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Abstract: Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus
(CHIKV) and O’nyong nyong virus, cause acute and chronic crippling arthralgia associated
with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer
from rheumatic manifestations that last 6 months to years. However, the physiological functions
of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain
poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant
for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune
infiltrates and lower viral loads in footpads at the peak of arthritic disease (6–8 days post infection).
Macrophages constituted the largest immune cell population in footpads following infection, and were
significantly reduced in Cxcl10−/− mice. The viral RNA loads in neutrophils and macrophages were
reduced in Cxcl10−/− compared to wild-type mice. In summary, our results demonstrate that CXCL10
signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a
therapeutic target for mitigating alphaviral arthritis.
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1. Introduction

Alphaviruses are a genus of single-stranded, positive-sense RNA viruses within the Togaviridae
family. These viruses are mainly transmitted by mosquitoes and pose a public health threat
worldwide, particularly in tropical/subtropical regions. Many alphaviruses are arthritogenic, including
Chikungunya (CHIKV), O’nyong-nyong (ONNV), and Ross River viruses (RRV), etc. CHIKV is the
causative agent of acute and chronic crippling arthralgia that was initially identified in Tanzania
in 1952 [1]. Since then, several major epidemics have been recorded on the Indian Ocean islands,
India, Southeast Asia, which resulted in over 6 million cases [2]. In late 2013, CHIKV emerged on the
Caribbean islands, and has now spread to more than 50 countries across Central and South America,
including autochthonous infections in the United States, and caused over 2.5 million infections (Sources:
Pan America Health Organization). Approximately 50% of CHIKV-infected patients suffer from
rheumatic manifestations that last 6 months to years, with ~5% of the victims having rheumatoid
arthritis-like illnesses [3,4].

However, no licensed specific antiviral therapeutics or vaccines are available worldwide. This is
partly due to the lack of an in-depth understanding of the pathogenic mechanisms of CHIKV
in immune-competent animal models. It has become clear that innate immunity, in particular

Viruses 2020, 12, 1252; doi:10.3390/v12111252 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-7332-1871
http://dx.doi.org/10.3390/v12111252
http://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/12/11/1252?type=check_update&version=2


Viruses 2020, 12, 1252 2 of 13

the type I IFN system, is one of the most important early antiviral mechanisms in response to
alphaviruses. During the acute phase of infection in humans (~two weeks), CHIKV infects many
organs and cell types [2], inducing apoptosis and direct tissue damage [5–7]. The acute phase
is also characteristic of robust innate immune responses, including high levels of type I IFNs,
proinflammatory cytokines/chemokines, and growth factors [5,8–12]. Immune cell infiltration is a
hallmark of acute CHIKV infection, primarily including macrophages and monocytes, but also
neutrophils, dendritic cells, NK cells, and lymphocytes [2]. In the chronic phase, CHIKV arthritis
may progress without active viral replication, typified by an elevated expression of cytokines and
immune cell infiltration [2,13]. In particular, the human arthritic disease severity is associated with a
high level of serum chemoattractants for monocytes/macrophages/T cells, CXCL10, and CXCL9 [14].
In mice, CHIKV infection leads to a low viremia usually lasting 5–7 days, which is limited by type I
IFNs [11,15–17] and is subsequently cleared by virus-specific antibody responses [18–25]. When injected
directly into a mouse foot pad, CHIKV elicits overt arthritic symptoms, including the first peak of foot
swelling characteristic of edema occurring 2–3 days post infection and a second peak at 6–8 days post
infection [26], with extensive infiltration of immune cells into the infected feet [27–31].

Various classes of active compounds have been reported to inhibit CHIKV replication; however,
the in vivo efficacy and safety of these candidates has not been evaluated in animal models [32]. A live
attenuated CHIKV virus vaccine was efficacious in 85% of vaccinated people after one year in a phase II
trial, but 8% of vaccinated people reported transient joint pain, representing a potential safety concern
and enforcing the need for more research on therapies [33]. At present, there is still a great need for
safe and effective prophylactics and therapeutics. Using mouse models of viral infection and innate
immunity, here, we report that CXCL10 signaling promotes the pathogenesis of alphaviral disease.
Cxcl10−/−mice had the same viremia as wild-type animals, but fewer immune infiltrates and lower viral
loads in footpads at the peak of arthritic disease (days 6–8 post infection). Macrophages constituted
the largest immune cell population in footpads following infection, and were significantly reduced in
Cxcl10−/− mice. The viral RNA loads in neutrophils and macrophages were also reduced in Cxcl10−/−

compared to wild-type mice.

