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A B S T R A C T Assuming a two component system for the muscle, a series elastic 
element and a contractile component, the analyses of the isotonic and isometric 
data points were related to obtain the series elastic stiffness, dP/dl , ,  from the 
relation, 

dP dP dt dP 1 
= " = " 

From the isometric data, dP/dt was obtained and shortening velocity, v, was a 
result of the isotonic experiments. Substituting (Po -- P ) / T  for dP/dt and (P0 
-- P ) / ( P  + a) times b for v, dP/dl, = (P + a) /bT ,  where P < P0, and a, b 
are constants for any lengths l ~ l0 (Matsumoto, 1965). If  the isometric ten- 
sion and the shortening velocity are recorded for a given muscle length, 10, 
although the series elastic, l , ,  and the contractile component, 1,, are changing, 
the total muscle length, l0 remains fixed and therefore the time constant, T. 
Integrating, 

f v e dP 1 f z , 
o P + a - b T ~o dl~' 

the stress-strain relation for the series elastic element, 

is obtained; l,,0 ---- ls + lo0 where /co equals the contractile component length 
for a muscle exerting a tension of P0- For a given P / P o ,  ls is uniquely deter- 
mined and must be the same whether on the isotonic or isometric length-tension- 
time curve. In  fact, a locus on one surface curve can be associated with the 
corresponding locus on the other. 
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INTRODUCTION 

The studies by Fenn and Marsh (1935), Hill (1938, 1953), Katz (1939), 
Wilkie (1950), and Aubert (1956) have defined the mechanical behavior of 
the active striated muscle as a two component system of active contractile 
components in series with passive elastic ones. Hill (1950) and Wilkie (1956) 
have described the undamped series elastic component, showing it to be 
independent of time. When the contractile component is stimulated and 
develops a force, it can do so only by shortening and stretching its series 
elastic elements. Were the contractile component directly attached to the 
skeleton at both ends, the movements would be uncontrollably sudden and 
jerky. There would be no way of accumulating mechanical energy for jump- 
ing. The extremely rapid movement of the contractile component is buffered 
by the action of the series elastic component resulting in smoother and slower 
muscular shortening. 

SERIES ELASTIC STIFFNESS 

The observable variables involved in the study of muscle mechanics whether 
isotonic or isometric can be represented by tension, length, and time (P, l, 
t) of the active contractile system. To simplify a complicated problem, 
all other variables are assumed to be or kept constant, e.g. temperature, 
Ringer's solution composition, etc. Then the relation of the physical variables 
of the muscle is represented as. 

P = I q ,  t), 

and d P  = - ~  ~ ~ t 

If this relation were differentiated with respect to l ,  holding P constant, 

d P  = OP dt  + O-1 t v 
~ p  ~ i z ~ p  ~ " 

When P is held fast, P does not change so that 

Furthermore, 

Therefore, 

= 0  

(1 

(2 
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The  muscle length is equal to the sum of the contractile componen t  and the 
series elastic e lement  length for a two componen t  contractile model, 

l = l c + l , .  

For isometric contraction, l remains fixed, hence 

dl) dl, dl, 
, = 3-/- + ~ = 0  

and dl, dl, 
dt -- dt " ( 3 )  

The  shortening velocity of the contractile componen t  equals the stretching 
velocity of the series elastic e lement  when the muscle is developing tension 

isometrically, ~ z" In  the afterloaded isotonic contraction, the load the 

muscle lifts is constant and therefore the series elastic length remains unal tered 
dur ing shortening. 

dl) all, 
P = ~/-. ( 4 )  

The  quanti ty,  refers to the rate of change of l of the contractile com- p' 

ponent  itself, all, ~-~-. Consider the situation at  time, t, dur ing  the rise of the 

isometric tetanus, when  tension reaches the value, P. T h e n  at  that  t ime the 
velocity of the contractile component  must  be exactly the same as the vdoci ty  
with which the muscle would be shortening under  the same load P, and  at  
exactly the same muscle length, l, if it were isotonic (Fig. 1). 
T h e n  

