
Review Article

Global Spine Journal
2022, Vol. 12(7) 1561–1572

© The Author(s) 2022
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/21925682211049164

journals.sagepub.com/home/gsj

Artificial Learning and Machine Learning
Applications in Spine Surgery: A Systematic
Review

Cesar D. Lopez, BS1, Venkat Boddapati, MD1
, Joseph M. Lombardi, MD1,

Nathan J. Lee, MD1, Justin Mathew, MD1
, Nicholas C. Danford, MD, MA1

,
Rajiv R. Iyer, MD1, Marc D. Dyrszka, MD1, Zeeshan M. Sardar, MD1,
Lawrence G. Lenke, MD1, and Ronald A. Lehman, MD1

Abstract

Objectives: This current systematic review sought to identify and evaluate all current research-based spine surgery appli-
cations of AI/ML in optimizing preoperative patient selection, as well as predicting and managing postoperative outcomes and
complications.

Methods: A comprehensive search of publications was conducted through the EMBASE, Medline, and PubMed databases using
relevant keywords to maximize the sensitivity of the search. No limits were placed on level of evidence or timing of the study.
Findings were reported according to the PRISMA guidelines

Results:After application of inclusion and exclusion criteria, 41 studies were included in this review. Bayesian networks had the
highest average AUC (.80), and neural networks had the best accuracy (83.0%), sensitivity (81.5%), and specificity (71.8%).
Preoperative planning/cost prediction models (.89,82.2%) and discharge/length of stay models (.80,78.0%) each reported
significantly higher average AUC and accuracy compared to readmissions/reoperation prediction models (.67,70.2%) (P < .001,
P = .005, respectively). Model performance also significantly varied across postoperative management applications for average
AUC and accuracy values (P < .001, P < .027, respectively).

Conclusions:Generally, authors of the reviewed studies concluded that AI/ML offers a potentially beneficial tool for providers
to optimize patient care and improve cost-efficiency. More specifically, AI/ML models performed best, on average, when
optimizing preoperative patient selection and planning and predicting costs, hospital discharge, and length of stay. However,
models were not as accurate in predicting postoperative complications, adverse events, and readmissions and reoperations. An
understanding of AI/ML-based applications is becoming increasingly important, particularly in spine surgery, as the volume of
reported literature, technology accessibility, and clinical applications continue to rapidly expand.
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Introduction

Machine learning (ML) is increasingly reported on in health
care, including orthopedics, especially for its applications in
predictive analytics. ML is a form of artificial intelligence (AI)
that employs the use of algorithms and mathematical models
that can learn from data, identify patterns and complex
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relationships, and make automated decisions—oftentimes
with minimal human intervention.1,2 These algorithms are
able to find patterns in the data and apply those patterns to new
challenges in the future. Algorithms include artificial neural
networks (ANN), decision trees (DT), boosting/ensemble
learning models (BEL), Bayesian networks (BN), logistic
regression (LR), and support vector machines (SVM). Neural
networks are modeled on neurons in the brain, and they use
artificial intelligence to untangle and break down extremely
complex relationships. Across various medical specialties, AI/
ML has been shown to be beneficial in guiding clinical
decision-making, and artificial neural networks used as out-
come prediction models have been applied in diagnosing
various medical conditions.1-4

Within orthopedics, demonstrated applications of AI/ML
include surgical risk stratification and optimization,5 clinical
outcome prediction and diagnostics,6 cost-efficiency analyses,
and in total joint arthroplasty literature it has been used for
proposed risk-adjusted insurance reimbursement models.7

Spine surgery, in particular, is a field that involves high-
risk procedures and is continually seeking to improve sur-
gical planning, outcomes, and to reduce complications. With
its powerful predictive capabilities, AI/ML has the potential to
be used in new and innovative applications that may improve
the safety of spine surgery and improve outcomes.

The use of AI/ML is rapidly expanding in health care and
has the potential to improve surgical care and reduce costs,
especially for high-cost and complex spine surgery proce-
dures. As such, it is important for spine surgeons to better
understand the current applications of AI/ML, especially in
light of the burgeoning literature regarding this topic in recent
years. The purpose of this review is to identify and evaluate all
current research-based spine surgery applications of AI/ML,
namely, in optimizing preoperative patient selection, as well as
predicting and managing postoperative outcomes and
complications.

