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ABSTRACT Assuming a two component system for the muscle, a series elastic
element and a contractile component, the analyses of the isotonic and isometric
data points were related to obtain the series elastic stiffness, dP/dl, , from the
relation,

dl, 4t dl, dt v

From the isometric data, dP/dt was obtained and shortening velocity, v, was a
result of the isotonic experiments. Substituting (Py — P)/T for dP/dt and (P,
— P)/(P + a) times b for v, dP/dl, = (P + a) /bT, where P < Py, and a, b
are constants for any lengths / < [, (Matsumoto, 1965). If the isometric ten-
sion and the shortening velocity are recorded for a given muscle length, [,
although the series elastic, /; , and the contractile component, /., are changing,
the total muscle length, /o remains fixed and therefore the time constant, T.

Integrating,
P [
[F 1",
po P+ a 6T Vi,

the stress-strain relation for the series elastic element,

P a —70—1
F_l (l+1—)(-)> 1 — exp 5T J,

is obtained; Lo = L + l.o where /o equals the contractile component length
for a muscle exerting a tension of Py. For a given P/P,, I, is uniquely deter-
mined and must be the same whether on the isotonic or isometric length-tension-
time curve. In fact, a locus on one surface curve can be associated with the
corresponding locus on the other.
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INTRODUCTION

The studies by Fenn and Marsh (1935), Hill (1938, 1953), Katz (1939),
Wilkie (1950), and Aubert (1956) have defined the mechanical behavior of
the active striated muscle as a two component system of active contractile
components in series with passive elastic ones. Hill (1950) and Wilkie (1956)
have described the undamped series elastic component, showing it to be
independent of time. When the contractile component is stimulated and
develops a force, it can do so only by shortening and stretching its series
elastic elements. Were the contractile component directly attached to the
skeleton at both ends, the movements would be uncontrollably sudden and
jerky. There would be no way of accumulating mechanical energy for jump-
ing. The extremely rapid movement of the contractile component is buffered
by the action of the series elastic component resulting in smoother and slower
muscular shortening.

SERIES ELASTIC STIFFNESS

The observable variables involved in the study of muscle mechanics whether
isotonic or isometric can be represented by tension, length, and time (2, /,
t) of the active contractile system. To simplify a complicated problem,
all other variables are assumed to be or kept constant, e.g. temperature,
Ringer’s solution composition, etc. Then the relation of the physical variables
of the muscle is represented as.

P=f({0,
P apP
and dP = (5); dt + (W)t dl. (1)

If this relation were differentiated with respect to /, holding P constant,

dP\ _ (aP) (dt) 4 (27 (¢
d e \ot/i\dlJr " \3l/:\di)s"
When P is held fast, P does not change so that
dP
(37)? =0

Furthermore, ﬂ =1
dl /s

dP aP 1
Th )= {2y - . \
erefore, ( dl)t (at )l (dl) (23
P
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The muscle length is equal to the sum of the contractile component and the
series elastic element length for a two component contractile model,

l=10L++1.

For isometric contraction, / remains fixed, hence

(%), - %o

i), " dad T @
d, d,
and = T (3)

The shortening velocity of the contractile component equals the stretching
velocity of the series elastic element when the muscle is developing tension

. . dP . . .
isometrically, (W)z' In the afterloaded isotonic contraction, the load the

muscle lifts is constant and therefore the series elastic length remains unaltered
during shortening.
dl dl
ZYy = Z¢, 4
(dt)r dt (4)

The quantity, (%)P, refers to the rate of change of / of the contractile com-

. dl . . . . . .
ponent itself, d—; Consider the situation at time, ¢, during the rise of the

isometric tetanus, when tension reaches the value, P. Then at that time the
velocity of the contractile component must be exactly the same as the velocity
with which the muscle would be shortening under the same load P, and at
exactly the same muscle length, /, if it were isotonic (Fig. 1).

Then

.. dP\ .
This analysis, under the condition of constant /, shows that (—) is actually
t

. . . dP
the series elastic stiffness <d7 )z' Hence

(fil‘i)f _(%Itj)z'éj_' (6)
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according to the Hill equation.