2. Materials and Methods

2.1. Mice

All the mice used in this study were purchased and bred in our state-of-the-art animal facility.
Wild-type C57BL/6J (JAX Stock #: 000664) and Cxcl10−/− (JAX Stock #: 000687 on C57BL/6J background)
mice were obtained from the Jackson Laboratory. For each experiment, both sex (both genders)- and
age (range of 6–12 weeks)-matched WT/mutant mice were used. Mouse experiments were approved
and performed according to the guidelines of the Institutional Animal Care and Use Committee at the
University of Connecticut and Yale University.

2.2. Cells and Viruses

Vero cells (monkey kidney epithelial cells, Cat. # CCL-81) were purchased from ATCC (Manassas,
VA, USA). The cells were grown at 37 ◦C and 5% CO2 in complete Dulbecco’s modified Eagle medium
(DMEM) medium: DMEM (Corning) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1%
penicillin-streptomycin (P/S; Corning, Glendale, Arizona, US). The CHIKV French La Reunion strain
LR2006-OPY1 was a kind gift of The Connecticut Agricultural Experiment Station located in New
Haven, CT, USA. The ONNV non-recombinant strain was provided by the World Reference Center
for Emerging Viruses and Arboviruses (WRCEVA) at the University of Texas Medical Branch. Both
viruses were propagated in Vero cells.
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2.3. Plaque Forming Assay

The quantification of infectious viral particles in cell culture supernatants/mouse tissue
homogenates/mouse sera was performed on a Vero cell monolayer in a 6-well plate, following
an established protocol [34]. A series of 10-fold dilutions of viral samples were prepared in DMEM
without fetal bovine serum. In a 6-well plate, 500 µL of diluted samples were added to a Vero monolayer.
The plate was incubated at 37 ◦C and 5% CO2 for 2 h. The inoculum was then removed and replaced
with 2 mL of complete DMEM medium with 1% SeaPlaque agarose (Cat# 50100, Lonza, Morristown,
NJ, US). The plate was incubated at 37 ◦C and 5% CO2 for 3 days, and plaques were visualized by a
Neutral Red exclusion assay. Viable cells took up neutral red, while dead cells excluded it and thus
formed a circular white spot.

2.4. Mouse Infection and Disease Monitoring

Age- and sex-matched mice were inoculated subcutaneously in the hind footpad with 3 × 105

plaque forming units (PFUs) of CHIKV/ONNV. Mice were then monitored for clinical signs of disease.
Footpad swelling was measured using a precision digital caliper. Foot swelling as an indicator of local
inflammation was recorded over a period of 8 days after infection. The thickness and width of the
perimetatarsal area of the hind feet were measured using a precision metric caliper in a blinded fashion.
The foot dimension was calculated as width × thickness, and the results were expressed as the fold
increase in the foot dimension after infection compared to before infection (day 0 baseline).

2.5. Histology Studies

Mice were sacrificed and feet were removed and fixed with 4% paraformaldehyde. Tissues were
embedded in paraffin and processed to obtain 5 µm sections. Tissues were stained with hematoxylin
and eosin. Arthritic disease was arbitrarily scored from 1 to 5, with 5 representing the worst, based on
the exudation of fibrin and inflammatory cells into the joints, alteration in the thickness of tendons or
ligament sheaths, and hypertrophy and hyperplasia of the synovium [35]. Slides were imaged using
an Accu-Scope EXI-310 model inverted microscope with Infinity Capture software.

2.6. Treatment with Dimethyl Sulfoxide (Vehicle) and Atorvastatin In Vivo

Atorvastatin was dissolved in dimethyl sulfoxide. Mice were injected intraperitoneally with
dimethyl sulfoxide (vehicle) or atorvastatin (25 mg/kg/day) (Cat#1044516, Sigma-Aldrich, St. Louis,
MO, US) from Day 3 through 8 post CHIKV infection (p.i.) on a daily basis.