Materials and Methods

Search Strategy

A comprehensive search of publications, up to February 2020,
was conducted using the EMBASE, Medline, and PubMed
databases in accordance with PRISMA guidelines. Sample
search query keywords and MeSH terms are provided in
Supplementary Table 1. Screening of reference lists of re-
trieved articles also yielded additional studies.

Eligibility Criteria

Inclusion criteria consisted of original clinical studies, in-
cluding studies which evaluate spine surgery applications of
AI/ML in guiding clinical decision-making. Exclusion cri-
teria consisted of studies that did not evaluate spine surgery
applications of AI/ML, studies involving oncologic spine

surgery or infectious etiologies, studies involving applica-
tions for design and development of hardware or implants,
medical imaging analysis studies without explicit reference
or application to spine surgery, studies with non-human
subjects, non-English-language studies, inaccessible arti-
cles, conference abstracts, reviews, and editorials. No limits
were placed on level of evidence or timing of the study since
the majority of the reviewed studies were published within
the last 10 years.

Study Selection

Article titles and abstracts were screened initially by two
reviewers, and full-text articles were subsequently screened
based on the selection criteria. The studies were rated by
their level of evidence, based on the Oxford Centre for
Evidence-based Medicine Levels of Evidence.8 Two authors
reviewed each individual article that was included. Dis-
crepancies in inclusion studies were discussed and resolved
by consensus.

Data Extraction and Categorization

A database was generated from all included studies which
consisted of the journal of publication, publication year,
country of origin, study design, level of evidence, study
duration, blinding of the study, number of involved institu-
tions, AI/ML methods and clinical applications, surgical
domain, data sources, input variables and output variables,
sample size, average patient age, percent female patients, and
any additional pertinent findings from the study. The reviewed
articles were sorted into different, non-mutually exclusive
categories based on AI/ML clinical application. AI/ML
clinical applications were divided into two major groups:(1)
administrative and clinical decision support and (2) postop-
erative prediction and management of complications and
outcomes. The former group contained the following pre-
diction and optimization sub-categories: preoperative plan-
ning and cost prediction, hospital discharge and length of stay
(LOS), readmissions, and reoperations. The other group in-
cluded postoperative cardiovascular complications, other
complications, mortality, and functional and clinical
outcomes.

Data Analysis

Descriptive statistics were employed to summarize important
findings and results from the selected articles and to describe
trends in AI/ML techniques, clinical applications, and rele-
vant findings associated with its use. Summary data were
presented using simple means, frequencies, standard devia-
tions (for normally distributed data on a decimal scale), and
proportions. AI/ML model performance within the reviewed
studies were summarized using various metrics, including the
area under the curve (AUC) of receiver operating
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characteristic (ROC) curves, accuracy (%), sensitivity (%),
and specificity (%). AUC is a measure of a ML model’s
discriminative ability (i.e., accurately predicting true positives
and negatives while identifying false positive or negative
cases).9,10 AUC values range from .50 to 1 and measure a
prediction models’ discriminative ability, with a higher AUC
value signifying better predictive ability of the model cor-
rectly placing a patient into an outcome category. A model
with an AUC of 1.0 is a perfect discriminator, .90 to .99 is
considered excellent, .80 to .89 is good, .70 to .79 is fair, and
.51 to .69 is considered poor.11 AUC measures a model’s
discriminative ability in accurately selecting true positives and
negatives, while minimizing false positives and false nega-
tives. Accuracy is simply a measure of a model’s ability to
correctly predict true positives and true negatives, without
accounting for identifying false positives/negatives. Reported
model performance metrics for each AI/ML algorithm type
and for each clinical application category were aggregated
across the reviewed studies. A formal bias assessment for each
study was preformed based on the Cochrane Handbook for
Systematic Reviews methodology (Supplementary Table 1).12

One-way ANOVAwith post hoc Tukey tests were performed,
with statistical significance set at P < .05. All statistical
analysis was performed using Stata (version 16.1, Stata
Corporation–College Station, Texas, USA).

