receptor 1

CCL21 C-C motif chemokine ligand 21

EFEMP1 EGF containing fibulin extracellular matrix protein 1

CLU Clusterin

MMRN1 Multimerin 1

Fibroblast-1 CAF 132 128 (96.97) PCOLCE Procollagen C-endopeptidase enhancer

MFAP5 Microfibril Associated Protein 5

SFRP2 Secreted frizzled related protein 2

PI16 Peptidase inhibitor 16

Fibroblast-2 298   15 (5.03) PLAT Plasminogen activator, tissue type

AGT Angiotensinogen

CTHRC1 Collagen triple helix repeat containing 1

CARD16 Caspase recruitment domain family member 16

Fibroblast-3 140   62 (44.29) ARHGDIB Rho GDP dissociation inhibitor beta

RGS5 Regulator of G protein signaling 5

MEF2C Myocyte enhancer factor 2C

CSRP2 Cysteine and glycine rich protein 2

Fibroblast-4 CAF 138 135 (97.83) CXCL6 C-X-C motif chemokine ligand 6

CCL13 C-C motif chemokine ligand 13

HAPLN1 Hyaluronan and proteoglycan link protein 1

CCL8 C-C motif chemokine ligand 8

Fibroblast-5   87   52 (59.77) MYH11 Myosin heavy chain 11

DES Desmin

CNN1 Calponin 1

PLN Phospholamban

Fibroblast-6   62     4 (6.45) STMN2 Stathmin 2

ADAM28 ADAM metallopeptidase domain 28

Table S1 (continued)



 

Table S1 (continued)
 

Cluster/sub
sets

Annotated
name

Cells
(N)

Tumor cells
[n (%)]

Maker
genes Full spelling of abbreviation

B cells-1 Plasma cells 513 231 (45.03) IGHG1 Immunoglobulin heavy constant gamma 1 (G1m marker)

IGHG2 Immunoglobulin heavy constant gamma 2 (G1m marker)

IGHG3 Immunoglobulin heavy constant gamma 3 (G1m marker)

IGHG4 Immunoglobulin heavy constant gamma 4 (G1m marker)

APOE Apolipoprotein E

B cells-2 Plasma cells 178   75 (42.13) IGHG1 Immunoglobulin heavy constant gamma 1 (G1m marker)

IGHG2 Immunoglobulin heavy constant gamma 2 (G1m marker)

IGHG3 Immunoglobulin heavy constant gamma 3 (G1m marker)

IGLL5 Immunoglobulin lambda like polypeptide 5

B cells-3 Plasma cells 184   62 (33.70) IGHG4 Immunoglobulin heavy constant gamma 4 (G4m marker)

IGHA Immunoglobulin heavy constant alpha 1

B cells-4 B1 cell-like
cells

  88   80 (90.91) REG3A Regenerating family member 3 alpha

DEFA6 Defensin alpha 6

PRSS2 Serine protease 2

ITLN2 Intelectin 2

LYZ Lysozyme

B cells-5 follicular B
cells

137 123 (89.78) MS4A1 Membrane spanning 4-domains A1

LTB Lymphotoxin beta

HLA-DRB1 Major histocompatibility complex, class II, DR beta 1

CD37 CD37 molecule

APC APC regulator of WNT signaling pathway

CD52 CD52 Molecule

Myeloid
cells-1

Macrophages 133   12 (9.02) CAPG Capping actin protein, gelsolin like

TREM2 Triggering receptor expressed on myeloid cells 2

GPNMB Glycoprotein Nmb

CAPG Capping actin protein, gelsolin like

CHI3L1 Chitinase 3 Like 1

Myeloid
cells-2

Monocytes   95   85 (89.47) CXCL2 C-X-C motif chemokine ligand 2

PRDM1 PR/SET domain 1

Myeloid
cells-3

Dendritic cells   84   40 (47.62) IDO1 Indoleamine 2,3-dioxygenase 1

CD1E CD1e molecule

CLEC9A C-Type lectin domain containing 9A

Myeloid
cells-4

Granulocytes   50   36 (72.00) CCL20 C-C motif chemokine ligand 20

S100A12 S100 calcium binding protein A12

PTGS2 Prostaglandin-endoperoxide synthase 2

G0S2 G0/G1 Switch 2--- G0S2

IL1-B Interleukin 1 beta

T cells-1 Helper cells 154 132 (85.71) YPEL5 Yippee like 5

TSC22D3 TSC22 domain family member 3

GPR183 G protein-coupled receptor 183

Table S1 (continued)



 
 

Table S1 (continued)
 

Cluster/sub
sets

Annotated
name

Cells
(N)

Tumor cells
[n (%)]

Maker
genes Full spelling of abbreviation

T cells-2 Cytotoxic
lymphocytes

125   55 (44.00) GZMA Granzyme A

KIAA0101 PCNA clamp associated factor (PCLAF)

TUBB Tubulin beta class I

STMN1 Stathmin 1

HIST1H4C Histone cluster 1 H4 family member C

HMGB2 High mobility group box 2

PKM Pyruvate kinase M1/2

GNLY Granulysin

T cells-3 Natural killer
cells

  39   28 (71.79) PIGR Polymeric immunoglobulin receptor

NTS Neurotensin

TPSB2 Tryptase beta 2

TPSAB1 Tryptase alpha/beta 1

KRT8 Keratin 8

ELF3 E74 Like ETS transcription factor 3

KRT13 Keratin 13

PHGR1 Proline, histidine and glycine rich 1

DEFA5 Defensin alpha 5

Epithelial
cells-1

Cancer cells 437 433 (99.08) ENPEP Glutamyl aminopeptidase

RBP2 Retinol binding protein 2

APOC3 Apolipoprotein C3

APOA1 Apolipoprotein A1

CYP3A4 Cytochrome P450 family 3 subfamily a member 4

SLC15A1 Solute carrier family 15 member 1

MGAM Maltase-glucoamylase

KHK Ketohexokinase

ALPI Alkaline phosphatase, intestinal

Epithelial
cells-2

354   11 (3.11) PI3 Peptidase inhibitor 3

TIMP1 TIMP metallopeptidase inhibitor 1

SLPI Secretory leukocyte peptidase inhibitor

STAT3 Signal transducer and activator of transcription 3

OCIAD2 OCIA domain containing 2

Epithelial
cells-3

Cancer cells 344 302 (87.79) OLFM4 Olfactomedin 4

REG1A Regenerating family member 1 alpha

CLCA1 Chloride channel accessory 1

MT1G Metallothionein 1G

Epithelial
cells-4

315     3 (0.95) MUC1 Mucin 1, cell surface associated

ABCC3 ATP binding cassette subfamily c member 3

STT3-B STT3 oligosaccharyltransferase complex catalytic subunit B

MT-CO2 Mitochondrially encoded cytochrome C oxidase II

Table S1 (continued)



 
 
 
 
 
 
 

Table S1 (continued)
 

Cluster/sub
sets

Annotated
name

Cells
(N)

Tumor cells
[n (%)]

Maker
genes Full spelling of abbreviation

Epithelial
cells-5

258     5 (1.94) CA4 Carbonic anhydrase 4

TM4SF4 Transmembrane 4 L six family member 4

EMP1 Epithelial membrane protein 1

SAA1 Serum amyloid A1

DUOX2 Dual oxidase 2

Epithelial
cells-6

204   10 (4.90) HMGB2 High mobility group box 2

HIST1H4C Histone cluster 1 H4 family member C

TUBA1B Tubulin alpha 1b

HMGN2 High mobility group nucleosomal binding domain 2

CAF, cancer associated fibroblast.