(-) 
- -  t = dl, dl, 

dt dt 

This analysis, under  the condition of constant  1, shows that  ~- ,is actually 

the series elastic stiffness ~ z" Hence  

--- . ( )  
z - ~ z  d l  " (6) 
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(Po- P' b 
Let - \ d t  l .  = \ P + a ] 

according to the Hill equation. 
The  isometric tension rise is assumed to be an exponential function of time 

based on the results shown in this paper. If  we can express the isometric tension 
rise as an exponential function of time, then we can represent 

I P 'O 

t o tj tzt a t 4 

"T___L__. ts t l  

isotonic shortening 
ofterlonded at 
length, I 0 with 
loads P=O, Pl '  

PvP3 

Isometric contraction 
at length, I 0 

"--_-[,'- 

FIGURE 1. Diagrammatic  representation of the two component  muscle model for the 
condition of determining dP/dl8, series elastic stiffness. The  load, P, is symbolically de- 
fined as constant. 

where T is a characteristic time constant for that  muscle length. Then 

d-i ~= T (9 )  

Substituting in the series elastic stiffness equation, the result is 

dP P + a  
- - -  ( 1 0 )  

dl~ b T 

1 Negative velocity means decrease in length with respect to time. 
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If the elastic stiffness relation is experimentally valid, knowing a, b, and T, 
dP 

one would expect to find a straight line relation between ~ and P. Another  

vs. P (assumed straight line), method of experimental test is to plot ~- z 

dP (Fig. 7). For both obtain v from the force-velocity relation, and determine ~ 

curves, the initial length at which contraction begins must be the same. The  
series elastic stress-strain equation can be developed by integrating the s.e. 
stiffness relation. 

Let  
18 = length of series elastic element for muscle length 10 exerting 

tension, P at time, t, during active contraction. 
l~ = length of contractile component  for muscle length 10 exerting 

tension, P at time, t, during contraction when 1o = l° -k l~. 
le0 = length of series elastic element for muscle length 10 exerting ten- 

sion, Po. 
lc0 = length of contractile element for muscle length lo exerting 

tension, Po, when 10 = l~0 + lc0. 
lof = length of series elastic element for muscle length 10 exerting 

tension, P = 0 during contraction, 
1~ s = length of contractile component  for muscle length lo exerting 

tension, P = O, during contraction (lo = l°o -k l,o). 
Rearranging and integrating the expression for the series elastic stiffness, 

ff o P - + a  J i . ,  bT"  

P -l- a l, -- loo 
and l n p 0 _ b a -  bT ' 

which is equivalent to 

T00 = P0 I - exp . ( l l )  

But 

and 

Therefore 

lo = 1 s o + l e o  

l o = l , + l ~ .  

leo -b l~o = l~ -t- l¢ 
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and  

Also 

Therefore  

Le t  

a n d  

/ 8 o -  l,  = lo - l , o .  

(/8o + too) - (/8 + Lo) = (l~ - / c o )  = Lo - l ,  

lo - (/8 + / c o )  -- /8o - / 8 .  

18~o = l. + l~o, a measurable  quan t i ty  in quick release experiments,  

18,~o = lss + loo. 

T h e n  P -  1 - ( 1  + a )  1 - exp (12)  
Po Poo b~o- /A" 

the series elastic stress-strain relat ion for 1,it0 ~ 1,,0 _< 180,0 • Thus,  this result  
shows tha t  P/Po is only  a funct ion of the change  in series elastic e lement  
length,  l , ,  i ndependen t  of t ime and  tha t  the stress-strain characterist ic is an  
exponential .  

W h e n  P = 0, 1,co = l~z~o and  

1~,~ 1 - -  b T Po ~ -  a 
l o  = T o  i n  - , ( 1 3 )  

where  181,0 equals the sum of the unstressed series elastic e lement  length  and  
the contract i le  componen t  length  when  P = P0 • T h e  results of these equa-  
tions should be compat ib le  wi th  the findings of quick release experiments,  
t ransient  change  being too rap id  for the contracti le  componen t  length to be 
altered. 