Results

Search Results and Study Selection

Using our pre-defined search terms resulted in 335 articles, of
which 67 duplicate articles were removed. The remaining 268
articles were screened by title and abstract according to in-
clusion and exclusion criteria. Ultimately, there were 44 articles
included for full review, of which 41 met full inclusion and
exclusion criteria. (Figure 1) Over 83% of studies had level of
evidence III, and the median number of patients in each study
was 964 (mean 2784, standard deviation [SD] 3122). Although
there were no limitations on publication dates in the selection
process, the majority of studies (77.5%) were published during
the last 2 years (2018–2020) (Figure 2) AUC was the most
frequently reported performance metric, appearing in 37 out of
the 41 total reviewed studies (90.2%). In comparison, accuracy
was reported less frequently (16 studies, 39.0%), as were
sensitivity and specificity (11 studies, or 26.8%).

Administrative and Clinical Decision
Support Applications

A total of 18 reviewed studies (43.9%) evaluated the use of AI/
ML applications in optimizing preoperative patient selection
or projecting surgical costs, through prediction of hospital

Figure 1. PRISMA flowchart showing systematic review search strategy.
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length of stay, discharges, readmissions, and other cost-
contributing factors (Table 1, Supplementary Table 3).
Eleven studies (26.8%) evaluated AI/ML applications in ac-
curately predicting patient reoperations, operating time,
hospital length of stay, discharges, readmissions, or surgical
and inpatient costs.13-23 Four studies (9.8%) used patients’
preoperative risk factors and other patient-specific variables to
optimize the patient selection and surgical planning process
through the use of AI/ML-based predictions of surgical
outcomes and postoperative complications.24-27 Four studies
(9.8%) investigated the use of AI/ML in improving preop-
erative planning, through accurate identification of previously
implanted anterior cervical spinal implants and a decision
support system for spine fusion surgery that enhances surgical
planning through prediction of pedicle screw pullout strength
for any combination of patient-specific factors.24,28-30 The
authors of 17 studies mentioned the potential of AI/ML ap-
plications in bringing down the costs of spine surgery and
optimizing cost-efficient, value-based care delivery.

The majority of the decision support studies evaluated AI/ML
model performance using ROC/AUC, accuracy, sensitivity, and
specificity. Two studies did not test model performance, but
instead optimized preoperative patient selection using cluster
analysis to classify patients based on preoperative risk factors and
other variables. Four studies each evaluated different AI/ML-
based predictive models of readmissions and reoperations, with
an average AUC of .67 (SD .08) across 11 models and five
different ML methods (Table 2). Predictive models of LOS and
discharges were used in eight studies, with an average AUC of
.80 (SD .08) across 23 models and six different AI/ML methods.
Applications of preoperative patient selection/planning and cost
prediction were used in 11 models across nine studies, reporting

an average AUC of .89 (SD .08). ANOVA testing found sta-
tistically significant variability in model AUC, accuracy, and
specificity across the different decision support applications (P <
.001,P= .005,P< .001, respectively), and preoperative planning/
cost prediction models and discharge/LOS models each reported
significantly higher average accuracy (82.2% and 78.0%, re-
spectively) compared to readmissions/reoperation prediction
models (P = .009, P = .019, respectively). The same relationships
were confirmed in comparisons of model specificity by Tukey
post hoc testing. There were no significant differences in model
sensitivity between the applications (Table 2).

Prediction and Management of Postoperative
Outcomes and Complications

A total of 24 reviewed studies used various AI/ML models to
predict outcomes, complications, and adverse events
(Supplementary Table 2, Table 3).19,23,31-52 Average AUC and
accuracy values significantly varied (P < .001 and P < .027,
respectively) (Table 4). AUC for predicting postoperative car-
diovascular complications averaged .69 (SD .12, 21 models),
other postoperative complications averaged .68 (SD .12,
31 models), postoperative mortality models averaged .82 (SD .08,
30 models), and postoperative functional and clinical outcome
models averaged .75 (SD .09, 30 models). Tukey post hoc testing
found statistically significant differences between postoperative
mortality models (average AUC of .82) and each of the other
prediction models (Table 4). Average accuracy was also found to
be significantly different between other postoperative complica-
tions and postoperative functional and clinical outcomes, (85.8%
vs 72.2%, respectively) (P = .027) and there was no significant
variation in reported sensitivity and specificity values (Table 4).

