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Abstract

Small‐cell lung cancer (SCLC) accounts for approximately 15% of lung cancer cases;

however, it is characterized by easy relapse and low survival rate, leading to one of the

most intractable diseases in clinical practice. Despite decades of basic and clinical

research, little progress has been made in the management of SCLC. The current

standard first‐line regimens of SCLC still remain to be cisplatin or carboplatin com-

bined with etoposide, and the adverse events of chemotherapy are by no means

negligible. Besides, the immunotherapy on SCLC is still in an early stage and novel

studies are urgently needed. In this review, we describe SCLC development and cur-

rent therapy, aiming at providing useful advices on basic research and clinical strategy.
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1 | INTRODUCTION

Lung cancer is a malignant disease and still remains a serious public

health issue with high mortality and morbidity worldwide. It is es-

timated that approximately 2.1 million new lung cancer cases were

diagnosed globally, representing 11.6% of the total cases in 2018

(Bray et al., 2018; Jemal et al., 2011). In China, lung cancer has

replaced liver cancer and became the first cause of death among all

the malignancies since 2008 (She, Yang, Hong, & Bai, 2013). Lung

cancer is often diagnosed at an advanced stage, rendering the

disease intractable. Lung cancer can be broadly categorized into

non‐small‐cell lung cancer (NSCLC) and small‐cell lung cancer

(SCLC) according to the histological types (Goldstraw, 2011).

NSCLC represents 80% of lung cancer and can be subdivided into

adenocarcinoma, large cell carcinoma, and squamous cell carcinoma,

while SCLC represents approximately 15% of all lung carcinomas

(Vikis, Rymaszewski, & Tichelaar, 2013). Although tobacco smoking

is the primary risk factor to lung cancer, especially for NSCLC,
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other risk contributors including exposure to asbestos, radiation,

radon gas, and environmental pollution cannot be overlooked

(Chan‐Yeung et al., 2003; Choi & Mazzone, 2014; Global Burden of

Disease Cancer et al., 2017).

In recent years, the emerging immunotherapies and targeted

therapies open up a new realm of precision cancer treatment for lung

cancer patients, especially for NSCLC (Siah, Khozin, Wong, &

Lo, 2019). Currently, chemotherapy, targeted therapy, im-

munotherapy, radiation therapy, and surgery are the most common

options of lung carcinoma therapy in clinical practice (Mott, 2018).

The advancement in genetics and molecular medicine, such as epi-

dermal growth factor receptor (EGFR), tyrosine kinase inhibitors

(TKI), and anaplastic lymphoma kinase inhibitors, contributed greatly

to lung cancer therapies, particularly to NSCLC (Gainor et al., 2016;

Wu & Shih, 2018). Although potential targets on SCLC therapy

such as poly (ADP‐ribose) polymerase (PARP), enhancer of zeste

homolog 2 (EZH2), or delta‐like canonical Notch ligand 3 (DLL3)

have emerged, comprehensive studies are urgently needed (Saito

et al., 2018).

The morphological differences between SCLC and NSCLC could

be obtained by light microscopic criteria. Generally, SCLC has a

higher ratio of nuclear/cytoplasmic, finely granular nuclear chroma-

tin, absent nucleoli, as well as common fusiform shape (Travis, 2014).

SCLC always metastasizes distantly at the time of diagnosis, which

abates the opportune moments to investigate evolution of

tumorigenesis and gene alterations (Altan & Chiang, 2015). In that,

little progress has been made in SCLC management because of

the complexity of low efficient relation between the pathological

characteristics and the clinical outcome. In the following sections,

clinical staging, development, genetic landscape as well as current

treatments in SCLC will be reviewed.

2 | STAGING AND HISTOLOGY OF SCLC

SCLC, a special subtype of lung cancer, is characterized with good

initial response to chemotherapy and radiation, aggressive pro-

liferation, and high rate of metastasis (Dowell, 2010; Mak, Li, &

Minchom, 2019; Rodriguez & Lilenbaum, 2010). According to World

Health Organization (WHO) classification criterion, SCLC can be

further classified into small cell carcinoma and combined subtype, in

which SCLC combined with neoplastic squamous and/or glandular

components. SCLC has distinct morphological characteristics in-

cluding blurred borders, scant cytoplasm, finely granular “salt and

pepper” chromatin, inconspicuous or deficient nucleoli, frequent

nuclear molding, and a high mitotic count (Brambilla, Travis, Colby,

Corrin, & Shimosato, 2001; Gibbs & Thunnissen, 2001). SCLC arising

from neuroendocrine (NE) cells is one special type of NE carcinomas

in lung. SCLC, associated with large‐cell NE carcinoma, intermediate‐
grade atypical carcinoid, and low‐grade typical carcinoid are

categorized as NE tumors (Travis, 2011). It is important to recognize

the variant forms of SCLC, as patients with variant morphologies

might have unfavorable prognosis. The variant SCLCs have

discordant expression of the biochemical markers compared with

classic SCLCs. The variants still have high concentration of brain

isozyme of creatine kinase, significantly lower concentrations of

neuron‐specific enolase (NSE), but lack L‐dopa decarboxylase

and bombesin‐like immunoreactivity (Carney et al., 1985; Gazdar,

Carney, Nau, & Minna, 1985).