2.7. Flow Cytometry and Florescence Activated Cell Sorting

Mice were euthanized, and footpads and ankles were harvested at 0, 2, 4, and 6 days post infection
(dpi). The footpads were skinned and put into 4 mL of digestion medium with 20 mg/mL collagenase
IV (Sigma-Aldrich, St. Louis, MO, US), 5 U/mL dispase (Stemcell, Cambridge, MA, US), and 50 mg/mL
DNase I mix (Qiagen, Germantown, MD, US) in complete RPMI1640 medium. The tissues were
harvested and incubated in digestion medium on a shaker at 37 ◦C for 4 h. The mixture was transferred
to a 40 µm cell strainer sitting on a collection tube. In total, 5 mL of complete RPMI medium was
added to the cell strainer. Using a circular motion, the digested tissues were ground into the medium
against the cell strainer to release the maximum number of cells. Cells were then centrifuged at 500× g
for 5 min. The supernatant was discarded, and red blood cells were lysed using 0.2% sodium chloride.
Cells were washed once in complete RPMI medium, and re-suspended in 10 mL of complete RPMI
medium in a 15 mL tube. In total, 10 mL of 35% v/v Percoll/RPMI medium was carefully added to the
cell suspension. The tube was spun for 20 min at 1200× g. The pellet was re-suspended and washed
with complete RPMI medium once.

The isolated cells were then stained for 30 min at 4 ◦C with the following antibodies (Biolegend,
San Diego, CA, US): APC-Fire 750-anti CD11b (Cat. # 101261); Alexa Flour 700-anti Ly-6G (Cat. #
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127621); Brilliant Violet 421-anti CD11c (Cat. # 117343); PerCP-Cy5.5-anti MHC II (Cat. # 107625);
PE-anti Tetherin (PCDA1) (Cat. # 12703); Brilliant Violet 510-anti F4/80 (Cat. # 123135); APC-anti CD68
(Cat. # 137007); PE-Dazzle 594-anti CD3 epsilon (Cat. # 100347); Brilliant Violet 711-anti CD4 (Cat. #
100557); Brilliant Violet 570-anti CD8a (Cat. # 100739); FITC-anti CD25 (Cat. # 102005); Zombie UV
(Cat. # 423107); PE-Cy7-anti CD45 (Cat. # 103113); and TruStain FcX-anti CD16/32 (Cat. # 101319).
After staining and washing, the cells were fixed with 4% PFA and analyzed by fluorescence activated
cell sorting (FACS).

Flow cytometry was later performed on a Becton-Dickinson FACS ARIA II, CyAn advanced
digital processor (ADP) and analyzed using FlowJo software. Neutrophils were classified as CD11b+

Ly6G+, macrophages were classified as CD11b+ F4/80+, DC cells were classified as CD11c+ MHC II+,
and pDC cells were classified as CD11c+ PCDA1+.

2.8. Real-Time Quantitative RT-PCR

RNA was isolated from blood samples and footpad tissues using an RNAasy mini-prep kit
(Invitrogen, Carlsbad, CA, US). For paraformaldehyde-fixed and sorted cells, RNA was isolated
using the RNeasy FFPE Kit (Qiagen, Germantown, MD, US). Isolated RNA was resuspended in
RNAse/DNAse free H2O (Invitrogen) and stored at 4 ◦C overnight or −80 ◦C. RT was performed
on a Bio-Rad CFX machine using the RNA RT Kit (Takara, Mountain View, CA, US) with a
10 µL total reaction volume per well containing 3 µL of RNA samples. Quantitative PCR (qPCR)
was performed with gene-specific primers and SYBR Green. The primers applied for CHIKV
were the forward primer (5′-GCGAATTCGGCGCAGCACCAAGGACAACTTCA-3′) and reverse
primer (5′-AATGCGGCCGCCTAGCAGCATATTAGGCTAAGCAGG-3′). The primers employed
for ONNV were the forward primer (5′-GCAGGGAGGCCAGGACAGT-3)’ and reverse primer
(5′-GCCCCTTTTTCYTTGAGCCAGTA-3′). The housekeeping gene control used was beta actin (Actb).
The following PCR cycling program was used: 10 min at 95◦, and 40 cycles of 15 s at 95◦ and 1 min at
60 ◦C. The results were calculated using the -∆∆Ct method.

2.9. Statistical Analysis

All data were analyzed with GraphPad Prism software. For viral RNA analysis, immune
cell analysis, cytokine and chemokine analysis, and footpad swelling, data were analyzed by the
nonparametric Mann–Whitney test, two-tailed Student’s t test, or multiple t-tests, depending on the
data distribution and number of comparison groups. p values of less than 0.05 were considered
statistically significant.