Figure 2. Trends in the annual number of AI/ML publications in spine surgery (2011 to 2020).
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Comparison of AI/ML Algorithms

The most commonly applied AI/ML algorithms in the re-
viewed studies were logistic regression (24 studies, 58.5%),
while cluster analysis was only used in 3 studies (7.3%)

(Supplementary Table 2, Table 5). When comparing AI/ML
model performance across various algorithm types, there was
statistically significant variation confirmed by one-way
ANOVA testing. Bayesian networks had the highest aver-
age AUC (.80, SD .09, 13 models), while support vector

Table 1. Reviewed Studies of Preoperative Patient Selection and Planning in Spine Surgery.

Author,
year

Pathology or
procedure ML algorithms Prediction outputs

Number of
patients

Avg.
age

%
female Data source

Kalagara,
2018

Lumbar
laminectomy

Boosting/ensemble learning Readmissions/
reoperations

4030 63 – ACS-NSQIP
database

Stopa,
2019

Spine fusion Deep Learning/ANN Discharge/LOS 144 50 45.10 Single center

Ames,
2019

ASD Cluster analysis Pre-op selection/
planning

570 56.8 78.80 Multicenter ASD
databases

Goyal,
2019

Spine fusion Regression analysis, boosting/
ensemble learning, deep
Learning/ANN, decision tree,
and Bayesian networks

Discharge/LOS and
readmissions/
reoperations

8872 57 48.50 ACS-NSQIP
database

Ogink,
2019

Spondylolisthesis Deep learning/ANN, SVM,
decision tree, and Bayesian
networks

Discharge/LOS 1868 63 63.00 ACS-NSQIP
database

Kuo, 2018 Spinal fusion Regression analysis, SVM,
decision tree, and Bayesian
networks

Cost prediction 532 62.4 58.60 Single center

Lerner,
2019

Posterior lumbar
spinal fusion

Cluster analysis Pre-op selection/
planning

18770 51.3 56.10 IBM MarketScan®

commercial
database

Siccoli,
2019

Lumbar
decompression

Boosting/ensemble learning and
decision tree

Discharge/LOS and
readmissions/
reoperations

635 62 48.00 Single center

Chia, 2017 Cerebral palsy Deep learning/ANN Pre-op selection/
planning

242 – – Single center

Huang,
2019

ACDF Bayesian networks, SVM, and
regression analysis

Pre-op selection/
planning

321 – – Single center

Varghese,
2018

Spinal fusion Decision tree and regression
analysis

Pre-op selection/
planning

– – – Single center

Karhade,
2018

Lumbar
degeneration

Deep learning/ANN, decision
tree, SVM, and Bayesian
networks

Discharge/LOS 5273 53 46.90 ACS-NSQIP
database

Hopkins,
2019

Posterior lumbar
spinal fusion

Deep learning/ANN Readmissions/
reoperations

5816 – – ACS-NSQIP
database

Ogink,
2019

Lumbar spinal
stenosis

Deep Learning/ANN, decision
tree, SVM, and Bayesian
networks

Discharge/LOS 9338 67 47.30 ACS-NSQIP
database

Karnuta,
2019

Spinal fusion Bayesian networks Discharge/LOS and
cost prediction

3807 – 57.80 New York state
SPARCS
database

Khatri,
2019

Spinal fusion Decision tree Pre-op selection/
planning

– – – Single center

Bekelis,
2014

ACDF Regression analysis Discharge/LOS and
readmissions/
reoperations

2732 55.7 46.30 ACS-NSQIP
database

Assi, 2014 Scoliosis Regression analysis Pre-op selection/
planning

141 – – Single center

Abbreviations: ASD, adult spinal deformity; ACDF, anterior cervical discectomy and fusion; ANN, artificial neural network; SVM, support vector machine; LOS,
length of stay; ACS-NSQIP, American College of Surgery-National Surgical Quality Improvement Program; SPARCS, Statewide Planning and Research Co-
operative System.
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Table 2. Statistical Comparisons of Reported Model Performance Metrics, by Administrative/Clinical Decision Support Application.

