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Abstract: Background: The endothelial epsin 1 and 2 endocytic adaptor proteins play an impor-
tant role in atherosclerosis by regulating the degradation of the calcium release channel inositol
1,4,5-trisphosphate receptor type 1 (IP3R1). In this study, we sought to identify additional targets
responsible for epsin-mediated atherosclerotic endothelial cell activation and inflammation in vitro
and in vivo. Methods: Atherosclerotic ApoE−/− mice and ApoE−/− mice with an endothelial cell-
specific deletion of epsin 1 on a global epsin 2 knock-out background (EC-iDKO/ApoE−/−), and
aortic endothelial cells isolated from these mice, were used to examine inflammatory signaling in
the endothelium. Results: Inflammatory signaling was significantly abrogated by both acute (tumor
necrosis factor-α (TNFα) or lipopolysaccharide (LPS)) and chronic (oxidized low-density lipoprotein
(oxLDL)) stimuli in EC-iDKO/ApoE−/− mice and murine aortic endothelial cells (MAECs) isolated
from epsin-deficient animals when compared to ApoE−/− controls. Mechanistically, the epsin ubiq-
uitin interacting motif (UIM) bound to Toll-like receptors (TLR) 2 and 4 to potentiate inflammatory
signaling and deletion of the epsin UIM mitigated this interaction. Conclusions: The epsin endocytic
adaptor proteins potentiate endothelial cell activation in acute and chronic models of atherogenesis.
These studies further implicate epsins as therapeutic targets for the treatment of inflammation of the
endothelium associated with atherosclerosis.

Keywords: epsin; adaptor protein; endocytosis; adhesion molecule; selectin; MCP-1; endothelial
activation; inflammation; TLR2/4; atherosclerosis; vascular disease

1. Introduction

Atherosclerosis remains one of the most challenging cardiovascular diseases to treat
and is the leading cause of heart attacks and strokes. Chronic inflammatory disease of
the arteries underlies more than 50% of all deaths in westernized societies such as the
United States [1]. Atherosclerosis involves multiple cell types, including endothelial cells
(ECs), vascular smooth muscle cells (VSMCs), and immune cells such as mononuclear
leukocytes [2,3]. One of the major pathological features of this disease is the accumulation
of plaques (i.e., deposits of fat, cholesterol, calcium, and other substances) in the arterial
wall [3]. Each of these cells can contribute to the progression of atherosclerosis; however,
the layer of squamous endothelial cells that line the inner surface of blood vessels to
form the endothelium are particularly important for initiation of atherosclerotic plaque
formation [4–7].

Endothelial cell (EC) activation follows several well-established steps [8,9]. The
first of which involves activation of innate inflammatory signaling pathways such as
those initiated by the pattern-recognition Toll-like receptors TLR 2 and 4. As a result,
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the genetic deletion of TLR2, TLR4, or their downstream adaptor proteins (e.g., myeloid
differentiation factor 88 (MyD88)) can reduce atherosclerosis in mice [10–12]. The second
step is characterized by expression of adhesion molecules (e.g., ICAM-1, VCAM-1, P-
selectin, and E-selectin) and chemoattractant proteins (e.g., MCP-1) on the luminal EC
surface, which encourages docking of immune cells (e.g., monocytes, neutrophils, and
leukocytes) [13–15]. Lastly, the immune cells migrate into the intima and differentiate into
macrophages that engulf substances such as oxidized low density lipoprotein (oxLDL)
to become foam cells [16]. In this arterial injury model, increased circulating cholesterol,
oxLDL, and cytokines activate inflammatory signaling [14,17,18] to promote the expression
of adhesion and chemoattractant proteins in regions with disturbed blood flow (e.g.,
vessel branch points) [19]. The result is immune cell infiltration, foam cell formation, and
deposition of excessive cholesterol in the arterial intima [20].