3. Results

3.1. CXCL10 Signaling Contributes to Alphavirus Pathogenesis

In humans, Chikungunya arthritis severity is associated with a high level of serum chemoattractants
for monocytes/macrophages/T cells, referred to as CXCL10 [14]. To investigate the physiological role of
CXCL10 in alphavirus pathogenesis, we injected CHIKV directly into the footpads of both wild-type
(WT) and Cxcl10 knockout (Cxcl10−/−) mice. The results show that the viremia of Cxcl10−/− mice
were comparable to those in WT mice at days 2 and 4 post infection (p.i.) (Figure 1A), suggesting
that CXCL10 is dispensable for controlling the systemic dissemination of CHIKV. The viral loads
in the infected ankle joints of WT and Cxcl10−/− mice were the same at day 2 p.i. and increased
modestly in WT at day 4 p.i., while dropped significantly and rapidly in Cxcl10−/− mice from days
4 through 7 (Figure 1B), suggesting that CXCL10 signaling promotes viral persistence. Intriguingly,
histopathological analyses conducted by foot swelling monitoring and H&E staining confirmed a
moderate decrease in immune cell numbers in the muscles and joints of Cxcl10−/− compared to WT
mice (Figure 1C,D). Consistently, the mRNA expression of Ifnb1 and inflammatory cytokines (Il6, Tnfa)
was reduced in Cxcl10−/− joints at day 7 p.i. compared to WT (Figure 1E).
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Figure 1. CXCL10 signaling facilitates Chikungunya virus (CHIKV) pathogenesis in mouse feet. Age-
and sex-matched C57BL/6 (wild-type (WT)) and Cxcl10-deficient (Cxcl10−/−) mice were infected with
CHIKV. (A) Quantification of viremia by qPCR in whole blood cells (left panel) and a plaque assay
(PFU/mL serum) (right panel) of WT and Cxcl10−/− mice. (B) Quantification of viral loads by qPCR (left
panel) and a plaque forming assay (PFU/g tissue, day 7) at various days after infection. (C) Fold changes
in the footpad dimensions of CHIKV-infected mice (Days 2, 4, 6, and 8) in comparison to the uninfected
mice (Day 0) (n = 8 per genotype). Error bar: mean ± s.e.m. *, p < 0.05, non-parametric Mann–Whitney
test. (D) Representative hematoxylin and eosin staining (H&E) micrographs and arbitrary scores of
ankle joint inflammation and damage using a scale of 1 to 5, with 5 representing the worst disease
at 7 days after CHIKV infection. N = 5–6/genotype. Magnifications 40×. B: bone, T: tendon, and M:
muscle. Boxed areas indicate the regions with infiltration and tissue damage. Magnification: 200×.
(E) qPCR quantification of cytokines in ankle joints at day 8 post infection (p.i.). Each dot = one mouse.
The horizontal line in each column = the median. * p < 0.05; ** p < 0.01 ((non-parametric Mann–Whitney
test for (B,D) and two-tailed Student’s t-test for (E)).

We then used a clinically approved, cholesterol-lowering drug, called atorvastatin, which has
recently been demonstrated to effectively inhibit CXCL10 expression in both mice and humans [36,37].
We treated mice with dimethyl sulfoxide (vehicle) or atorvastatin from day 3–8 p.i. [36] during the acute
phase of CHIKV infection. Indeed, atorvastatin treatment alleviated CHIKV-induced inflammation and
disease (Figure 2), suggesting that CXCL10 could be a potential drug target for treating CHIKV arthritis.
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Figure 2. Atorvastain suppresses CHIKV arthritis. Mice were injected intraperitoneally with dimethyl
sulfoxide (vehicle) or atorvastatin (25 mg/kg/day) from Day 3 through 8 post CHIKV infection (p.i.)
on a daily basis. (A) Fold changes in the footpad dimensions of infected mice (Days 3, 6, and 8)
in comparison to the uninfected mice (Day 0) (n = 8 for vehicle and 10 for atorvastatin). Error bar:
mean ± s.e.m. (B) Representative H&E micrographs (100×) and (C) arbitrary score of H&E on Day 8 p.i.
The horizontal line in (C) is the median of the results. * p < 0.05, two-tailed Student’s t-test for (A,C).
Each symbol represents one mouse.