The isometric tension rise is assumed to be an exponential function of time
based on the results shown in this paper. If we can express the isometric tension
rise as an exponential function of time, then we can represent

Isotonic shortening
afterloaded af
length, 15 with
toads P=0, P“

Vo Py, P3

P‘
5
2
. 9
o w

V=0

Isometric contraction
at length, lg

Ficure 1. Diagrammatic representation of the two component muscle model for the
condition of determining dP/dl; , series elastic stiffness. The load, P, is symbolically de-

fined as constant.
P=P}|1l—exp— ! (8)
= o P —

where T is a characteristic time constant for that muscle length. Then

dP\ P, — P
(E>l =7 (9)
Substituting in the series elastic stiffness equation, the result is
dP P+H4a
(71‘8 = T ( 10)

1 Negative velocity means decrease in length with respect to time.
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If the elastic stiffness relation is experimentally valid, knowing a, 4, and 7,

one would expect to find a straight line relation between %; and P. Another

method of experimental test is to plot (i,—l:)‘ vs. P (assumed straight line),

obtain » from the force-velocity relation, and determine j—f (Fig. 7). For both

curves, the initial length at which contraction begins must be the same. The
series elastic stress-strain equation can be developed by integrating the s.e.
stiffness relation.

Let
l, = length of series elastic element for muscle length /, exerting
tension, P at time, ¢, during active contraction.
I, = length of contractile component for muscle length /, exerting
tension, P at time, ¢, during contraction when /, = [, + /,.
/0 = length of series elastic element for muscle length /, exerting ten-

sion, Py .

l.o = length of contractile element for muscle length /, exerting
tension, Py, when /y = 1 + Io.
length of series elastic element for muscle length /, exerting
tension, P = 0 during contraction.

{;; = length of contractile component for muscle length /, exerting

tension, P = 0, during contraction (l; = I, + l.q).

Rearranging and integrating the expression for the series elastic stiffness,

o~
%
-

il

fP dP _ l‘_dﬁ
poP+a l"bT,

lnP+a__lc_laO

and Pita BT °

which is equivalent to

| )

But

lo = lyo 1+ Lo
and

=15+ 1.
Therefore

lso+ lcl) = ls + lt‘
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and
Lo — 6L =1, — L.
Also
o+ leo) — (4 Leo) = (e — Leo) = Lo — L.
Therefore

lO - (ls + lcO) = lso - lg-
Let 4w = & + /o, a measurable quantity in quick release experiments,

and
lsfco = lsf + lcO .

lscO

P _ _ a _ . lo 12
Then i 1 <1 + ITO) 1 — exp T , (12)

T

the series elastic stress-strain relation for /7.0 < lieo < loooo - Thus, this result
shows that P/P, is only a function of the change in series elastic element
length, /,, independent of time and that the stress-strain characteristic is an
exponential.

When P = 0, l,e0 = ;7.0 and

logen oT nPo +a

=122

10 lo a

B (13)

where /,;.o equals the sum of the unstressed series elastic element length and
the contractile component length when P = P, . The results of these equa-
tions should be compatible with the findings of quick release experiments,
transient change being too rapid for the contractile component length to be
altered.

EXPERIMENTAL

Frog-Ringer’s solution made up of 95 mm NaCl, 2.5 mm KCl, 1.34 mm CaCl; and 1.0
mM MgSO, buffered at pH 7.2 with 1.0 mm Na;HPO4 and 1.0 mm NaH,PO, was used
for all the experiments conducted in this research. The excised muscled stored in
oxygenated Ringer’s of the above composition at 0°C still contracted 5 days after
dissection. The experiments were carried out on whole sartorius muscle of Rana
pipiens isolated in ice cold Ringer’s solution. The iz situ muscle length varied from 42
to 50 mm and wet weight ranged from 161 to 210 mg. The preparation was equi-
librated for at least 1 hr in oxygenated Ringer’s in the muscle chamber at 0°C before
contraction measurements were made. The sartorius was stimulated in air by rec-
tangular pulses. The stimulus, which proved adequate to maintain isometric tetanic
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tension at a plateau for at least 30 sec, had a pulse duration of 5.0 msec and strength
of 10 v at 12.5 pulses/sec.

Isotonic contractions were studied with a series of afterloads and the shortenings
were imposed at intervals no shorter than 10 min. For each muscle, a whole family
of shortening vs. time curves was obtained, each curve within the series differing from
the others in the amount of afterload (Matsumoto, 1965, 1967).

For the isometric condition, tension-time course records were taken over the range
of muscle length from the smallest length at which tension could be just recorded to
the extreme length at which active tension disappeared. Tension and length (P/P,,

14 P/R, v8.171, FOR TIME FAMILY
Average of Isometric Dota

06 07 08 09 100 LIO 120 L30 140
171,

Ficure 2. Tension-length curves for time family. From the tension-time course records
tension-length plot was constructed for a series of selected times during activity (see text)

1/1y) were normalized and a family of tension development curves was obtained for
different isometric lengths. A length-tension plot was first constructed for a series of
selected times during activity. The family of curves resulting from four experiments
was averaged to give Fig. 2.