3 | ORIGIN OF SCLC

In lung development, a variety of biological players have been re-

cognized as biomarkers, which are involved from gestation period to

postnatal, including a lot of neuropeptides such as serotonin, NSE,

and bombesin. NE cells are the first epithelial cells that emerge in

lung organogenesis and are more enriched in fetal and neonatal

lungs, which indicate its important role during pulmonary evolution

and development. NE cells are derived from multipotent epithelial

progenitors labeled by expression of the basic helix–loop–helix

(bHLH) transcription factor inhibitor of differentiation 2 (ID2; Rock &

Hogan, 2011). Many bHLH proteins have lent a hand in controlling

cell differentiation in various tissues (Li, Ray, Singh, Johnston, &

Leiter, 2011; Yi, Yu, Yang, Miron, & Zhang, 2017). Lineage tracing

study on ID2‐positive expression cells demonstrated that ID2 could

induce all the respiratory epithelial cell types (including pulmonary

neuroendocrine cells [PNECs]) in the mouse model (Rawlins, Clark,

Xue, & Hogan, 2009).

Pulmonary neuroendocrine cells (PNECs), occur as solitary cells

in proximal airways or in clusters formed neuroepithelial bodies

(NEBs) in intralobar airways. PNECs can be discovered in many

species ranging from primitive amphibians to mammals, but they

account for very low proportion in respiratory cell populations (Van

Lommel, 2001). As the role of PNECs in lung development, many

researchers concluded that PNECs exert effect via regulating amine

and peptide to modulate lung growth and maturation in early stages

and act as airway chemoreceptors in fetal and postnatal period

(Van Lommel, 2001). PNECs have characteristic properties of both

neuronal and endocrine cells. For example, neural cell adhesion

molecule (NCAM1) and mammalian achaete‐scute complex

homolog‐1 (MASH1), a key determinant of neuronal differentiation

and maturation, were highly expressed in PNECs cells (Linnoila, 2006).

Besides, NEBs are innervated by intraepithelial nerve fibers and they

can sense external stimuli, such as hypoxia and nicotine, and transmit

these signals to the central nervous system. At the same time, the

secretory products of PNECs, including calcitonin gene‐related pep-

tide, serotonin and bombesin, are thought to regulate epithelial cells,

immune function, oxygen sensing, and effect of airway tone and blood

flow (Linnoila, 2006; Van Lommel, 2001). In the latest report, Chen

et al. (2019) described a new approach for the transformation of

human pluripotent embryonic stem cells into NE tumors of the lung

closely resembling human SCLC. They illustrated that inhibition of

Notch signaling pathway could induce up to 10% lung progenitor cells

to form PNECs, whose proportion could be increased by reducing the

expression of retinoblastoma.
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Although PNECs are specified at an early stage of lung mor-

phogenesis, which indicates their progenitor function; silencing

PNECs in achaete‐scute homolog 1 (Ascl1, also called Mash1)‐
deficient mice cannot stop the differentiation and maturation of

other types of respiratory epithelial cells, such as secretory cells and

alveolar cells (Borges et al., 1997). Indeed, a lot of studies provide

evidence of their functions in both developing lungs and harmed

adult lungs. It has been reported that club cells in developing lungs

are associated with NEBs, which can directly contact with or secrete

paracrine factors to support adjacent epithelial cells. And epithelial

cells close to NEBs can be labeled with 3H‐thymidine, which can

be used to study the progress in division. An increase in the distance

from the NEBs can reduce the number of cells marked with
3H‐thymidine (Van Lommel, 2001). PNEC hyperplasia is also ob-

served after pathological or external damage due to tobacco smoke,

oxidant stress, nitrosamines, and burn injury. Similarly, an acute

injury induced by naphthalene exposure, which can selectively de-

crease the amount of club cells, can increase the number of NEBs in

mouse airway (Stevens, McBride, Peake, Pinkerton, & Stripp, 1997).

The variant club cells, which were neighboring NEB cells, could re-

store the injured epithelium (Reynolds, Giangreco, Power, &

Stripp, 2000). And a latest study revealed that only rare NE cells,

typically 2–4 per cluster, function as stem cells that give rise to SCLC

(Ouadah et al., 2019). Thus, these studies proved that PNECs or

NEBs have a crucial function in the progenitor cells (Figure 1).

Researchers found that PNECs' fate specification is regulated by

interaction of bHLH activator and repressor genes. The bHLH factor,

such as Mash1, promotes NE terminal differentiation, while hairy and

enhancer of split 1 (Hes1) inhibits this signaling pathway by sup-

pressing the Mash1/E2A complex formation and repressing Mash1

(Ito, Udaka, Okudela, Yazawa, & Kitamura, 2003). Notch signaling

pathway also plays an essential role in PNEC lineage specification.

Notch ligand delta‐like‐1 (DLL1) is observed in presumptive NE cells

in proximal airways after E13.5, and its activation might be under the

regulation of Mash1 (Post, Ternet, & Hogan, 2000). Therefore,

the interaction of bHLH factors and Notch signaling pathway has

significant effect on pulmonary NE lineage specification.

