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ABSTRACT

Function prediction of proteins with computational
sequence analysis requires the use of dozens of
prediction tools with a bewildering range of input
and output formats. Each of these tools focuses
on a narrow aspect and researchers are having dif-
ficulty obtaining an integrated picture. ANNIE is the
result of years of close interaction between compu-
tational biologists and computer scientists and
automates an essential part of this sequence ana-
lytic process. It brings together over 20 function pre-
diction algorithms that have proven sufficiently
reliable and indispensable in daily sequence analytic
work and are meant to give scientists a quick
overview of possible functional assignments of
sequence segments in the query proteins. The
results are displayed in an integrated manner
using an innovative AJAX-based sequence viewer.
ANNIE is available online at: http://annie.bii.a-star.
edu.sg. This website is free and open to all users
and there is no login requirement.

INTRODUCTION

Advances in sequencing technology have taken the
number of available sequences in databases to unprece-
dented levels (1). Unfortunately, the ability to determine
the sequence of a particular gene has not been accompa-
nied by an equally impressive gain in our ability to achieve
insights into the biological function (including molecular
and celullar) of these sequences. For example, the full
genome sequence of the yeast Saccharomyces cerevisae
became available in 1997 (2); nevertheless more than a
decade later, of the 6000+ identified genes there are still
over 1000 with uncharacterized function (3). In human,

more than half of the genes are functionally characterized
incompletely or not at all.
The classic route to functional characterization invol-

ving experimental methods from the genetic and biochem-
ical toolbox-like specific knockouts, targeted mutations
and a battery of biochemical assays is time consuming
(depending on the model organism, it can take years)
and costly. Therefore, there is a strong case for using
in silico methods in a preliminary analysis for functional
hypothesis generation to direct experimental planning in
the laboratory.
There are literally hundreds of prediction algorithms

described in the literature, although only some of those
have a sensitivity and selectivity to be applicable for unsu-
pervised function prediction of arbitrary query protein
sequences (4). Each method concentrates on some specific
structural or functional aspect of a sequence, e.g. the dis-
tribution of unstructured regions (5), its amino acid com-
positional particularities in sequence windows (6) or the
existence of globular domains (7,8). The input formats,
method of program invocation as well as the result pre-
sentation vary widely making it difficult to interconnect
results and obtain an integrated picture of a possible func-
tional assignment. Even when concentrating on a smaller
set of reliable prediction methods, the results can still
easily exceed several Megabytes of textual (ASCII-type)
information, integration of which into an overall func-
tional prediction can be a formidable task requiring days
of work per sequence. The need for standardizing auto-
mated annotations as well as assessing their quality has
been recognized by initiatives such as AFP (9).
There have been several attempts to address the inter-

operability problem (10–12). JAFA (13) is an example of
an annotation meta-server that sends a query sequence to
several function prediction servers and displays the over-
lap in Gene Ontology terms (14) as well as providing links
to the original results. The ProFunc server (15) combines a
range of methods for sequence analysis but requires the
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3D structure of the query to be known in advance. There
are also a number of databases that provide sequence
annotations from various sources like UniProtKB (16)
or Ensembl (17) as well as some services that predict a
limited set of features for a given input sequence such as
SMART (8), InterProScan (18,19) or TarO (20). It should
be noted that, frequently, database annotations contain
errors and, especially, function descriptions propagated
by sequence similarity criteria might be dubious. There-
fore, tools for de novo sequence annotation are important
for reducing the dependence on potentially misleading or
incomplete database comments (21,22).
ANNIE is unique in that it has been developed by a

collaboration of sequence analysis as well as computer
science experts. It provides over 20 of the most useful
algorithms (Table 1) covering the first two steps of seg-
ment-based sequence analysis (23) that have proven indis-
pensable in daily sequence analytic work for functional
discovery (24–26). Of particular value is the inclusion of
predictors for a number of post-translational modifica-
tions (27–32) as well as targeting signals (33,34) developed
in-house.
The results of all algorithms are displayed in an

integrated manner using a newly developed interactive
sequence viewer as well as a number of views highlighting
the distribution of features across sets of sequences.

ANNIE enables scientists to gain a quick overview of
possible functional assignments in protein sequence sets.

METHODS

Algorithms

Segment-based sequence analysis (23) starts with the
assumption that proteins are chains of functional units
which can be analyzed independently. The overall func-
tion arises from the synthesis of the functions predicted for
each individual module.