We next investigated whether this phenomenon is applicable to other arthritogenic viruses.
Considering this, we chose O’nyong-nyong (ONNV), which, together with CHIKV, is a member of the
Semliki Forest antigenic complex of the Alphavirus genus. Consistent with the results from our CHIKV
studies, ONNV viremia were not influenced by Cxcl10 deficiency (Figure 3A), while the viral loads in
the infected feet were lower in Cxcl10−/− than those in WT mice at day 6 p.i. (Figure 3B). Fold changes
in the footpad dimensions and histopathological analyses (arbitrary score) by hematoxylin and eosin
staining (H&E) confirmed a moderate decrease in immune cell infiltration into the muscles and joints
of Cxcl10−/− compared to WT mice (Figure 3C,D). These data suggest that CXCL10 signaling promotes
alphaviral persistence and immune cell infiltration into mouse feet.
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Figure 3. CXCL10 signaling facilitates O’nyong-nyong virus (ONNV_ pathogenesis in mouse feet.
Age- and sex-matched C57BL/6 (WT) and Cxcl10-deficient (Cxcl10−/−) mice were infected with ONNV.
(A) qPCR quantification of ONNV loads in (A) whole blood cells and (B) the footpads at various days
after infection. (C) Fold changes in the footpad dimensions of ONNV-infected mice (Days 2, 4, 5,
and 6) in comparison to the uninfected mice (Day 0) (n = 7 per genotype). Error bar: mean ± s.e.m.
* p < 0.05, ** p < 0.01, two-tailed Student’s t-test. (D) Arbitrary scores of ankle joint inflammation and
damage using a scale of 1 to 5, with 5 representing the worst disease at 6 days after ONNV infection.
N = 6/genotype. Each dot = one mouse. The horizontal line in each column = the median. * p < 0.05
(non-parametric Mann-Whitney test for (B,D)).

3.2. CXCL10 Signaling Promotes Macrophage Recruitment to Infected Feet

Since CXCL10 is a chemoattractant for monocytes/macrophages, we analyzed the immune
infiltrates in the infected feet by fluorescence activated cell sorting (FACS), in order to identify and
quantitate individual cell populations. In WT mice, the total number of CD45+ cells increased modestly
at day 2 p.i., decreased slightly at day 4 p.i., and then elevated again at day 6 p.i. There was a modest
decrease in CD45+ cells in Cxcl10−/− at day 6 p.i. compared to WT (p = 0.06) (Figure 4A). Macrophages
were recruited rapidly, as early as day 2 p.i., and were the largest immune population at all censored
time points. Intriguingly, these cells were significantly fewer in number in Cxcl10−/− than WT mice at
day 6 p.i. (Figure 4B). Neutrophils constituted the second largest immune population and infiltrated
into the infected feet similarly between WT and Cxcl10−/− mice in terms of quantities and kinetics
(Figure 4C). Compared to those in the uninfected mice (day 0), the numbers of conventional dendritic
cells (cDC) were only significantly increased by day 6 p.i. and higher in Cxcl10−/− than WT mice
(Figure 4D). Plasmacytoid dendritic cells (pDC) were also recruited to the infected feet as early as day
2 p.i. and their numbers were the same in both genotypes (Figure 4E).
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Figure 4. CXCL10 signaling facilitates macrophage infiltration into mouse feet. Age- and
sex-matchedC57BL/6 (WT) and Cxcl10-deficient (Cxcl10−/−) mice were infected with ONNV. Different
immune cells were quantitated by fluorescence activated cell sorting (FACS). The frequencies of (A)
the total number of CD45+ immune cells, (B) CD11b+ F4/80+ macrophages, (C) CD11b+ Ly-6G+

neutrophils, (D) CD11c+ MHCII+ conventional dendritic cells (cDC), and (E) CD11c+ PCDA1+

plasmacytoid dendritic cells (pDC). Each dot = one mouse. The horizontal line in each column = the
median. * p < 0.05 (non-parametric Mann-Whitney t test).

3.3. CXCL10 Signaling Promotes Alphavirus Persistence in Infiltrating Neutrophils and Macrophages

The abovementioned data show that macrophages and neutrophils are the primary infiltrating
cells in the infected mouse feet, and interestingly, the former has been demonstrated to likely be a
source of CHIKV persistence in nonhuman primates [38]. We then examined ONNV RNA loads
in each cell population after FACS. We were able to extract RNA from paraformaldehyde-fixed
cells using a specialized RNA kit and quantitated viral RNA by qRT-PCR. Among all immune cells,
neutrophils contained the highest viral load, which was remarkably reduced in Cxcl10−/− mice (p = 0.05)
compared to WT mice (Figure 5). Macrophages had the second highest viral load, which was also
decreased in Cxcl10−/− mice. The viral loads in cDC and pDC, though at a much lower level than
neutrophils/macrophages, tended to be lower in Cxcl10−/− mice (Figure 5). These data suggest that,
during the acute phase of infection, neutrophils and macrophages are likely an important source of
alphaviral replication in infected tissues, and CXCL10 signaling promotes alphavirus persistence in
infiltrating neutrophils and macrophages in the foot.
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Figure 5. Viral RNA loads are reduced in Cxcl10−/− macrophages and neutrophils. Age- and
sex-matched C57BL/6 (WT) and Cxcl10-deficient (Cxcl10−/−) mice were infected with ONNV. Immune
cells were sorted by FACS. ONNV RNA in the sorted immune cells was quantitated by RT-PCR. Each
dot = one mouse. The horizontal line in each column = the median. p values were calculated with the
Mann-Whitney test.