4 | GENETIC LANDSCAPE IN SCLC

The gene mutations identified in cancers are vital to tumor devel-

opment. Comprehensive whole genome study on oncogenic driver

mutations for SCLC is currently making slow progress in comparison

with other kinds of cancer because of limited number of patient

samples available for research. Genetically engineered mouse models

for SCLC based on deletion and/or activation of known driver mu-

tations are crucial for translational research (Gazdar et al., 2015). The

most notable gene alterations discovered in patients with SCLC are

almost ubiquitous loss of tumor suppressors p53 and retinoblastoma

susceptibility gene (RB1), as well as MYC amplification (Semenova,

Nagel, & Berns, 2015). The functions of these genes will be discussed

in the following section.

Comprehensive genomic analyses on patients with SCLC have

indicated that the frequency of p53 inactivation is approximately

75% to 90% in SCLC, which suggests its essential role in cancer

development (Takahashi et al., 1989). The function of p53 protein is

to mainly get involved in genomic stability, apoptosis, and suppres-

sion of angiogenesis. The tumor suppressor p53 is generally activated

when cellular stress signals occur, such as DNA damage, hypoxia, and

senescence; and induce cell cycle arrest and apoptosis as response

(Carvajal & Manfredi, 2013). Not surprisingly, dysfunctional p53

would tolerate genomic defect, which might result in high risks for

driver mutations in future. P53 in normal bronchial epithelium

accompanying SCLC is detected mutated, which indicates that this

gene alteration deserves an initial event in SCLC development

(Wistuba et al., 2000). Besides, TP73 is another novel mutation

gene discovered through sequencing the whole genomes of 110

clinical tumor specimens of SCLC (George et al., 2015). And somatic

genomic rearrangements of TP73 exist in exons 2 and 3, resulting

in a recognized oncogenic transcription factors that plays a

dominant‐negative effect on wild‐type p53 family members (George

et al., 2015; Tannapfel et al., 2008). These discoveries hint the

role of p53 family members in tumor development of SCLC.

RB1 is another tumor suppressor found inactivated in majority

of SCLC, accounting for around 65% of SCLC cases (George

et al., 2015). It was first discovered in retinoblastoma and was also

absent or less abundant in many malignancies including prostate

cancer, breast cancer, and lung cancer (Condorelli et al., 2018;

George et al., 2015; Tan et al., 2014). The retinoblastoma protein

belongs to pocket protein family members including RBL1 and RBL2.

Compared with rare expression of other family members, RB1 loss is

a hallmark gene alteration in SCLC (Modi et al., 2000). One of the

functions of RB1 is the essential regulations on cell cycle via re-

tarding the transition of G1 to S phase (Indovina, Pentimalli, Casini,

Vocca, & Giordano, 2015). Moreover, the RB1 protein also has a vital

role to regulate differentiation, as mutated RB1 cannot inhibit cell

cycle progression and is still capable of advancement on cellular

differentiation (Sellers et al., 1998). In recent year, it was reported

that RB1 could directly interact with well‐known transcription fac-

tors, such as Nanog, Oct4, and Sox2, and suppress the pluripotency

systems in somatic cells of patients with SCLC (Kareta et al., 2015).

F IGURE 1 The role of PNECs in lung development. NCAM1,

neural cell adhesion molecule; NEB, neuroepithelial body;
PNEC, pulmonary neuroendocrine cell
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As a result, RB1 depletion can lead to activation of these transcrip-

tion factors and enhance the pluripotency properties, making cells

much more aggressive in reprogramming and tumorigenesis (Kareta

et al., 2015). Besides, researchers also found that loss of RB1 in SCLC

was greatly correlated with activation of EZH2 (Hubaux et al., 2013).

Strikingly, it has been revealed that high expression of EZH2 in lung

cancer was associated with tumor growth (Poirier et al., 2015). In

general, the above evidence supports the fact that RB1 loss is related

to tumor development in SCLC.

The mutually exclusive amplification of MYC family member genes,

including MYC, MYCL, and MYCN, occurs in around 20% of patient sam-

ples and also represents the most eminent overexpressed gene in SCLC

(Peifer et al., 2012). Amplification of MYC gene can lead to tumor pro-

gression, chemotherapy tolerance, and poor clinical outcome, but the

understanding of how these three MYC oncogenes affect the processes

has not yet been determined (Bragelmann et al., 2017). It is known that

MYC family proteins are transcription factors and can activate the ex-

pression of a series of genes, which contribute to cellular proliferation

and cell cycle progression (Li et al., 2017). As paralogs, MYC family

members share highly conserved and essential regions with structural

homology, but exert different functions. For instance, CRISPR‐mediated

depletion of MYCL or MYCN in mouse tumor‐derived SCLC could reduce

tumor formation capacity, but MYC could not (Kim et al., 2016). MYC‐
amplified cells were sensitive to Aurora kinase inhibitor in SCLC models;

however MYCL and MYCN showed very slight response (Bragelmann

et al., 2017; Mollaoglu et al., 2017). Interestingly, although MYC family

members have a key role in proliferation and differentiation, over-

expression of these three genes was also found to trigger apoptosis in

IL3‐depleted myeloid cells (Nesbit, Grove, Yin, & Prochownik, 1998). All in

all, the p53, RB1, andMYC gene alterations can potentially provide a wide

range of alternatives for SCLC treatment (Table 1).

5 | MANAGEMENT OF SCLC

SCLC is an aggressive NE carcinoma with rapid tumor growth,

high metastasis, and dismal clinical outcomes (Travis, Brambilla, &

Riely, 2013; Wang, Zimmermann, Parikh, Mansfield, & Adjei, 2019).