EXPERIMENTAL IDENTIFICATION

Exp. 45 Py = 1.94 kg/cm? lo = 45.0 mm M = 185 mg
Exp. 46 Py = 1.45 kg/cm? [y = 42.0 mm M = 184 mg
Exp. 48 P, = 2.16 kg/cm? ly = 50.0 mm M = 185 mg
Exp. 49 Py, = 1.94 kg/cm? Iy = 50.0 mm M = 184 mg

The standard deviation for point Py, /y, and ¢ = 1.00 sec of Fig. 2 is zero
since this was the selected point of reference in the normalization procedure.
As ] is increased or decreased and also decreased in ¢, standard deviation of P

increased. For example, at ¢ = 1.00 sec and 5— = 0.900, standard deviation of
0
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Figure 3 a and 6. Tension-time curves for {/lo family. The tension-time plot was ob-
tained from Fig. 2.

l
Pis +1.39, P, ; for L= 0.700, AP = 59, Py. At ¢t = 0.40 sec, standard

deviation was found to be £3.49, P, forj— = 0.900 and AP = +2.79% P,
0

forl— = 0.700.

b

From this graph of the isometric tension-length profile, a normalized
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tension-time plot was reconstructed, but now averaged and interpolated for
equal //l, intervals (Fig. 3).

From the resulting normalized tension-time plot, values of P/P, were
taken at a series of times. These coordinate points were then used to construct

10§
(I—_%) vs, t
9
Ol -
— +:rio
al® T:0,141 sec
)
- 121,20
o
T=0.167 s8¢
0.0l —
4:100
]
T=0.109 sec
T» QI30sec
0.00! { } | | | | \ )

0O 010 020 0.30 040 050 060 070 0.80 080 100
t sec

Ficure 4. Semilog plots of (1 — P/Py) vs. ¢ for the respective isometric lengths. Time
constant, 7, was graphically determined for the corresponding isometric length. The
data points were obtained from Figs. 3 g and 5.

semilog plots of (1 — P/Py) vs. t for the respective isometric lengths (Fig. 4).
Time constant, 7, was graphically determined for the corresponding iso-
metric length.

The normalized tension-time curves were also used to construct VS.

dpP
Py di
¢ curves. The rates of normalized tension rise against time plots were obtained
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by graphical analyses (Fig. 5). This procedure was necessary to evaluate
eventually the series elastic stiffness.

RESULTS

The time course of tension development for / < /, falls short of linearity in
the semilog plots. Once T is obtained, the tension-time course can be com-

7.0~
-%%F vs. T (Experimental)

60—

50—

. S | ! |
00 020 030 040 050 060 070 080 Q90 100
t sec

Ficure 5. Normalized tension rate vs. time curves. Data points were obtained by
graphical analyses from Figs. 3 a and 4.

puted from P/P, = I:l —exp (—71,)] and compared with the corresponding

curve of Fig. 3. Knowing 7, 1—%%’ can be calculated and compared with the
%0 %,}; (Fig. 6).

The P/P, time course does not show an abrupt change of tension from
P/P, = 0 to P/P, > 0 but progresses up an initial sigmoid path. At the onset
of a contraction, the rate of tension rise does not show a discontinuity. This
obviously is because propagation time is finite and the active state takes a
certain time to reach its full value. Macpherson and Wilkie (1954) believed
that a plateau of active state lagged 45 msec after stimulus, whereas Jewell
and Wilkie (1958) have presented evidence for tetanically stimulated muscle

direct graphically analyzed values of
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that activation requires 60 msec. This rise in dP/dt reflects the mobilization
. Lo 1 4P . ..
events, but no detailed attention is given to them here. P& initially starts
¢
at zero and increases approximately exponentially. The present analysis does

10.0

Q.
A

"'ln?

o.l0

Ol
0 010 0.20 0.30 040 0.50 060 O.70 080 090 100
t sec

1 4P
Figure 6. Semilog plots of IS t. The data points were obtained from Fig. 5.
]}

If the exponential tension-time course is approximately correct, (1 — P/Py,) vs. ¢ is

1 dP
expected to be a straight line in the semilog plot (Fig. 4). Also Po a vs. t must be a
0

straight line in the semilog plot and with the same time constant, 7, as in Fig. 4.

not consider this first phase of tension development and the main exponen-
tial rise of tension therefore is extrapolated to P/P, = 0 giving the intercept,
T as the reference time for the present consideration.