4. Discussion

CXCL10 is a chemoattractant for monocytes/macrophages, T cells, NKs, and DCs, and can also
promote T cell adhesion to endothelial cells, antitumor activity, and the inhibition of bone marrow
colony formation and angiogenesis [39–41]. Intriguingly, a high level of serum CXCL10 is associated
with severe arthritic disease in humans [14]. CXCL10 is secreted by several cell types, including
monocytes, endothelial cells, and fibroblasts. Its expression is increased in many kinds of chronic
inflammatory arthritis, especially in rheumatoid arthritis (RA). It is thus plausible that, during CHIKV
infection, CXCL10 plays a role in leukocyte homing to inflamed tissues and in the perpetuation of
inflammation, and therefore, tissue damage.

Indeed, joint inflammation was alleviated in Cxcl10−/− mice (Figures 1 and 3), and this was
accompanied by a significant reduction in macrophages, which constituted the largest immune cell
population in joints following infection (Figure 4B) [38,42,43]. These activated macrophages could
be a main cellular reservoir for CHIKV persistence during the late stages of infection [38,42] and
contribute to sustained inflammation. In addition to recruiting immune cells, CXCL10 signaling
could directly stimulate viral replication, for instance, human immunodeficiency virus 1 (HIV-1)
replication in macrophages and lymphocytes [44]. In this study, we unexpectedly observed a reduction
in CHIKV/ONNV in Cxcl10−/− compared to WT mouse feet at the late stages (days 4/6 and thereafter,
respectively) (Figures 1B and 3B), suggesting a pro-viral role for CXCL10 signaling. However, the
absence of CXCL10 did not impact viremia (Figures 1A and 3A), suggesting that CXCL10 signaling is
dispensable for systemic viral dissemination. Therefore, a reduction of viral loads in Cxcl10−/− mouse
feet could be due to fewer macrophages that are supportive of viral replication in Cxcl10−/− than WT
feet [38,42].

Statins are clinically approved, cholesterol-lowering drugs. They may also have an
anti-inflammatory feature by potently inhibiting CXCL10. A recent meta-analysis of rheumatoid
arthritis disease severity in patients treated with statins or a placebo revealed that statins may be
effective in improving rheumatoid arthritis disease activity measured by the disease activity score,
tender joint count, and swollen joint count [45]. We also demonstrated that the inhibition of CXCL10
by statins could alleviate CHIKV arthritis (Figure 2). Moreover, statins can directly interfere with viral
replication, such as Ebola [46], Zika [47], and influenza [48] virus. Therefore, statins could represent a
potential drug for the treatment of CHIKV arthritis. However, statins could also interfere with antiviral
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immune responses due to their inhibition on STAT1 [49,50], RELA [51], and the NF-κB complex [49,52].
Therefore, clinical treatment regimens, including the dose, frequency, and timing of administration,
need to be optimized to minimize side effects.

Intriguingly, the viral RNA loads in macrophages and neutrophils of Cxcl10−/− mouse feet were
~3–6-fold lower than those of WT mice (Figure 5). Macrophages and neutrophils were the predominant
immune cell types in mouse feet following alphaviral infection (Figure 4). As such, it is plausible
that CXCL10 signaling could directly promote alphaviral replication in macrophages and/or other
immune cells. CXCL10 is also a chemoattractant for CD4+ T cells, which, though constituting only a
small fraction of immune infiltrates during the second peak of foot swelling, are believed to underlie
CHIKV-induced inflammation in mice [16,28,53]. However, CD4+ T cells were recruited to footpads by
day 6 following ONNV infection and the numbers of CD4+ T cells in Cxcl10−/− feet were no different
than those in WT feet (data not shown).

In summary, our results demonstrate that CXCL10 signaling contributes to alphaviral replication
and the pathogenesis of alphavirus-induced arthritis. Future work is required to elucidate how CXCL10
signaling facilitates alphaviral replication.
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