Although SCLC is highly sensitive to chemotherapy and ionizing

radiation, the vast majority of patients may experience recurrence

and the average survival time is only about 10 months (Kalemkerian

et al., 2013). Moreover, very little therapeutic clinical improvement

has been achieved during the past 30 years, leading to SCLC being

labeled as recalcitrant cancer (Gazdar, Bunn, & Minna, 2017).

According to the proposal from Veterans Administration Lung

Study Group (VALSG), SCLC staging can be categorized into two

clinical subgroups: limited‐stage disease (LD) and extensive‐stage
disease (ED; Murray et al., 1993). LD SCLC is referred to nodes and

tumor confined within one hemithorax and can be treated by single

radiotherapy portal, while ED SCLC is defined as tumor cells beyond

these regions (Bradley et al., 2004). However, a majority of patients

(approximately 70%) with SCLC are diagnosed at extensive‐stage;
at this stage, cancer cells are always disseminated, which makes

it difficult to study the evolution of tumorigenesis (Jackman &

Johnson, 2005). However, controversies still focus on the criteria for

LD and ED categories. VALSG believed that the tumor and nodal

involvement in LD patients should be confined to one hemithorax,

whereas, the International Association for the Study of Lung Cancer

(IASLC) recommended that LD should include all patients without

distant metastasis as well. As the treatment strategies for LD and ED

patients could be different, the clinical outcome might be influenced

by the stage determined. As a consequence, IASLC subsequently in-

troduced tumor, node, and metastasis (TNM) in lung cancer staging

to replace the VALSG system (Micke et al., 2002). Although TNM

system is more accurate in tumor assessment, VALSG system is still

widely used clinically for practical purposes. According to National

Cancer Institute website, the standard treatment strategies for

patients with SCLC is shown in Table 2.

5.1 | Limited‐stage disease SCLC

The therapeutic options in SCLC are dependent on the disease stage

chosen. Approximately 30% of patients with SCLC are mostly

TABLE 1 Genomic alterations in small‐cell lung cancer

Gene/signal name Mutation frequency (%) Alteration

TP53 75–90 Loss

RB1 65 Loss

TP73 – Loss

NOTCH – Downregualtion

MLL2 17 Downregualtion

MYC 20–30 Upregulation

PI3K – Upregulation

BCL2 75–90 Upregulation

RICTOR 10 Upregulation

TABLE 2 Standard treatment options for patients with SCLC

Stage Standard treatment options

LD Chemotherapy and radiation therapy

Combination chemotherapy alone

Surgery followed by chemotherapy or

chemoradiation therapy

Prophylactic cranial irradiation

ED Combination chemotherapy

Thoracic radiation/radiation therapy

Prophylactic cranial irradiation

Recurrent disease Chemotherapy

Immune checkpoint modulation

Palliative therapy
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diagnosed at LD. LD SCLC was believed as a curable disease because

current treatment modality improved the median overall survival

(OS) significantly (Farago & Keane, 2018). Surgical resection is not

the first choice of the multimodality approach as SCLC is potentially

metastasized in early stage. Surgery is an option for the patients in

LD stage who are carefully staged with mediastinal sample collection

and diagnostic computed tomography (CT) analysis (Altan &

Chiang, 2015). Very limited data can be referred on a direct com-

parison of a combined multimodality approach for SCLC including

chemoradiotherapy after surgery and chemoradiotherapy alone.

However, recent clinical guidelines have recommended surgery for

early stage disease, followed by systemic chemotherapy (Fruh

et al., 2013; Hoda, Klikovits, & Klepetko, 2018). Peter et al revealed

that surgical resection could improve the OS compared with

chemotherapy for patients with LD SCLC, and stereotactic body

radiation therapy could provide more benefits compared with con-

ventional radiation therapy (Paximadis et al., 2018). Therefore,

surgery for SCLC is still a controversial issue and prospective

randomized trials are warranted.

Besides, concurrent chemoradiotherapy with thorax irradiation

could offer more advantages compared with chemotherapy alone for

patients with LD in long‐term survival study. The death rate was

decreased by 14% and the 3‐year survival rate was improved by 5.4%

in combined modality treatment group compared with patients who

received chemotherapy alone (Pignon et al., 1992). A report from the

National Cancer Data Base (United States) also demonstrated similar

findings. In this report, over 6,700 patients with LD SCLC were

employed, and the 5‐year survival rate for patients who received

concurrent chemotherapy and thoracic irradiation was 13.3%,

while that of chemotherapy alone group was only 5.7% (Gaspar

et al., 2005). One notable observation was the excessive toxicity in

combined modality arm, such as cyclophosphamide doxorubicin

combination plus thoracic radiation.

Although concurrent chemoradiotherapy is the standard of care

in limited‐stage SCLC, the optimal radiotherapy schedule and dose

remains controversial. In the open‐label, Phase 3, randomized, su-

periority trial, survival outcomes did not differ between twice‐ and
once‐daily concurrent chemoradiotherapy in patients with limited‐
stage SCLC, and toxicity was similar and lower than expected in both

regimens (Faivre‐Finn et al., 2017).