As receptor-mediated inflammatory signaling is central to the initiation and progres-
sion of atherosclerosis, and the uptake and sorting of EC surface receptors can fine-tune
these signaling pathways [21–27], we focused our studies on the epsin family of clathrin-
dependent endocytic adaptors [28–30]. In particular, epsins 1 and 2 modulate vascular
endothelial growth factor receptor 2 (VEGFR2) signaling in ECs [21,23,24,26]. Using epsin
mutant mouse models, we discovered that epsins are also involved in regulating Notch,
VEGFR3, and Wnt signaling pathways [16,21–24,26,31]. By binding to ubiquitinated mem-
brane receptors, epsins control physiological and pathological regulation of embryogene-
sis [16], angiogenesis [21,23,24,26], lymphangiogenesis [22] and cancer progression [25,31].
In addition, we recently reported that epsins 1 and 2 fuel atherosclerotic degradation of the
calcium release channel inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) [32].

The latter studies indicate that other mechanisms were also involved in the pathogen-
esis of atherosclerosis because of epsin-deficiency. In this study, we further assessed the
role of epsins in endothelial activation and inflammatory signaling in atherogenesis. Us-
ing biochemical, molecular, and genetic approaches, we demonstrated that epsins 1 and 2
are required for endothelial activation of inflammatory signaling pathways, and that the
loss of epsins from the endothelium reduced expression of ICAM-1, VCAM-1, P-selectin,
and E-selectin adhesion molecules as well as the chemoattractant protein MCP-1. Loss
of endothelial epsins blunted inflammatory signaling in murine aortic endothelial cells
(MAECs) in vitro and reduced atherosclerosis in vivo. Together, our data reveal epsins to
be potentially valuable therapeutic targets for the treatment of atherosclerosis and other
diseases.

2. Materials and Methods
2.1. Mouse Strains and Models

Mouse strains and procedures were approved by the Institutional Animal Care and
Use Committee (IACUC) at Boston Children’s Hospital and the Oklahoma Medical Re-
search Foundation. Male and female mice were used and housed using a 12/12 h light/dark
cycle. The knockout of both epsin 1 and 2 causes embryonic lethality [16]. To avoid this,
we generated an epsin 1 loxP mouse strain by inserting loxP sites flanking exon 2 in
an epsin 2 null background (epsin 1fl/fl:epsin 2−/−) to create a conditional deletion of
epsin 1 postnatally [21,23]. Global epsin 1/2 knockout mice were produced by cross-
ing epsin 1fl/fl:epsin 2−/− mice with a β-actin promoter-driven Cre transgenic mouse
strain [32]. The endothelial cell (EC)-specific deletion of epsin mouse strain was estab-
lished by crossing epsin 1fl/fl: epsin 2−/− mice with vascular endothelial cell-specific Cre
transgenic mice (VECad-Cre) [23], which were bred with atherosclerotic apolipoprotein
E null mice (ApoE−/−) (Jackson Laboratory) and backcrossed seven times. Mice were
treated with 4-hydroxytamoxifen (5–10 mg/kg, body weight) 5 to 7 times every other day
at 8 weeks of age [33]. Atherosclerosis was accelerated in these mice by feeding them an
atherogenic diet (i.e., Western Diet (WD)) that contained 1.3% cholesterol and 0.5% cholic
acid (TD 02028; Harlan Teklad). Mice were fed a WD starting at 8 weeks of age for 12 to
14 weeks [34].
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2.2. Cell Culture Models

Murine aortic endothelial cells (MAECs) were harvested and cultured as described
previously [32]. Using a dissecting microscope, aortas were collected from mice and fat
and connective tissue were carefully removed [32]. Aortas were opened longitudinally,
cut into 2 to 3 segments, and placed in a 6-well plate that was coated with Matrigel (BD
Biosciences). After 4 days, EC networks were visible by brightfield microscopy. Aortic
segments were discarded, and ECs were cultured for 2 more days. MAECs were detached
with Dispase II (Roche, Mannheim, Germany) and cultured in fresh EC medium. The iden-
tity of MAECs was confirmed by immunofluorescence staining with CD31, von Willebrand
factor, α-smooth muscle actin, and VEGFR2 antibodies [32]. The purity of isolated MAECs
was determined by cytometry using a VE-cadherin antibody [35]. We typically obtain
approximately 90% purity. Freshly isolated MAECs were treated with 5 µM tamoxifen for
4 days to induce the deletion of the epsin 1 gene from epsin 1fl/fl:epsin 2−/−:β-actin-Cre,
epsin 1fl/fl:epsin 2−/−:VECad-Cre, or iCDH5-Cre mice [32]. Epsin 1 and 2 protein levels
were monitored by Western blot (Supplementary Materials Figure S1). MAECs were also
treated with oxLDL and 7-ketocholesterol (7-KC) as previously described [32].