E X P E R I M E N T A L  

Frog-Ringer's solution made up of 95 mM NaCI, 2.5 nau KC1, 1.34 mM CaC12 and 1.0 
mM MgSO4 buffered at pH 7.2 with 1.0 mM Na2HPO4 and 1.0 mM NaH2PO4 was used 
for all the experiments conducted in this research. The excised muscled stored in 
oxygenated Ringer's of the above composition at 0°C still contracted 5 days after 
dissection. The experiments were carried out on whole sartorius muscle of Rana 
pipiens isolated in ice cold Ringer's solution. The in situ muscle length varied from 42 
to 50 mm and wet weight ranged from 161 to 210 mg. The preparation was equi- 
librated for at least 1 hr in oxygenated Ringer's in the muscle chamber at 0°C before 
contraction measurements were made. The sartorius was stimulated in air by rec- 
tangular pulses. The stimulus, which proved adequate to maintain isometric tetanic 
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tension at a plateau for at least 30 see, had a pulse duration of 5.0 msec and strength 
of 10 v at 12.5 pulses/see. 

Isotonic contractions were studied with a series of afterloads and the shortenings 
were imposed at intervals no shorter than 10 rain. For each muscle, a whole family 
of shortening vs. time curves was obtained, each curve within the series differing from 
the others in the amount of afterload (Matsumoto, 1965, 1967). 

For the isometric condition, tension-time course records were taken over the range 
of mnsele length from the smallest length at which tension could be just recorded to 
the extreme length at which active tension disappeared. Tension and length (P/Po, 

1.4 wP o vs. lll 0 FOR TIME FAMIL" j 

J Averoge of Isometric Doto 

1.2 f ] / / ~  

I 0 T,,= • 1.0 0 . 6  
~ o, 

n.o 0.8 

0.6 

0.4 

0.2 

0 L..--.wa~-/~./--.L 
0.6 0.7 0.8 0.9 1.00 1.10 1.20 1.30 1.40 

1 / I  o 

FIGURE 9. Tension-length curves for time family, From the tension-time course records 
tension-length plot was constructed for a series of selected times during activity (see text) 

l/lo) were normalized and a family of tension development curves was obtained for 
different isometric lengths. A length-tension plot was first constructed for a series of 
selected times during activity. The family of curves resulting from four experiments 
was averaged to give Fig. 2. 

E X P E R I M E N T A L  I D E N T I F I C A T I O N  

Exp. 45 P0 = 1.94 k g / c m  ~ l0 = 45.0 m m  M = 185 m g  

Exp. 46 P0 = 1.45 k g / c m  2 l0 = 42.0 m m  M = 184 m g  
Exp. 48 P0 = 2.16 k g / c m  2 l0 = 50.0 m m  M = 185 m g  

Exp. 49 P0 = 1.94 kg/cna  ~ 10 = 50.0 nana M = 184 nag 
T h e  s tandard  devia t ion for point  P0,  l0, and  t = 1.00 see of Fig. 2 is zero 
since this was the selected poin t  of reference in the normal iza t ion  procedure .  
As I is increased or decreased and  also decreased in t, s t andard  devia t ion of P 

increased. For  example,  at  t = 1.00 see and  l l0 = 0.900, s t andard  devia t ion of 
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FIGURE 3 b 
Fmum~ 3 a and b. Tension-time curves for lflo family. The tension-time plot was ob- 
talned from Fig. 2. 

l 
P is 4 - 1 . 3 %  Po ; fo r  To = 0.700,  A p  _- 4 - 5 %  Po • A t  t = 0.40 sec, s t a n d a r d  

l 
d e v i a t i o n  was  f o u n d  to  be  4 - 3 . 4 %  Po for  l0 = 0 .900  a n d  A P  = -+-2.7% P0 

1 
for  To = 0.700.  

F r o m  this g r a p h  o f  the  i somet r i c  t e n s i o n - l e n g t h  profile,  a n o r m a l i z e d  
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tension-time plot was reconstructed, but  now averaged and interpolated for 
equal l,/lo intervals (Fig. 3). 