To obtain better results of concurrent multimodality treatment,

researchers tried to optimize the sequence of administration, dosage,

and proportion of chemotherapy and radiotherapy. In a Phase III

study conducted by Japan Clinical Oncology Group, 231 patients

with LD SCLC were randomly divided into chemotherapy concurrent

with thoracic radiation group and chemotherapy sequential with

thoracic radiation group. In this study, the median survival time in

sequential and concurrent arm was 19.7 and 27.2 months, respec-

tively. Hematologic toxicity was major side effect observed in the

concurrent arm (Takada et al., 2002). Researchers also compared the

twice‐daily hyperfractionated irradiation with once‐daily treatment

in 417 patients with LD SCLC, who received four cycles of cisplatin

plus etoposide. The 2‐ and 5‐year survival rates for patients who

received once‐daily radiotherapy were 41% and 16%, respectively, as

opposed to 47% and 26%, respectively, for the patients who received

twice‐daily regimen. Not surprisingly, the frequency of grade 3 eso-

phagitis in twice‐daily thoracic radiotherapy was higher than that of

once‐daily group (27% VS 11%; Turrisi et al., 1999). In another ran-

domized study comparing early administration of irradiation with late

treatment, patients in the early arm obtained more benefits (Murray

et al., 1993).

In fact, the majority of clinical trials that assessed the activity of

chemoradiotherapy in LD SCLC are a subgroup study that enrolled

SCLC patients including LD and ED because of the limited number

of patients. Cisplatin plus etoposide (EP) with thoracic irradiation is

the gold standard treatment for patients with LD SCLC (Altan &

Chiang, 2015). Very few clinical trials were focused on substituting

carboplatin for cisplatin on LD SCLC populations. Based on one

randomized clinical study performed on patients with LD SCLC, a

subset analysis concluded that carboplatin and cisplatin had similar

effects (Skarlos et al., 1994). Another randomized clinical trial proved

that gemcitabine and carboplatin is as effective as etoposide in terms

of OS and progression‐free survival (Lee et al., 2009).

SCLC is characterized with easy relapse, among the relapsed

patients, about one‐third has brain metastases as the first site of

relapse; another one‐third has both brain and systemic metastases;

and the remaining one‐third has systemic metastases. It has been

shown that prophylactic cranial irradiation (PCI) could reduce the

incidence of brain metastasis and increase the OS in both limited‐
and extensive‐stage patients (Auperin et al., 1999; Slotman

et al., 2007). However, the improvement on patients who received

PCI treatment came at the price of toxicity, neurocognitive disorder,

and lower quality of life. In recent years, PCI treatment has met

challenges due to improvement in modern imaging technique, which

has individualized and systemic therapy (Farrell et al., 2018; Sio

et al., 2018). As most of PCI clinical trials were conducted before the

advent of modern imaging such as computed tomography (CT) or

magnetic resonance imaging (MRI), the role of PCI treatment is still

controversial. For example, a randomized clinical trial conducted with

or without PCI in ED SCLC patients conclude that PCI could reduce

the risk of brain failure and improve survival (Slotman et al., 2007).

Whereas, new findings from Takahashi et al indicated the median

survival in PCI arm and non‐PCI arm was 11.6 months and 13.7

months, respectively. In this randomized trial, all patients received

brain MRIs before registration (Takahashi et al., 2017). Both these

studies indicated that PCI could prevent brain metastases, but it

might not be helpful in improving survival.

5.2 | Extensive stage SCLC

Compared with LD SCLC, extensive stage small‐cell lung cancer (ED

SCLC) was thought as an unamendable disease. Palliative care on

SCLC is expected to prolong the survival time, improve quality of life,

as well as minimize the risk of symptoms associated with disease.

Though some new drugs have emerged in recent years, combined
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chemotherapy is still the footstone in all stages of SCLC (Pelayo

Alvarez, Gallego Rubio, Bonfill Cosp, & Agra Varela, 2009). The

first‐line treatment in SCLC recommended by the United States and

Europe is 4‐6 cycles of etoposide plus cisplatin or carboplatin. In a

variety of randomized trials reported in the past 30 years, etoposide

plus cisplatin was compared as an investigational aim. The overall

response rate (ORR), median progression free survival (mPFS), and

median overall survival (mOS) for the cisplatin/etoposide compared

with chemotherapy are shown in Table 3.

On the basis of the discoveries in the abovementioned studies,

there are several points that need to be noticed. First of all, none of

the counterparts in these studies are superior to platinum/etoposide

(EP) or carboplatin/etoposide (EC) in terms of ORR. It is no wonder

that EP or EC is the priority option for patients with SCLC during the

past 30 years. Moreover, the response rates to EP vary from 44% to

78%, which indicates that many patients are very sensitive to EP

or EC treatment, and the symptoms are likely to improve after initial

systemic therapy. Besides, the mPFS and mOS remain fairly un-

changed in these studies, even though the time span is nearly

30 years. In summary, platinum/etoposide is a great and reliable

regimen to obtain clinical improvement in short term, but the long‐
term clinical outcome still remains poor.

There are a series of alternative drugs for ED SCLCs that can be

used clinically, and most of the regimens are used as a second‐line
therapy. The most common drugs used for ED SCLC are summarized

in Table 4. The combination of cisplatin and irinotecan is widely used

in Japan. Researchers have found that the mOS in cisplatin/

irinotecan (IP) and EP is 12.8 and 9.4 months, respectively. Besides,

the one‐year survival rate in IP arm is also superior to EP (58.4% vs.