2.3. Evaluation of Atherosclerosis

Oil Red O (ORO) staining of aortic roots and arches was performed as previously
described [32,34,36]. In brief, mouse hearts were fixed in 4% paraformaldehyde (PFA)
in phosphate buffered saline (PBS) for 16 h and then embedded in OCT tissue freezing
compound. Eight aortic arch sections were collected from each mouse and stained with
0.5% ORO, and counterstained with hematoxylin. Atherosclerotic plaques were imaged
with an Olympus microscope. For en face aortic arch staining, the intimal surface was
exposed by a longitudinal cut, laid flat, and fixed in 10% formalin overnight [37]. Arches
were washed with dH2O three times and air dried for 10 min. Following incubation in
100% propylene glycol for 2 to 5 min, tissues were stained at 60 ◦C in 0.5% ORO solution for
8–10 min at 60 ◦C. Tissues were then differentiated in 85% propylene glycol for 2 to 5 min,
and rinsed twice with dH2O. Digital images of the aortic arches were captured using a
stereomicroscope, and the lesional area was quantified using Image J (available from the
National Institutes of Health (NIH) website: https://imagej.nih.gov/ij/ (accessed on 30
March 2012).

2.4. Protein Binding Analyses

MAECs treated with 1 µg/mL LPS [38] for the indicated times were lysed in RIPA
buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 mM EDTA (pH 8.0), 30 mM
NaF, 1 mM Na3VO4, 40 mM β-glycerophosphate, 1x protease inhibitors (Roche), 20 mM
N-Ethylmaleimide, 10% glycerol, and either 1% Nonidet-P40 or Triton X-100. One mg
of protein was used for immunoprecipitation (IP). Primary antibodies were added to the
protein lysates and gently agitated for 4 to 16 h. Then, 35 to 40 µL rec-G beads (Life
Technologies, Carslbad, CA, USA) were added for another 4 h. Beads were washed with
IP buffer containing protease inhibitors and N-Ethylmaleimide five times. Samples were
mixed with 2× loading buffer and incubated at 95 ◦C for 5 min before Western blot
analysis [32].

2.5. Standard Experimental Procedures

Molecular cloning, Western blotting, histological staining, immunofluorescence stain-
ing, brightfield and fluorescence microscopy, and cell culture were performed according
to standard procedures [21,23,26,31,32,36,39]. DNA or siRNA transfection, electropo-
ration, RT-PCR, FACS analyses and molecular cloning were performed as previously
described [21,23,26].

https://imagej.nih.gov/ij/
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2.6. Statistical Analyses

Statistical analyses were conducted using Prism 8.0 (Graph Pad Software, San Diego,
CA, USA) [32]. Data are presented as mean ± standard error of the means (SEM). Data were
analyzed by two-tailed, unpaired or paired Student’s t-test or ANOVA with Bonferroni’s
procedure was used for multiple comparisons. A p-value of less than 0.05 was considered
statistically significant.