From the resulting normalized tension-time plot, values of P/Po were 
taken at a series of times. These coordinate points were then used to construct 

f.O 

( I -P~o l }  vs, t 

0.1 

- I  \ \ \ \ ' 4  '° 
I~J ~O"  T= 0.14! SeC 

0.01 

o L20 
T=OJ67 SeC 

T=O.I09 $11¢ 

0.001 ~ __J.._x . . . . ~ , ~ . ~  
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0,90 1.00 

t sec 

F I o u ~  4. Semilog plots of (1 - P/Po) vs. t for the respective isometric lengths. T ime  
constant, T, was graphically determined for the corresponding isometric length. The  
data points were obtained from Figs. 3 a and b. 

semilog plots of (1 - P/Po) vs. t for the respective isometric lengths (Fig. 4). 
T ime constant, T, was graphically determined for the corresponding iso- 
metric length. 

1 dP 
The normalized tension-time curves were also used to construct P0z -~ vs. 

t curves. The  rates of normalized tension rise against time plots were obtained 



1148 THE JOURNAL OP GENERAL PHYSIOLOGY • VOLUME 5 ° • x967 

by graphical analyses (Fig. 5). This procedure was necessary to evaluate 
eventually the series elastic stiffness. 

R E S U L T S  

The time course of tension development for l < l0 fails short of linearity in 
the semilog plots. Once T is obtained, the tension-time course can be tom- 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0 

f= 
Io 

-j~-~ vs. T (Experimental) 

~-os 0.90 

f t  1.10 

0.10 0.20 0.30 0 4 0  0.50 0.60 0.70 0.80 QgO 1.00 
t $ec 

FXGURE 5. Normal ized  tension rate  vs. t ime curves. Da ta  points were obta ined  by  
graphical analyses from Figs. 3 a and b. 

from an,   ompare   o o  oo ing 
ldP 

curve of Fig. 3. Knowing T, P0-dt can be calculated and compared with the 

graphically analyzed values of--~ dP_~ (Fig. 6). direct 

The P/Po time course does not show an abrupt  change of tension from 
P/Po = 0 to P/Po > 0 but  progresses up an initial sigmoid path. At the onset 
of a contraction, the rate of tension rise does not show a discontinuity. This 
obviously is because propagation time is finite and the active state takes a 
certain time to reach its full value. Macpherson and Wilkie (1954) believed 
that a plateau of active state lagged 45 msec after stimulus, whereas Jewell  
and Wilkie (1958) have presented evidence for tetanically stimulated muscle 
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t ha t  ac t iva t ion  requires  60 msec. This  rise in dP/d t  reflects the mobi l iza t ion  
l d P  

events, b u t  no  deta i led a t ten t ion  is given to them here. P0 -~  init ial ly starts 

a t  zero  and  increases app rox ima te ly  exponent ia l ly .  T h e  present  analysis does 

I0.0 

-[~ 

1.0 

0.10 

o.0! C 
0 

p • -  d-~t P vs. t 

t 

.=l,lO 

0.10 0 .20  0 .30  0.40 0 .50  0.60 0.70 0,80 0.90 LO0 
t sec 

l dP 
FIGURE 6. Semilog plots of P0--~ -~ vs. t. The data points were obtained from Fig. 5. 

If the exponential tension-time course is approximately correct, (1 - P/Poz) vs. t is 
I dP 

expected to be a straight line in the semilog plot (Fig. 4). Also ~0~ ~ vs. t must be a 

straight line in the semilog plot and with the same time constant, T, as in Fig. 4. 

no t  consider  this first phase of tension d e v e l o p m e n t  and  the ma in  exponen-  
tial rise of tension therefore  is ex t rapo la ted  to P/Po = 0 giving the in tercept ,  
7"1 as the reference  t ime for the present  considerat ion.  

T h e  series elastic stiffness relat ion,  d P / d L ,  results f rom the analyses of iso- 
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~la.6" 

8.0 

6 .0  

4.0 

Z.O 

,=LO0 

i ~P P 

F I G U R E  

l d P  

7. 