37.3%) (Noda et al., 2002). But it is questionable that if this phe-

nomenon can be observed in a larger population other than Japan.

Subsequently, a randomized trial that enrolled 331 SCLC patients

from Australia, Canada, and America failed to confirm an obvious

advancement in treatment outcomes by IP compared with EP (Hanna

et al., 2006). The bifurcation is probably due to different ethnicity.

The toxic reaction is an inevitable event in chemotherapy. To

reduce the adverse effect, clinicians sometimes tried to employ

different drugs or combinations to replace the standard treatment.

Substituting carboplatin with cisplatin is an alternative option to

reduce the nephrotoxicity. Carboplatin and cisplatin can achieve

similar clinical outcomes including ORR and OS with different

side‐effect profiles. Myelosuppression is the major adverse reaction

induced by carboplatin, while nephrotoxicity, neurotoxicity, nausea

and vomiting are commonly observed in cisplatin treatment

(Okamoto et al., 2007; Skarlos et al., 1994).

It is not advisable to add more drugs into the standard treat-

ment, as another chemotherapeutic agent might lead to more toxicity

with little or no improvement in outcomes. Attempts such as com-

bination of paclitaxel with EP regimen caused additional adverse

effect without significant clinical benefits (Mavroudis et al., 2001;

Niell et al., 2005), but with an exception of one clinical trial of ifos-

famide with EP treatment, the mOS with and without ifosfamide

was 9.0 and 7.3 months, respectively (Loehrer et al., 1995).

Though SCLC has a good initial response to first‐line treatment,

most of the patients might experience relapse with the disease being

refractory (Schneider, 2008). How to manage the recurrent SCLC is a

big issue to improve the outcomes. Normally, single‐agent regimen is

preferred for relapsed SCLCs because multiple drugs could not bring

more benefits but enhanced toxicity. The chance of being responsive

to the second‐line treatment is dependent on the progression‐free
interval after the initial therapy. Three‐month is a critical point for

subsequent therapy. It is considered as resistant or refractory, if the

interval is <3 months, and the chance of responding to second‐line
treatment is pretty low (≤10%). It is considered as sensitive, if the

interval is more than 3 months and if there is a possibility to increase

the response rate by around 25% (Hurwitz, McCoy, Scullin, &

Fennell, 2009; Schneider, 2008). A systematic analysis focused on 21

studies during 1984–2001 and enrolled a total of 1,692 patients

eligible for analysis. The response rates to second‐line regimen in the

sensitive disease (912 patients) was 27.7%, while only 14.8% was

responsive to treatment in refractory group (780 patients), and the

median OS also improved in the sensitive arm (7.7 vs. 5.4 months;

Owonikoko et al., 2012).

Topotecan is approved by FDA and EMA, and is widely used in

second‐line treatment. Ardizzoni et al. (1997) evaluated the clinical

activity of intravenous (IV) topotecan in patients with recurrent

TABLE 3 Performance of first‐line platinum/etoposide in select randomized trials

Study design No. of sub. in EP/EC ORR (%) mPFS (m) mOS (m) References

EP vs. IP 110 48 vs. 44 4.6 vs. 4.1 10.2 vs. 9.3 Hanna et al. (2006)

EP vs. ACE 141 77 vs. 72 NR 7.5 vs. 8.3 Baka et al. (2008)

EC vs. carbo/pemetrexed 455 52 vs. 31 5.4 vs. 3.8 10.6 vs. 8.1 Socinski et al. (2009)

EC or EP ± bevacizumab 50 48 vs. 58 4.4 vs. 5.5 10.9 vs. 9.4 Spigel et al. (2011)

EC or EP ± ipilimumab 476 62 vs. 62 4.4 vs. 4.6 10.9 vs. 11.0 Reck et al. (2016)

EC ± palifosfamide 94 NR NR 10.4 vs. 10.0 Jalal et al. (2017)

EP ± bevacizumab 103 55 vs. 58 5.7 vs. 6.7 8.9 vs. 9.8 Tiseo et al. (2017)

Abbreviations: EP, platinum/etoposide; EC, carboplatin/etoposide; mOS, median overall survival; mPFS, median progression free survival; ORR, overall

response rate.
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SCLC. There were totally 47 patients who served as refractory, and

45 patients formed the sensitive group. The ORR in refractory arm

was only 6.4%, while it was 37.8% in the sensitive group. The median

OSs in the refractory and sensitive arms were 4.7 and 6.9 months,

respectively. Subsequently, a randomized trial found that the ORRs

in topotecan and CAV (cyclophosphamide, doxorubicin, and vincris-

tine) arms were 24.3% and 18.3%, respectively, and the median OS

also presented in a similar manner (25.0 vs. 24.7 weeks). This finding

did not show any statistical significance, and single topotecan showed

at least some efficacy compared with CAV in recurrent SCLCs.

The oral topotecan is another form used in second‐line treat-

ment besides the IV form. Researchers found that oral topotecan

could improve the median survival compared with best supportive

care (25.9 vs. 13.9 weeks), and retain better quality life and greater

symptom (O'Brien et al., 2006). Oral and intravenous topotecan

showed similar effect on sensitive patients whose relapse interval

was over 3 months (Eckardt et al., 2007).