3. Results
3.1. Epsins Augment Inflammatory Signaling in Atherosclerotic Endothelial Cells
3.1.1. Epsin Loss Attenuates Inflammatory Signaling in Activated Endothelial Cells

Due to embryonic lethality in global epsin 1 and 2 knockout mice [16], we established a
conditional deletion of epsin 1 on an epsin 2-null background to enable more exact analyses
of the function of these redundant endocytic adaptor proteins [23]. This strain was crossed
with β-actin promoter-driven Cre and vascular endothelial specific-cadherin (VECad)
or inducible cadherin-5 (iCDH5) promoter-driven Cre (Supplementary Materials Figure
S1A,B) transgenic mice to isolate primary cultured murine aortic endothelial cells (MAECs).
An atherosclerotic epsin double knockout mouse strain was then generated by breeding
epsin iDKO onto an ApoE−/− background (Supplementary Materials Figure S1C). Epsin 1
and 2 deletion from isolated MAECs was carried out in vitro by adding 5 µM tamoxifen for
4 days and confirming epsin deletions by Western blot analyses (Supplementary Materials
Figure S1D).

As the expression of adhesion molecules, cytokines, and chemoattractant proteins are
controlled by inflammatory signaling, we analyzed TNF-α and LPS stimulated signaling in
MAECs. TNF-α and LPS treatments attenuated phospho-NF-κB (p65) levels in EC-iDKO
MAECs (Figure 1A,B and Supplementary Materials Figure S2A,B). At the same time, MAPK
pathways including phospho-p38 and phospho-JNK were also decreased in cells lacking
epsins (Figure 1C,D; Supplementary Materials Figure S2C,D). Immunofluorescence staining
showed that epsin deficiency reduced nuclear translocation of p65 from the cytoplasm
of MAECs (Figure 1E). These data suggest that epsin loss in ECs inhibits TNF-α and
LPS-mediated inflammatory signaling.

3.1.2. Epsin Loss Inhibits Endoplasmic Reticulum Stress in Atherosclerosis

Endoplasmic reticulum stress (ER stress) is an important consequence of cardiovascu-
lar inflammation [40]. As observed in human atherosclerosis patients, the ER stress markers
KDEL and XBP-1 are increased compared with unaffected controls (Supplementary Ma-
terials Figure S3) [32]. In our in vivo models, we showed that ER stress is significantly
diminished in EC-iDKO/ApoE−/− mice compared to ApoE−/− controls (Figure 2A,B)
by measuring KDEL, ATF6, and XBP-1 in the endothelium using immunofluorescence
co-staining with the endothelial cell marker CD31.

To complement the above observation mechanistically, we isolated MAECs from
ApoE−/− and EC-iDKO/ApoE−/− mice, and then treated the cells with atherogenic oxLDL.
Epsin-deficient MAECs significantly attenuated oxLDL-induced ER stress as exhibited by
the reduced ER stress markers P-PERK, P-eIF2α, P-JNK, and ATF6 (Figure 2C,D), which is
further confirmed by 7-KC (7-Ketocholesterol) treatment in MAECs isolated from ApoE−/−

and EC-iDKO/ApoE−/− mice (Figure 2E,F; Supplementary Materials Figure S4A,B).

3.1.3. Epsin Loss Reduces Expression of Endothelial Adhesion Molecules In Vitro

To investigate the role of epsins in endothelium activation, we measured the expres-
sion of adhesion molecules (including ICAM-1, VCAM-1, P-selectin, and E-selectin) and
chemoattractant protein (MCP-1) in cultured primary MAECs isolated from wild type (WT)
or epsin-deficient mice (EC-iDKO) by flow cytometry and quantitative RT-PCR (Figure 3).
The plasma membrane levels of ICAM-1 and VCAM-1 were considerably reduced as
determined by flow cytometry (Figure 3A–C). Similarly, the expression of MCP-1 was
significantly reduced in the DKO MAECs stimulated by LPS (Figure 3D,E).
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As the expression of these molecules is largely regulated at the transcriptional level, we
also performed unsaturated RT-PCR for 20 cycles (the primers are listed in Supplementary
Materials Table S1), followed by 1% agarose gel electrophoresis. Our results demonstrate
that the expression of adhesion molecules and MCP-1 in MAECs lacking epsins 1 and 2 are
significantly reduced when compared to control (WT) cells (Figure 3F). We confirmed these
findings using by real-time qRT-PCR (Figure 3G–J), which showed the loss of epsins in
mouse ECs significantly attenuated expression of adhesion molecules (ICAM-1, VCAM-1)
and selectins (P-selectin, and E-selectin). Together, these data support the conclusion that
endothelial epsins are required for the endothelial activation.
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3.1.2. Epsin Loss Inhibits Endoplasmic Reticulum Stress in Atherosclerosis 
Endoplasmic reticulum stress (ER stress) is an important consequence of cardiovas-