Administrative or clinical decision support applications

Performance metrics: Mean (SD, N)

AUC Accuracy Sensitivity Specificity

Preoperative planning and cost prediction .89 (.08, 11) 82.2 (4.8, 7) 70.5 (10.9, 6) 87.7 (5.1, 6)
Discharge, LOS .80 (.08, 23) 78.0 (7.7, 9) 69.1 (19.8, 7) 76.6 (7.8, 7)
Readmissions and reoperations .67 (.08, 11) 70.2 (11.8, 8) 56.0 (16.5, 7) 59.0 (16.5, 7)
ANOVA P < .001 P = .005 P = .472 P < .001
Tukey post hoc tests 1 vs 2 (P = .005) 1 vs 3 (P = .009) – 1 vs 3 (P < .001)

1 vs 3 (P < .001) 2 vs 3 (P = .019) – 2 vs 3 (P = .002)
2 vs 3 (P < .001) – – –

Abbreviations: AUC, area under the curve; SD, standard deviation; N, number of models; LOS, length of stay.

Table 3. Reviewed Studies of Postoperative Outcome Prediction in Spine Surgery.

Author/
year Pathology or procedure ML algorithms Prediction outputs

Number
of patients

Avg
age

%
Female Data source

Arvind,
2018

ACDF Deep learning/ANN,
regression analysis,
and SVM

Cardiac, VTE, wound
infection, and 30-day
mortality

6264 53 52 Multi-center
database

Kim, 2018 Lumbar decompression Deep learning/ANN
and regression
analysis

Cardiac, VTE, wound
infection, and 30-day
mortality

6789 60 55 ACS-NSQIP
database

Kim, 2018 ASD Deep learning/ANN
and regression
analysis

Cardiac, VTE, wound
infection, and 30-day
mortality

1746 60 59 ACS-NSQIP
database

Karhade,
2019

ACDF Deep learning/ANN,
SVM, decision tree,
regression analysis,
and boosting/
ensemble learning

Sustained opioid use 2737 51 53 Multi-center
database

Han, 2019 General Regression analysis Adverse events, cardiac/
CHF, neurologic,
pulmonary/pneumonia,
and overall medical/
surgical complication

331870 63 54 IBM MarketScan,
CMS Medicaid,
Medicare
databases

Durand,
2018

ASD Decision tree Postoperative blood
transfusion

205 54 66 ACS-NSQIP
database

Karhade,
2019

Spinal metastatic disease Deep learning/ANN,
regression analysis,
SVM, decision tree,
and boosting/
ensemble learning

90-day mortality, and 1-
year mortality

732 61 42 Single center

Scheer,
2017

ASD Decision tree Adverse events and major
complications

557 58 79 Multi-center ASD
databases

Janssen,
2018

Thoracolumbar spine
surgery

Regression analysis Wound infection 898 52 51 NCI SEER registry

Karhade,
2019

Spinal epidural abscess Deep Learning/ANN,
regression analysis,
SVM, decision tree,
and boosting/
ensemble learning

Mortality: 90-day 1053 59 39 Multi-center
database

Karhade,
2019

Lumbar spine surgery Regression analysis Sustained opioid use 8435 60 46 Multi-center
database

Ryu, 2018 Spinal ependymoma Decision tree and
regression analysis

5-year mortality and 10-
year mortality

2822 – 47 NCI SEER registry

(continued)
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machines (SVMs) had the lowest average AUC (.63, SD .18,
17 models). Tukey post hoc testing found significant differ-
ences in AUC between SVM and several AL/ML algorithms,
including Bayesian network (P = .009), decision tree (P =
.018), and deep learning/ANN (P = .019) (Table 5). There was
significant variation in reported average sensitivity of the AL/
ML algorithms (P = .006). Deep learning/ANN had the
highest reported average sensitivity of 81.5% (SD 12.1%, 8
models), while Bayesian network and boosting/ensemble
learning had the lowest reported sensitivity, with 63.7%

(SD 11.0%, 4 models) and 55.7% (SD 21.7%, 7 models),
respectively. ANOVA testing did not detect significant dif-
ferences in accuracy or specificity between the AI/ML al-
gorithms (P = .083 and P = .554, respectively) (Table 5).