Po~ dt T Pot 

0 0.2 0.4 0.6 0.8 1.00 
P 

1 dP P 
vs. - - .  Straight lines are obtained from the equation 

Poz dt Pot 
1 P 

+ ~. The data points are from Figs. 2 and 5. 
T 

met r ic  d a t a  coupled  to isotonic cont rac t ion .  I f  equat ion ,  

is normal ized ,  

dP P + a  
dl, b T  ' 

a ( P )  2, a 
go - 1o ~2, _ 2,-0 + 2,0 

( ~ ~ 2,o dz. b__r 
\ t o /  lo 

(14) 

For  isometr ic  tension deve loped  a t  l e n g t h , / 0 ,  a n d  isotonic con t rac t ion  after-  
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loaded at muscle length, 10, the values of the constants are a/Po = 0.25, 
b/lo = 0.30 per sec (Matsumoto, 1967), and T = 0.109 sec when l / lo = 1.0. 
Substituting these values in the above equation, 

l0 dP 30.6 P 
F-~o dl----~ = ~ + 7.65 (see Fig. 8). (15) 

lo dP 1 dP l dl 
One can also obtain ~0 ~ by dividingF0 ~ by T0~ (Sonnenblick, 1962). 

Both methods have been used to tabulate the following: 

T A B L E  I 

1 dP 1 dl lo dP 
Po dt lo dt Po dl~ P lo dP* 

P-o Po dls Theoret. Expt Theoret. Expt Theoret. Expt~ Diff. 

0 .0  7.6 9.2 1.2 7.7 
0.10 10.7 8.2 6.3 0.77 0.75 10.7 8 .4  - -2 .3  
0.20 13.B 7.3 6.6 0.53 0.53 13.8 12.4 - -1 .4  
0.30 16.8 6.4 6.1 0.38 0.38 16.8 16 - -0 .8  
0,40 19.9 5.5 5.4 0.28 0.26 19.7 20.8 + 1 .1  
0.50 22.9 4.6 4.5 0.20 0.20 23 22.5 - -0 .5  
0.60 26.0 3.7 3.6 0.14 0.15 26 24 - -2 .0  
0.70 29.1 2.8 2.8 0.09 0.09 29 29 0 
0.80 32.1 1.8 2 .0  0.06 0.06 30 33 + 3 . 0  
0.90 35.2 0.9 1.2 0.03 0.03 35 40 + 5 . 0  
1.00 38.2 0 0.2 0 0 

* F rom Equat ion  15. 

10 dP 
The  P0 ~ of a muscle is a measure of that part  of the system which depends 

upon the length for a corresponding tension. Extension of that  length has a 
one to one correspondence with tension. This is then a measure of the stiffness 
of the series elastic element. 

Integrating the elastic stiffness relation, 

where l~0 is the series elastic element length plus the muscle contractile com- 
ponent length, le0, the contractile component  length corresponding to a 
muscle exerting a tension, P0 (i.e., 18~0 = l, + lc0). This then is the curve for 
the tension extension of the elastic element. The  plot of this equation com- 
pared to an equivalent plot of Wilkie's experiment (1956) shows an approxi- 
mate agreement. 
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However ,  the difference tha t  does exist between curves in Figs. 9 and  10 is 
P 

such tha t  for the same P0' the curve obta ined f rom Wilkie's da ta  is a t  longer  

lsco 
l0 than  the curve obtained by our  analysis. Since Wilkie's muscle was st imu- 

FIGURE 8. 

Ip-~o dP - P d - i ; , - ~  

STRAIGHT LINE FROM ~o dP , 3 G 6 ] ~ ÷ ' / ' . 6 5  
Po dis o 

POINTS ARE EXPERIMENTAL 

.-.L., 1.0 4 0  'o • 
To~'o" O.SO lie(: / 
~'o" 0.25 

30 

..ob.o 

2c 

10 
Q 

o I I 1 I I 
02. 0.4 0.6 0.8 tO 

P/Po 

lo dP P 
-- - -  vs. -- . Straight line is obtained from the equation, 
Po dl~ Po 

lo dP 30.6 P -t- 7.65. 
P dl, Po 

The data points were obtained by division of _1 dP by 1 dl Po dt l0 ~ (Matsumoto, 1965). 

la ted wi th  a single shock, contracti le length for Po ,  leo, is longer than  for our  
lc0 which  was obta ined  by  tetanical ly s t imulat ing the preparat ion.  Also, the 
divergence of the two curves becomes greater  wi th  l ighter load. This m a y  
indicate  the change of/c0 dur ing  the quick release time in Wilkie's experiment.  