The series elastic stiffness relation, dP/dl, , results from the analyses of iso-
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£
oy

i dP
—-— V8.
%, o

P
L
1 dpP p . . . .
Figure 7. — -—— vs. ——. Straight lines are obtained from the equation
Poz dt Pol
1 4P 1 P 1
~— — = -~ — — 4 —. The data point from Figs. 2 and 5.
Po, & T Po, + T e data points are from Figs. 2 an

metric data coupled to isotonic contraction. If equation,

E_P—}-a
dl, T ’

is normalized,

(1) op+ R (14)
d
lo

For isometric tension developed at length, /,, and isotonic contraction after-
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loaded at muscle length, /,, the values of the constants are a/Py = 0.25,
b/ly = 0.30 per sec (Matsumoto, 1967), and T" = 0.109 sec when ///, = 1.0.
Substituting these values in the above equation,

ly dP

P .
o A 30.6 P, + 765 (see Fig. 8). (15)

dP ... 1dP . 1d .
P, dl, by dividing Pt by L (Sonnenblick, 1962).

Both methods have been used to tabulate the following:

.
One can also obtain —

TABLE I
L ap 1a I dp

P lo dP* Py dt ‘ I dt Py dl,

Py P dl, Theoret. Expt. Theoret. Expt. Theoret. Expt. Diff.
0.0 7.6 9.2 1.2 7.7
0.10 10.7 8.2 6.3 0.77 0.75 10.7 8.4 -2.3
0.20 13.8 7.3 6.6 0.53 0.53 13.8 12.4 ~1.4
0.30 16.8 6.4 6.1 0.38 0.38 16.8 16 —0.8
0.40 19.9 5.5 5.4 0.28 0.26 19.7 20.8 +1.1
0.50 22.9 4.6 4.5 0.20 0.20 23 22.5 -~0.5
0.60 26.0 3.7 3.6 0.14 0.15 26 24 -2.0
0.70 29.1 2.8 2.8 0.09 0.09 29 29 0
0.80 32.1 1.8 2.0 0.06 0.06 30 33 +3.0
0.90 35.2 0.9 1.2 0.03 0.03 35 40 +5.0
1.00 38.2 0 0.2 (1] 0

* From Equation 15.
ly dP
he 2 =
The p. .
upon the length for a corresponding tension. Extension of that length has a
one to one correspondence with tension. This is then a measure of the stiffness

of the series elastic element.
Integrating the elastic stiffness relation,

of a muscle is a measure of that part of the system which depends

lso()

P

=" (1 + ;0) 1 —exp|— for Ly < Lo < Luowo

Iy
where /,.¢ is the series elastic element length plus the muscle contractile com-
ponent length, /., the contractile component length corresponding to a
muscle exerting a tension, Py (i.e., [0 = I, + l.0). This then is the curve for
the tension extension of the elastic element. The plot of this equation com-
pared to an equivalent plot of Wilkie’s experiment (1956) shows an approxi-
mate agreement.
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However, the difference that does exist between curves in Figs. 9 and 10 is

P . 1 .
such that for the same jot the curve obtained from Wilkie’s data is at longer
0

l . . . .
?3 than the curve obtained by our analysis. Since Wilkie’s muscle was stimu-
0

Jo 9P . P
Po dis By

STRAIGHT LINE FROM _d_:.’_-suep"-n.es
o 0
POINTS ARE EXPERIMENTAL

=0
[
Tg--o.ao /s8¢

-é—- 0.25

T =0.109 sec

40~

o [T DU B W
Q2 04 06 08 10
P/R,
FiGure 8. do 4P vs. P . Straight line is obtained from the equation,
Py di, Py
P 3062 | 76s.
Pd, Py
. . ... 1 dP 1dl
The data points were obtained by division of -— — by — — (Matsumoto, 1965).
Py dt lo dt

lated with a single shock, contractile length for P, , /.o, is longer than for our

I, which was obtained by tetanically stimulating the preparation. Also, the

divergence of the two curves becomes greater with lighter load. This may

indicate the change of /., during the quick release time in Wilkie’s experiment.
For P = 0, let l,eo = L4700, then

lcfcﬂ=l_9InP0+a
lo lo a
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O.8}1~ strain 171, P/R, Stress