To date, topotecan has been considered as second to none in

second‐line treatment, as no studies have shown that the current

chemicals have the better outcomes compared with topotecan on

recurrent SCLCs (von Pawel et al., 2014). Owing to slow progress

made in the third‐line treatment, very limited data could be referred.

And only multiple target TKI anlotinib has been approved by National

Medical Products Administration as a third‐line option for SCLC

based on the ALTER1202 trial.

Immunotherapy has caught great attention on cancer treatment

in recent years (Lee & Baek, 2019; Regzedmaa, Zhang, Liu, &

Chen, 2019). Generally, immunotherapy is of three types: checkpoint

Inhibitors, chimeric antigen receptor T cell therapy, and cancer vac-

cines. FDA has approved several drugs used in many types of cancers,

including lung cancer (mainly NSCLC), melanoma, lymphoma, renal

cancer, and bladder cancer (Nagai & Muto, 2018). Unlike the robust

immunogenic tumor, SCLC lagged behind in immunotherapy in past

decade. In recent years, more and more studies focused on novel

therapeutic strategies for SCLC, with progress being made in un-

raveling the biology and microenvironment of SCLC (Sabari, Lok,

Laird, Poirier, & Rudin, 2017). As most of the SCLC patients have a

smoking history (Pesch et al., 2012), SCLC has a high tumor mutation

burden, which offers numerous potential tumor‐specific antigens, and
holds a new promise to improve the clinical outcome of im-

munotherapy for SCLC (Hellmann et al., 2018; Tian, Zhai, Han, Zhu, &

Yu, 2019). It has been shown that immune checkpoints, such as

programmed death 1 (PD‐1) or its ligand (PD‐L1) and cytotoxic

T‐lymphocyte‐associated protein 4 (CTLA‐4), could expand the

application on certain advanced stage of tumors including SCLC

(Pakkala & Owonikoko, 2018; Tian et al., 2019). As an anti‐CTLA‐4
antibody, ipilimumab was the first immune checkpoint agent applied

in SCLC. In a 3‐arm Phase 2 clinical trial on ED SCLC, carboplatin/

paclitaxel, phased ipilimumab plus carboplatin/paclitaxel, and con-

current ipilimumab plus carboplatin/paclitaxel were compared.

The immune‐related PFS (irPFS) in phased arm was 6.4 months,

significantly prolonged compared with control (5.3 months) and

concurrent arm (5.7 months). It seems that the median OS in phased

ipilimumab group favored more (9.1 months control vs. 9.9 months

concurrent vs. 12.9 months phased) although not statistically sig-

nificant. However, enhanced toxicity and grade 3/4 toxicities (fatigue,

arthralgia, and liver dysfunction) were commonly observed in phased

ipilimumab treatment (Reck et al., 2013). Nivolumab, a PD‐1 in-

hibitor, has been earlier studied with encouraging results in combi-

nation with ipilimumab. A total of 216 patients were enrolled and

randomized into four groups: nivolumab (3 mg/kg) arm, nivolumab

(1mg/kg) plus ipilimumab (1 mg/kg) arm, nivolumab (1 mg/kg) plus

ipilimumab (3mg/kg) arm, nivolumab (3mg/kg) plus ipilimumab

(1mg/kg) arm, followed by nivolumab 3mg/kg every 2 weeks until

disease progression. The PFS in these three groups was 1.4, 2.6, and

1.4 months, respectively. And OS was 4.4, 7.7, and 6.0 months,

respectively (Antonia et al., 2016; Pakkala & Owonikoko, 2018).

In the latest report, the FDA has approved the PD‐L1 inhibitor

atezolizumab in combination with carboplatin and etoposide as a first‐
line therapy for SCLC based on the Phase III IMpower133 trial. The

mOS was improved from 10.3 months in the placebo group to 13.9

months in atezolizumab arm, and the mPFS was significantly prolonged

from 4.3 to 5.2 months as well (Horn et al., 2018). Besides, the subgroup

analysis of Japanese patients in Phase III IMpower133 trial addition of

atezolizumab to carboplatin and etoposide was effective and well

tolerated (Nishio et al., 2019). Another randomized Phase III trial

(CASPIAN) explored a similar approach, which compared durvalumab

(anti‐PD‐L1antibody) plus chemotherapy (platinum‐etoposide) and

chemotherapy alone. The patients in combination arm benefited a lot,

since the mOS in combination arm was 13 months versus 10.3 months

in chemotherapy alone (hazard ratio, 0.73; 95% confidence interval,

0.591–0.909, p= .0047) (Paz‐Ares et al., 2019).
Although the preliminary trials on PD‐1, PD‐L1, and CTLA‐4

immunotherapy displayed encouraging outcomes with SCLC patients,

TABLE 4 Combination chemotherapy for
extensive‐stage small‐cell lung cancer

Standard treatment Etoposide + cisplatin

Etoposide + carboplatin

Other regimens Cisplatin + irinotecan

Ifosfamide + cisplatin + etoposide

Cyclophosphamide + doxorubicin + etoposide

Cyclophosphamide + doxorubicin + etoposide + vincristine

Cyclophosphamide + etoposide + vincristine

Cyclophosphamide + doxorubicin + vincristine
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it seems that the clinical efficacy of immunotherapy for SCLC was far

less pronounced than that for solid tumors, such as NSCLC and

melanoma (Nagai & Muto, 2018). The underlying mechanisms in-

volved might be a low expression of PD‐L1, the downregulation of

major histocompability complex molecules, and immunosuppression

of regulatory chemokines in SCLC (He et al., 2017; Masuno

et al., 1986; Tian et al., 2019; Zhu, Bagstaff, & Woll, 2006). Never-

theless, immunotherapy still brings about encouraging clinical

benefits in SCLC treatment, but undergoing definitive studies are

still needed.