Discussion

This systematic review is the first to evaluate and summarize
AI/ML applications in optimizing patient selection and pre-
dicting surgical outcomes and complications in spine surgery.

Table 3. (continued)

Author/
year Pathology or procedure ML algorithms Prediction outputs

Number
of patients

Avg
age

%
Female Data source

Khan,
2020

Degenerative cervical
myelopathy (DCM)

Decision tree,
regression analysis,
SVM, and boosting/
ensemble learning

PRO/functional outcomes
(SF-36 MCS, PCS)

193 52 35 Multi-center
AOSpine CSM
clinical trials

Staartjes,
2019

Single-level tubular
microdiscectomy for
lumbar disc
herniation

Deep learning/ANN
and regression
analysis

Clinical improvement (leg
pain, back pain, and
functional disability)

422 49 49 Single center

Hoffman,
2015

Cervical spondylotic
myelopathy

SVM and regression
analysis

PRO/functional outcomes
(post-op ODI)

20 60 45 Single center

Shamim,
2009

Lumbar disc surgery Cluster analysis Post-op poor outcomes 501 41 31 Single center

Azimi,
2014

Lumbar spinal stenosis Deep learning/ANN
and regression
analysis

Post-op patient satisfaction 168 60 65 Single center

Azimi,
2015

Lumbar disk herniation Deep learning/ANN
and regression
analysis

Post-op recurrent lumbar
disc herniation

402 50 54 Single center

Azimi,
2017

Lumbar disk herniation Deep learning/ANN Post-op successful
outcomes

203 48 53 Single center

Buchlak,
2017

ASD Regression analysis Post-op complications 136 63 74 Single center

Karhade,
2018

Spinopelvic chordoma
surgery

Deep Learning/ANN,
decision tree, SVM,
and Bayesian
networks

5-year mortality 265 64 39 NCI SEER registry

Khor,
2018

Lumbar fusion Regression analysis Clinical improvement 1965 61 60 Multi-center
database

Bekelis,
2014

ACDF Regression analysis Cardiac, VTE, wound
infection, and 30-day
mortality

2732 56 46 ACS-NSQIP
database

Siccoli,
2019

Lumbar decompression Deep learning/ANN,
decision tree, and
Bayesian networks

Clinical improvement (6wk,
12wk)

635 62 48 Single center

Ames,
2019

Adult spinal deformity Regression analysis,
decision tree, and
boosting/ensemble
learning

PRO/functional outcomes
(SRS-22R)

561 54.4 75.9 Single center

Abbreviations: ANN, artificial neural network; SVM, support vector machine; LOS, length of stay; ASD, adult spinal deformity; ACDF, anterior cervical
discectomy and fusion; CHF, congestive heart failure; VTE, venous thromboembolism; UTI, urinary tract infection; PRO, patient-reported outcomes; SF-36,
short-form 36 questionnaire; MCS, mental health composite score; PCS, physical health composite score; ODI, Oswestry disability index; ACS-NSQIP,
American College of Surgery-National Surgical Quality Improvement Program; CMS, centers for Medicare and Medicaid services; NCI SEER, National Cancer
Institute Surveillance, Epidemiology, and End Results database; AOSpine CSM, AOSpine North America cervical spondylotic myelopathy study.
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Our review included 41 studies from the literature which
tested AI/ML-based prediction and optimization models that
may help guide clinical decision-making and surgical plan-
ning. Among all the reviewed studies, AI/ML models were
fairly accurate, averaging 74.9% overall accuracy and AUC of
.75, across all AI/ML methods. In particular, AI/ML models
performed best in optimizing preoperative patient selection
and planning and predicting costs, hospital discharge, and
length of stay. Model performance was also good or fair (AUC
between .70 and .89) in predicting postoperative mortality and
functional and clinical outcomes. However, model perfor-
mance was considered poor (AUC between .50 and .69) in
predicting postoperative complications (including cardio-
vascular complications), adverse events, and readmissions and
reoperations, which may be due to the difficulty in predicting
random events which are out of the surgeon’s control in the
postoperative period. In addition, model performance metrics
such as AUC must also be carefully interpreted, especially
because AUC balances a model’s precision and recall (and
resulting false positives and false negatives), and in certain
clinical applications such as cancer screening or prediction of

potentially fatal complications after spine surgery, providers
may prefer a model with a lower AUC that minimizes false
negatives.4,53