0.6
lo*30 mm
&o Mz 80mg
Q Frog's Sortorius ot 0°C
04
0.2
o ! § ]
094 0.96 098 1.00
Iscoslo
1.0}—
._l
p 9 lo <
70-!-(!* ‘5“"-.- BT 1, lsco=lo
08— lo
Jsco A
lo Po
1.00 1.00
0995 0823
0990 0672
08— o980 042!
0970  0.246
0960 0.8
®© 0950  0.020
a 0847 00
04— 2:025
R
IL- 0.30/ sec
(]
T=0.109 sec
02—
0 | | |
094 0.96 0.98 .00

Isco/ lo

Ficure 9. Series
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elastic element

stress-strain curve. Series elastic data
were obtained from Wilkie (1956) and
variables were normalized.

Ficure 10. Series elastic

element

stress-strain curve using the equation

derived in the text.
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lafco T Po + a
= —In
l() l() a

and 1 —

But
lsfco = lsf + lcO;
lsOcO _ [30 + lc() _ lO _ 1.

lo lo o ’

lsO + lcO lsj + lcO ls(] - le bT PO + a
— = = n .
N Iy ly lo a

and

Therefore

Since /,, equals the series elastic element length for a muscle exerting a ten-
sion, Py, and /,; is the series elastic element length for an active muscle
exerting zero tension,

lso—laf_[iZnPO'i'a
lo - lo a

(16)

is a method to obtain the total change in series elastic element length corre-
sponding to tension change of zero to P, .

o — bt _ 530,
b
for a/Py, = 0.25, b/l; = 0.30 per sec, and 7" = 0.109 sec. Wilkie’s direct
measurement shows approximately 4 to 5%, of /, extension.

DISCUSSION

An effort has been made in the present research to correlate the isotonic data
with the isometric observations. For the length region greater than /,, the
parallel elastic element is irreversibly stretched and the unique correspondence
of tension to length in active muscle cannot be shown. The length region less
than /, is adequately reproducible for length-tension-time relations. Con-
ceptually the series elastic element is defined as that part of the muscle which
possesses the property of a unique correspondence between tension and length.
For the same tension, whether isometric or isotonic, the series elastic element
must then have equal length and therefore the difference in the two condi-
tions resides in the contractile component length for a two element system.
The consequence of this model system is that the series elastic element is
identical in the isometric and isotonic P, /, ¢ surface curves. If this is the case,
for the state of the series elastic element (2, /, , t), the knowledge of two of the
three variables should determine the other, viz. P = f(/,, ¢). But since the
series elastic element is independent of time, for a given tension, the length,
I, is uniquely determined and converse. Therefore P = f(/,). Then dP =
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df(L,) df(L,)
Lo at, ana T2
this transfer function exists identically in the constant load condition as well
as for constant length, it must then have a point on the isometric surface
correlative to an isotonic point on its curve in the same state.

In order to integrate the relation,

is descriptively defined as the series elastic stiffness. Since

Fodp [d,
Py P + a - 1o ﬁ ’
the expression on the left must be independent of length and that on the right
must be independent of P. It is necessary to establish the constancy of q, b,
and T, or determine explicitly their relation to P and / for the evaluation of
the integral. If the results of the isotonic analysis are accepted (Matsumoto,
1965), i.e. a, b is not a function of / and ¢, and since a and b remain unaltered
with respect to P and v, according to the force-velocity relation, it must main-
tain its constancy for dP/dl, .

T is the characteristic time of isometric contraction but varies with muscle
length. It is fixed, however, for the isometric tension time course. If the inte-
gral is restricted to one isometric length, /, , the corresponding time constant
will not change. Knowing the property of the series elastic element and having
the knowledge of both isometric and isotonic P, /, ¢ curves, a point on one can
be related to a point on the other.

It must be emphasized, however, that the exponential approximation of the
isometric tension time rise seriously weakens the extension equation,

l_laco-l

P a _ _ n

-P—o—l (1+Fo) 1 — exp 5T J
ly

in the neighborhood of P — 0, which will be manifested in the constant value

of T.
The total series elastic extension equation,

an - lsf . H
lo T

lnP0+a,
a

results in approximately 5.39, [, for Rana pipiens using the data of this research.
Corresponding values using Wilkie’s data show about 4 to 5% /, for Rana
temporaria. Sandow (1958) reports 6.3%, /, according to his calculation. A. V.
Hill (1953) has a figure of 3 to 49 /, for frog’s or toad’s sartorius. The equa-
tion offers a simple method of evaluating (/,o — [/.;) independent of quick
release.
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