The procedure first uses algorithms for the detection of
nonglobular regions, which are segments with a composi-
tional bias or repetitive patterns that often represent linker
regions, fibrillar segments, flexible binding sites or points
of post-translational modifications (35). The subsequent
step is to run algorithms for the identification of known
globular domains. These domains are conserved within
groups of homologous proteins and are often associated
with enzymatic or ligand-binding function. In the last step,
it is assumed that the remaining parts of the sequence
represent yet uncharacterized globular domains that
need to be characterized within the homologous family
concept. Iterative heuristic have to be applied to uncover
weak links in sequence space and collect a family of

Table 1. Sequence analytic algorithms

Algorithm Description Parameters

CAST (37) Algorithm for low-complexity region (LCR) detec-
tion and selective masking

Threshold: 40

IUPred (5) Prediction method for recognizing ordered and
intrinsically unstructured/disordered regions in
proteins

Prediction type: long disorder

SAPS (6) Statistical analysis of protein sequences with respect
to amino acid composition and simple sequence
motifs

n/a

SEG (38) Prediction of low complexity regions Three parameter sets:
Window-size 12, Locut 2.2, Hicut 2.5
Window-size 25, Locut 3.0, Hicut 3.3
Window-size 45, Locut 3.4, Hicut 3.75

Big-
Q

(27–29) Prediction of protein GPI lipid anchor cleavage
sites

Taxon-specific learning set

NMT (30,31) Prediction of N-terminal N-myristoylation of
proteins

Taxon-specific parameter set

PrePS – FT (32) Farnesylation prediction n/a
PrePS – GGT1 (32) Geranylgeranylation prediction n/a
PrePS – GGT2 (32) Rab geranylgeranylation Prediction n/a
PeroPS/PTS1 (33,34) Prediction of peroxisomal targeting signal 1 Taxon-specific prediction function
DAS-TMfilter (39) Prediction of transmembrane regions Quality cutoff: 0.72
HMMTOP (40) Transmembrane topology prediction using Hidden

Markov models
n/a

PHOBIUS (41) Combined transmembrane topology and signal
peptide predictor

n/a

TMHMM (42) Transmembrane helix predictor n/a
IMP-COIL (43) Prediction of coiled-coil regions, modified imple-

mentation of the algorithm Lupas et al. by
F. Eisenhaber

n/a

PROSITE (44) Pattern search in the PROSITE database n/a
PROSITE-Profile (44) Profile search in the PROSITE database n/a
HMMER (7) Profile Hidden Markov Models SMART (8) with e-value cutoff of 0.001
IMPALA (45) Tool to compare a query sequence against a library

of position-specific scoring matrices
Wolf-library (e-value cutoff: 0.001) (46),

Aravind-library (e-value cutoff: 1e-5) (47)
RPS-BLAST against CDD (48) Reverse-position-specific BLAST against the

Conserved Domain Database (CDD)
e-value cutoff: 0.001
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protein sequence segments that contain yet unknown glob-
ular domains (36).

ANNIE provides a selection of algorithms covering
the first two steps of this approach. Table 1 lists the algo-
rithms which have been integrated together with a short
description, references and the preselected runtime para-
meters. These parameters have been chosen so as to pro-
vide a reasonable compromise between the need to give a
comprehensive and sensitive overview of sometimes weak
signals and the ability of scientists not trained in sequence
analysis to discard false positives. It should be noted that
further relaxed parameterization might produce more pre-
diction results; yet, their interpretation might require
expert knowledge and experience. ANNIE is based on
our extensive in-house sequence analytic pipeline
ANNOTATOR, which is used to analyze proteomes and
detect distant evolutionary relationships using computa-
tionally intensive iterative heuristics (36). The engine
behind ANNIE has been in use for several years and
has annotated millions of sequences. The online help
pages contain a detailed description of each individual
algorithm.

User-interface

There are two input methods allowing the user to either
paste sequences in FASTA-format (a single sequence can
also be pasted without a description line) or upload them
from a corresponding FASTA-formatted file. There is cur-
rently a limit of 10 sequences per annotation run which
might be increased in the future depending on actual usage
patterns and the availability of compute server resources.

It is highly recommended to include taxonomic infor-
mation in the classical NCBI square bracket notation at
the end of the description line (e.g. [Homo sapiens]) in
order for ANNIE to automatically choose the correct
parameterization for predictors of post-translational mod-
ifications and targeting signals. Additionally, this will
enable the user to view the taxonomic distribution of the
uploaded sequence set.