For  P = 0, let l, c0 = 1,fc0, then 

l'l~° - -  1 b T In Po a 
lo - -  lo -+a 
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FIoulu~ 9. Series elastic element 
stress-strain curve. Series elastic data 
were obtained from Wilkie 0956) and 
variables were normalized. 
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FIGURE 10. Series elastic element 
stress-strain curve using the equation 
derived in the text. 
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and 1 l.fco _ b T In Po + a 
lo lo a 

But 

18f, o = Lf + l~o, 

and leoco _ 1~o + leo _ lo _ 1; 
lo lo lo 

Therefore leo + leo l~f + leo _ leo - lef _ b T In Po + a 
lo lo lo lo a 

Since 180 equals the series elastic element length for a muscle exerting a ten- 
sion, P0, and lel is the series elastic element length for an active muscle 
exerting zero tension, 

18o - -  l . f  _ b T l n  Po + a ( 1 6 )  
10 10 a 

is a method to obtain the total change in series elastic element length corre- 
sponding to tension change of zero to P0. 

l~o - -  l,~, _ 5 . 3 %  
lo 

for a / P o  = 0.25, b/lo = 0.30 per sec, and T = 0.109 sec. Wilkie's direct 
measurement shows approximately 4 to 5% of l0 extension. 

DISCUSSION 

An effort has been made in the present research to correlate the isotonic data  
with the isometric observations. For the length region greater than l o ,  the 
parallel elastic element is irreversibly stretched and the unique correspondence 
of tension to length in active muscle cannot be shown. The length region less 
than l0 is adequately reproducible for length-tension-time relations. Con- 
ceptually the series elastic element is defined as that  part  of the muscle which 
possesses the property of a unique correspondence between tension and length. 
For the same tension, whether isometric or isotonic, the series elastic element 
must then have equal length and therefore the difference in the two condi- 
tions resides in the contractile component length for a two element system. 
The consequence of this model system is that  the series elastic element is 
identical in the isometric and isotonic P,  l, t surface curves. If  this is the ease, 
for the state of the series elastic element (P,  l~ ,  t),  the knowledge of two of the 
three variables should determine the other, viz. P = f ( l , ,  t). But since the 
series elastic element is independent of time, for a given tension, the length, 
L is uniquely determined and converse. Therefore P = f ( L ) .  Then d P  = 
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df(l,) 
dr(l,) ell, and is descriptively defined as the series elastic stiffness. Since 

this transfer function exists identically in the constant load condition as well 
as for constant length, it must then have a point on the isometric surface 
correlative to an isotonic point on its curve in the same state. 

In order to integrate the relation, 

fe  e ~ _ f t "  dl, 
o P + a o -b-T' 

the expression on the left must be independent  of length and that on the right 
must be independent  of P. I t  is necessary to establish the constancy of a, b, 
and T, or determine explicitly their relation to P and 1 for the evaluation of 
the integral. If  the results of the isotonic analysis are accepted (Matsumoto, 
1965), i.e. a, b is not a function of I and t, and since a and b remain unaltered 
with respect to P and v, according to the force-velocity relation, it must main- 
rain its constancy for d P / d l , .  

T is the characteristic time of isometric contraction but  varies with muscle 
length. I t  is fixed, however, for the isometric tension time course. If the inte- 
gral is restricted to one isometric length, 10, the corresponding time constant 
will not  change. Knowing the property of the series elastic element and having 
the knowledge of both isometric and isotonic P, l, t curves, a point on one can 
be related to a point on the other. 

I t  must be emphasized, however, that  the exponential approximation of the 
isometric tension time rise seriously weakens the extension equation, 

in the neighborhood of P --* O, which will be manifested in the constant value 
o f T .  

The  total series elastic extension equation, 

1,0 --  18f _ b_Tln P0 + a ,  
to l0 a 

results in approximately 5.3% l0 for Rana pipiens using the data  of this research. 
Corresponding values using Wilkie's data  show about 4 to 5% l0 for Rana 
temporaria. Sandow (1958) reports 6.3% l0 according to his calculation. A. V. 
Hill (1953) has a figure of 3 to 4 %  l0 for frog's or toad's sartorius. The  equa- 
tion offers a simple method of evaluating (/80 -- lss) independent  of quick 
release. 
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