cular inflammation [40]. As observed in human atherosclerosis patients, the ER stress 
markers KDEL and XBP-1 are increased compared with unaffected controls (Supplemen-
tary Materials Figure S3) [32]. In our in vivo models, we showed that ER stress is signifi-
cantly diminished in EC-iDKO/ApoE−/− mice compared to ApoE−/− controls (Figure 2A,B) 
by measuring KDEL, ATF6, and XBP-1 in the endothelium using immunofluorescence co-
staining with the endothelial cell marker CD31. 

Figure 1. Loss of epsins in MAECs attenuates inflammatory signaling. (A,B) Western blot analyses of NF-κB (p65) signaling
induced by TNF-α (50 ng/mL) or LPS (1 µg/mL) (n = 4). (C,D) Western blot analyses of MAPK (p38 and JNK) signaling
induced by TNF-α (50 ng/mL) or LPS (1 µg/mL) (n = 4). (E) NF-κB (p65) translocation in WT or DKO MAECs stimulated
with 50 ng/mL TNF-α for the indicated time (n = 4). Scale bar = 10 µm.
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ApoE−/− vs. EC-iDKO/ApoE−/−. (C) MAECs were isolated from ApoE−/− or EC-iDKO/ApoE−/− mice, followed by treatment 
with ox-LDL at 100 µg/mL for the indicated times. Cell lysates were subjected to Western blot analyses using the specified 
antibodies. (D) Quantification of results from C (n = 5). (E,F) MAECs with or without epsins were treated with 7-KC for 
various times and concentrations as indicated, and ER stress markers were assessed by Western blot analysis (n = 3). 

Figure 2. Loss of endothelial epsins attenuates ER stress-induced inflammatory signaling. (A) Comparison of endothelium
ER stress markers in the aortic roots of ApoE−/− or EC-iDKO/ApoE−/− mice by immunofluorescence staining. CD31
served as an endothelium marker (n = 5 in each group). Scale bar = 500 µm. (B) Quantification of ER stress markers from A.
* ApoE−/− vs. EC-iDKO/ApoE−/−. (C) MAECs were isolated from ApoE−/− or EC-iDKO/ApoE−/− mice, followed by
treatment with ox-LDL at 100 µg/mL for the indicated times. Cell lysates were subjected to Western blot analyses using
the specified antibodies. (D) Quantification of results from C (n = 5). (E,F) MAECs with or without epsins were treated
with 7-KC for various times and concentrations as indicated, and ER stress markers were assessed by Western blot analysis
(n = 3).
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Figure 3. Loss of endothelial epsins impairs expression of inflammatory genes. (A, B) Cell surface presentation of
adhesion molecules (ICAM-1 and VCAM-1) as determined by flow cytometry after treatment with 50 ng/mL TNF-
α for 16 h (n = 3). (C) Statistical histogram for B and C (* or †, p < 0.01). (D, E) Cell surface presentation of MCP-1 by
flow cytometry after stimulation with 1 µg/mL LPS for 3 h (n = 3). (E) Quantification for D. (F) Expression of
adhesion molecules in WT and DKO MAECs after 50 ng/mL TNF-α stimulation for 3 h analyzed as determined by
unsaturated PCR analysis and agarose gel electrophoresis. (G–J) Analysis of adhesion molecules (ICAM-1 and
VCAM-1) and selectins (P- and E-selectin) in MAECs stimulated with TNFα (50 ng/mL) for 3 h, followed by
extraction of total RNA, cDNA synthesis, and real-time qRT-PCR (n = 3–5; *, **, †, or #, p < 0.05).