5.3 | Mechanisms of drug resistance

Drug resistance, regarded as one of the biggest obstacles in cancer

therapeutics, is defined as cancer cells acquired resistance to one

drug leading to resistance to other agents, which might have differ-

ent structures or mechanisms (Nikolaou, Pavlopoulou, Georgakilas, &

Kyrodimos, 2018). A majority of SCLC patients experience relapse,

which indicates that drug resistance is a central problem for treat-

ment of SCLC. Generally, several potential drug resistance mechan-

isms or biomarkers have been demonstrated including ATP‐binding
cassette (ABC) transporters, suppression of apoptosis, cancer stem

cell (CSC), and DNA damage and repair (Malone, Lardelli, Li, &

David, 2019; Robey et al., 2018; Sen, Gay, & Byers, 2018; Xu, Lam,

Cheng, & Ho, 2019).

A high expression of ABC transporters could increase the drug

efflux and decrease the intracellular drug concentrations, which

account for drug resistance. Human EGFR2 is upregulated in che-

moresistant cell lines and considered as a therapeutic target for

overcoming ABC transporter‐mediated resistance in SCLC (Minami

et al., 2012). Similarly, the PARP, an important enzyme accounting for

DNA damage and repair, is overexpressed in SCLC. PARP inhibitors

were widely used to reduce drug resistance and improve therapy

efficacy (Allison Stewart et al., 2017). Schlafen family member 11

(SLFN11) plays an essential role in the DNA damage response, and

lack of expression of SLFN11 has been linked to the resistance of

cancer cells to DNA‐damaging agents (Malone et al., 2019). Inhibition

of EZH2 (Enhancer of zeste homology 2) could have restore SLFN11

expression and resensitize SCLC derived of patient‐derived xeno-

grafts to DNA damage (Gardner et al., 2017).

Cell signaling pathway was also involved in drug‐resistant me-

chanism in SCLC. For example, the activation of WNT signaling in

chemosensitive human SCLC cell lines through adenomatous poly-

posis coli knockdown induces chemoresistance, and chemoresistant

cell lines demonstrate increased WNT activity (Wagner et al., 2018).

MCAM (melanoma‐specific cell‐adhesion molecule) has been proved

as a novel therapeutic target to overcome chemoresistance

through the PI3K/AKT/SOX2 signaling pathway in SCLC (Tripathi

et al., 2017).

CSCs are recognized as a subtype of cancer cells with differ-

entiation potential and self‐renewal properties. They are considered

as the origin of cancer cells and account for cancer recurrence after

therapy and multidrug resistance (Ryoo, Choi, Ku, & Kwak, 2018).

Increasing evidence illustrated that the drug resistance in SCLC was

mainly attributed to the presence of CSC. CD133 and CD44 are

specific biomarkers in lung CSCs. The lung cancer cells with high level

of CD133 were quite resistant to chemotherapeutics drugs, and

the expression of CD133 was elevated after treatment (Sarvi

et al., 2014).

It is noteworthy that intratumoral heterogeneity, which gives

rise to tumor cells presenting distinct molecular signatures with

differential levels of sensitivity to treatment, was considered as one

type of drug‐resistant mechanism (Dagogo‐Jack & Shaw, 2018).

Notch signaling can exert both tumor suppressive and oncogenic role

depending on the context in SCLC. Endogenous activation of the

Notch pathway leads to a neuroendocrine (NE) to non‐NE fate

switch. Although non‐NE cells are slow growing, these cells are re-

latively chemoresistant and provide trophic support to NE tumor

cells. Therefore, combining chemotherapy and Notch inhibition might

serve as a good option for selected SCLC patients (Lim et al., 2017).

6 | CONCLUSIONS AND PROSPECTIVES

SCLC still remains a frustrating disease to treat, and a majority of

patients who are diagnosed at ED eventually experience relapse

despite of a good initial response to chemotherapy. Over the past

decades, many progressions have been made to characterize mole-

cular feature and development of SCLC. However, a few novel re-

gimens were shown to significantly improve the clinical outcome for

SCLC patients, which suggest an urgent need for identification

of predictive biomarkers to guide personalized medicine therapy.

Currently, a preliminary study of combination of immunotherapy

with first‐line regimens might be a breakthrough in SCLC treatment,

though many issues remain unaddressed. Drug resistance is a com-

mon occurrence in patients with SCLC, which requires therapeutic

approaches that should be multidimensional, as cancer cells are

featured with dynamic metabolism to reduce drug efficacy. The

progressions in genomics techniques, liquid biopsies technologies, as

well as single‐cell harvesting and genomics‐bioinformatics analyses

might provide powerful tools for drug resistance investigation.

Yet, an in‐depth understanding of the characteristics of SCLC in-

cluding tumor immunity, immune microenvironment, intratumoral

heterogeneity, and genomic profiles and development may provide

scientific grounds and improve the clinical outcome of SCLC.
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