The annotation process is started by pressing the corre-
sponding ‘Annotate’ button. Requests are queued and,
upon availability of resources, sent to a cluster of dedi-
cated CPUs for execution of algorithms and parsing of
output. The user will be directed to a page containing
the current as well as past results. If an (optional) email
address is provided, a message containing a link will be
sent once all algorithms have completed. This gives the
user access to past annotations for at least 72 h, after
which they will be deleted.

There are a number of views that allow the user to
look at different aspects of the annotation. Upon submis-
sion of an annotation request the user will normally
click on the corresponding result folder and be presented
with a view displaying the uploaded sequences with
links to individual results. If a certain algorithm is still
queued or running a special symbol will be displayed
and the page reloads periodically until all algorithms
have terminated (under average load this should take no
more than 1min).

Result view

Following the links for individual algorithms will display
the corresponding result together with links to external
resources where applicable (e.g. domain descriptions for
HMMER). Each result also provides access for validation
purposes to the ‘raw’ unparsed data generated by the
executable.

Interactive sequence view

Clicking on the protein sequence symbol starts the inter-
active sequence view (Figure 1). The results of individual
algorithms are displayed as rectangles projected onto the
sequence ruler. Hovering over regions will display infor-
mation specific to the result (e.g. e-values of globular
domain model hits). Right-clicking on a region will
allow examination of the particular feature in greater
detail with algorithm-specific information as well as a
compositional analysis of the sequence stretch.
Figure 1 displays the interactive sequence view of

Dysferlin (49,50), a protein involved in a number of hered-
itary myopathies (it is provided as a sample sequence on
the main page). The characteristic C2-domains (51) have
been detected by a number of distinct tools (HMMER
against Smart, IMPALA against Wolf-Library,
PROSITE-Profile search, RPS-Blast against CDD)
giving enhanced confidence to that particular finding.
The detection of a C-terminal membrane-embedded
region by three different methods also lends plausibility
to the claim that Dysferlin is a transmembrane protein.
It should be noted that there is a seventh C2-domain not
shown in this view between residues 1338 and 1437 (the
e-value=0.025 is above the default threshold of 0.001),
Due to the AJAX-based technology of the viewer,

zooming and panning is almost instantaneous, allowing
fast and concise drill-down to a particular region.
Additional feature-specific information can be obtained
by right-clicking on a region. This will lead to a detailed
compositional analysis of the sequence stretch and, were
applicable, include alignment data as well as links to exter-
nal resources.

Set view

Uploading several sequences at once opens up the possi-
bility to analyze the frequency of certain features within
that set of sequences. ANNIE provides a special view
called ‘Histogram’ (Figure 2). This view displays features
found with diverse algorithms sorted by the number of
occurrences. Clicking on the name of the feature will
link to all the sequences in which it has been detected.
A third view called ‘Taxonomy’ (Figure 3) shows the

taxonomic distribution of sequences within the set.

CONCLUSIONS AND OUTLOOK

We have presented ANNIE, a comprehensive de novo pro-
tein annotation system that integrates a large number of
indispensable algorithms used in everyday sequence ana-
lytic work. The results of individual algorithms can be
accessed separately or displayed together in an interactive
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Figure 2. Histogram view. This view shows the occurrence of sequence features in the sequence set under investigation. The features are sorted by
their number of incidences in the set. Clicking on the link provided with the feature name will generate the sublist of sequences with this feature. In
this example of Eco1-type proteins, the top four entries in the histogram are related to low-complexity regions as well as short motifs from PROSITE
that are less reliable predictions. The fifth entry indicates the occurrence of the KOG3014 domain model that is characteristic for the Eco1-class of
proteins necessary for the establishment of sister chromatid cohesion in mitosis.

Figure 1. Interactive sequence view. This figure shows an exemplary interactive sequence view using the sequence of Dysferlin. The sequence features
found by the various programs are organized in panes that coalesce findings with similar functional significance. The different color coding is just for
the purpose of easing navigation.
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AJAX-based sequence viewer. There are additional views
for assessing the frequency of certain features across a
set of sequences as well as revealing its taxonomic
distribution.

New algorithms appearing in the literature are con-
stantly being evaluated as to their potential contribution
for function discovery and are eventually integrated.
Future work will also see the inclusion of algorithms
from the third step of segment-based sequence analysis if
the necessary computational resources can be obtained.
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