Although AI/MLmodels did not perform well in predicting
postoperative complications, they offer a potentially beneficial
tool for providers to optimize preoperative planning and
improve cost-efficiency. For example, a practicing surgeon
may use an electronic medical record system with an inte-
grated AI/ML application that accurately predicts which pa-
tients will almost certainly require inpatient vs outpatient
surgery to ensure that these high-risk patients have access to
specialized care and supervision post-operatively. As a result,
surgeons can have an incredibly accurate aid in patient se-
lection, thus ensuring that patients are treated in the appro-
priate setting. In a systematic review of AI/ML applications in
neurosurgery, Buchlak et al.54 reported similar model per-
formance results for deep learning/ANN and logistic regres-
sion models as our study. However, their findings reported
SVM performance to have an average AUC of .80 and ac-
curacy of 81.8%, which is significantly higher than the results
from our study for SVM. It appears that SVM may be shown

Table 4. Statistical Comparisons of Reported Model Performance Metrics, by Postoperative Prediction/Management Application.

Postoperative prediction/management applications

Performance metrics: Mean (SD, N)

AUC Accuracy Sensitivity Specificity

Postoperative cardiovascular complications .69 (.12, 21) – 81.0 (4.2, 2) 52.0 (1.4, 2)
Other postoperative complications .68 (.12, 31) 85.8 (7.9, 4) 77.6 (4.4, 5) 51.6 (.5, 5)
Postoperative mortality .82 (.08, 30) – – –

Postoperative functional or clinical outcomes .75 (.09, 30) 72.2 (11.2, 28) 73.8 (15.5, 24) 60.9 (17.5, 24)
ANOVA P < .001 P = .027 P = .487 P = .278
Tukey post hoc tests 1 vs 3 (P < .001) – – –

2 vs 3 (P < .001) – – –

3 vs 4 (P = .035) – – –

Abbreviations: AUC, area under the curve; SD, standard deviation; N, number of models; LOS, length of stay.

Table 5. Statistical Comparisons of Reported Model Performance Metrics, by AI/ML Algorithm.

AI/ML algorithm

Performance metrics: Mean (SD, N)

AUC Accuracy Sensitivity Specificity

Bayesian network (BN) .80 (.09, 13) 76.9 (11.9, 8) 63.7 (11.0, 4) 67.4 (17.7, 4)
Boosting/ensemble learning (BEL) .76 (.10, 13) 74.1 (9.6, 8) 55.7 (21.7, 7) 71.7 (11.4, 7)
Decision tree (DT) .77 (.11, 29) 74.0 (8.7, 13) 75.4 (13.7, 12) 62.5 (21.7, 12)
Deep learning/artificial neural network (ANN) .77 (.11, 34) 83.0 (10.7, 10) 81.5 (12.1, 8) 71.8 (10.1, 8)
Logistic regression (LR) .74 (.11, 56) 70.4 (10.6, 13) 70.6 (12.4, 19) 61.0 (12.4, 19)
Support vector machines (SVM) .63 (.18, 17) 67.5 (12.9, 3) 72.3 (18.3, 3) 56.0 (42.9, 3)
ANOVA P = .007 P = .083 P = .006 P = .554
Tukey post hoc tests BN vs SVM (P = .009) – BEL vs ANN (P = .002) –

DT vs SVM (P = .018) – – –

ANN vs SVM (P = .019) – – –

Abbreviations: AUC, area under the curve; SD, standard deviation; N, number of models; AI/ML, artificial intelligence and machine learning.
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to be more accurate in certain non-spine neurosurgical ap-
plications, such as image classification,55-60 but is perhaps less
accurate for guided decision-making in spine surgery.

AI/ML-based predictive modeling may be especially
beneficial in spine surgery, which usually involves complex
procedures with potentially high complication rates in often
highly comorbid patient population. Ames et al.26 showed that
an AI/ML-based classification system for ASD surgical
candidates optimizes personalized treatment plans based on
patient-specific risk factors. This application may aid surgeons
with pre-operative decision-making by informing them about
which treatment options may offer optimal clinical im-
provement and value with the lowest risk of adverse events. In
our review, several of the AI/ML prediction and optimiza-
tion models that were used to improve patient care and
postoperative outcomes also showed the potential to reduce
unnecessary healthcare expenditures and even provide risk-
adjusted reimbursement models for providers and
hospitals.13,14,22,26 The predictive capabilities of AI/ML
models enable decision makers to forecast costs related to
postoperative outcomes and complications, pain medication
use, patient discharges and discharge placements, length of
stay, unplanned readmissions, and other postoperative inter-
ventions. The authors highlighted the potential of AI/ML to
improve clinical decision making and patient care by pre-
dicting likely postoperative outcomes, which enables pro-
viders to optimize resource allocation for post-surgical
monitoring and focused care of high-risk patients.16,17,20,22 Of
particular relevance to curtailing rising inpatient costs, ac-
curate forecasting of hospital length of stay has important
implications for management of bed utilization and other
hospital resources. Kalagara et al.13 analyzed hospital read-
missions after laminectomy and used patient-specific variables
to develop predictive models for identifying readmitted pa-
tients with over 95% accuracy.

AI/ML may also aid surgeons and clinical decision makers
to more efficiently plan for surgery and select patients for the
optimal surgical setting (for instance, outpatient vs inpatient)
that will produce the best care outcomes while improving cost-
efficiency. Several studies highlighted the potential value of
predictive modeling during the pre-operative period in helping
surgeons with optimizing patient selection for surgery and
surgical planning, which also allows providers to efficiently
allocate needed hospital resources and plan for possible
postoperative interventions to ensure the best possible
outcomes.22,25-27 The recent shift toward value-based health
care has likely also spurred the recent spike in research of AI/
ML applications in optimizing cost-efficiency and resource
allocation, especially because post-surgical inpatient care and
other associated hospital costs are major drivers of US
healthcare expenditures61 and spine surgery costs.62-67 In
contrast, outpatient surgical procedures have been shown to be
comparatively less costly than inpatient treatment, and treating
suitable surgical candidates in the outpatient setting may offer
significant cost savings.68-73 Development of well-defined and

accurate patient selection criteria for outpatient surgery, along
with optimized anesthesia and postoperative pain management
protocols, are associated with reduced patient readmission risk
and surgical costs.74-76 Predictive modeling of patient length of
stay, based on their medical comorbidities, demographic pro-
file, and other variables, may aid surgeons in the selection of
outpatient surgical candidates, and has been shown to be ef-
fective in selecting patients for outpatient posterior spinal fu-
sions.27 Through the use of patient-specific risk factors, AI/ML
applications may also enable development of risk-adjusted
insurance reimbursement models which compensate pro-
viders and hospitals commensurate with the case complexity
and patient complication risk and comorbidities, providing a
potential solution for unwillingness to treat medically complex
patients. However, issues of data privacy and security when
using AI/ML remain a major challenge which must be ad-
dressed, as patients may feel uncomfortable with their personal
health information being used on such a large scale.

Although there has been a recent significant increase in the
number of AI/ML publications in spine surgery, there remains
a general lack of large, powered, and externally validated
studies which would elucidate more information on their
efficacy in spine surgery practice. In addition, it is important to
note that although that our review included studies through
February 2020, it still provides a detailed overview of the
recent trends in the literature and the potential early appli-
cations of AI/ML. Many of the reviewed studies involved
different spine procedures that vary in complexity and risk and
included studies with models which varied in the quality and
quantity of their training and validation data. As such, any
conclusions about the efficacy of AI/ML applications in spine
surgery require further investigation. This study does not
make conclusive relationships between AI/ML and clinical
efficacy, but instead presents statistical findings and trends
from recent studies. Future directions in research of AI/ML
applications in spine surgery, and in health care, must focus on
developing externally validated and commercially viable
systems that can be easily implemented and incorporated with
already-existing hospital systems in a cost-efficient manner. In
addition, future studies should evaluate optimal methods that
aid in determining surgical candidates and which can use a
wide range of preoperative data. An understanding of AI/ML-
based applications is becoming increasingly important, par-
ticularly in spine surgery, as the volume of reported literature,
technology accessibility, and clinical applications continues to
rapidly expand.
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