Figure 3. Loss of endothelial epsins impairs expression of inflammatory genes. (A,B) Cell surface presentation of adhesion
molecules (ICAM-1 and VCAM-1) as determined by flow cytometry after treatment with 50 ng/mL TNF-α for 16 h (n = 3).
(C) Statistical histogram for B and C (* or †, p < 0.01). (D,E) Cell surface presentation of MCP-1 by flow cytometry after
stimulation with 1 µg/mL LPS for 3 h (n = 3). (E) Quantification for (D). (F) Expression of adhesion molecules in WT
and DKO MAECs after 50 ng/mL TNF-α stimulation for 3 h analyzed as determined by unsaturated PCR analysis and
agarose gel electrophoresis. (G–J) Analysis of adhesion molecules (ICAM-1 and VCAM-1) and selectins (P- and E-selectin)
in MAECs stimulated with TNFα (50 ng/mL) for 3 h, followed by extraction of total RNA, cDNA synthesis, and real-time
qRT-PCR (n = 3–5; *, **, †, or #, p < 0.05).

3.1.4. Epsin Loss Reduces Endothelial Adhesion Molecule Expression In Vivo

We measured ICAM-1, VCAM-1, and P-selectin expression in ApoE−/− control and
EC-iDKO/ApoE−/− mice fed a Western diet (WD) for 8 weeks. Immunohistochemical
(IHC) staining of frozen heart sections revealed that ICAM-1, VCAM-1 and P-selectin
expression in epsin-deficient endothelium was significantly reduced (Figure 4A,B). These
results were verified by immunofluorescence staining (Figure 4C,D), which showed greater
macrophage/monocyte accumulation (Moma-2) and P-selectin staining in the ApoE−/−

endothelium, when compared with the same tissue in EC-iDKO/ApoE−/− mice. These
data indicate that epsins are required for endothelium activation in vivo.

3.1.5. Loss of Endothelial Epsins Attenuates Atherosclerosis and Oxidative Stress

As shown above, epsins are crucial for early inflammatory responses in activated
endothelium, as assessed by expression analyses of adhesion molecules and MCP-1. As a
result, we expect to observe a reduction in atherosclerotic plaques in EC-iDKO/ApoE−/−

mice fed a WD (Supplementary Materials Figure S1C). Genetic loss of epsins in the endothe-
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lium significantly attenuated atherosclerosis as evidenced by the reduced number and size
of plaques in both aortic roots and arches as shown using ORO staining (Figure 5A–C).

In support of our observations in EC-iDKO/ApoE−/− mice, we assessed oxidative
stress markers (3-nitrotryrosin (3-NT) and oxLDL) by immunofluorescence staining. 3-NT
and oxLDL were both reduced in epsin-deficient mice (Figure 5D–G). These data demon-
strate that epsin loss from the endothelium reduces atherogenesis and oxidative stress—an
important hallmark of inflammation.
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Figure 4. Epsin loss attenuates adhesion molecules expression in ApoE-null mice. (A,B) ICAM-1 and VCAM-1 expres-
sion in EC-iDKO/ApoE−/− and ApoE−/− mice fed a WD for 8 weeks as determined by immunohistochemical (IHC)
staining (n = 5 in each group; *, +, ApoE−/− vs. EC-iDKO/ApoE−/−; p < 0.001). Black arrows indicate ICAM-1 or
VCAM-1. Scale bar = 100 µm. (C) P-selectin and CD31 staining in the endothelium of aortic roots from ApoE−/− and
EC-iDKO/ApoE−/− mice fed a WD for 8 weeks (n = 5 mice in each group; # p < 0.01). White arrows indicate P-selectin.
Scale bar = 100 µm. (D) Moma-2 and P-selectin staining in ApoE−/− and EC-iDKO/ApoE−/− aortic roots (n = 5 mice in
each group; † p < 0.01). White arrows indicate P-selectin. The dashed line indicates macrophage/monocyte accumulation
(Moma-2). Scale bar = 100 µm.



Cells 2021, 10, 1918 9 of 15Cells 2021, 10, x 10 of 16 
 

 

 
Figure 5. Loss of epsins from the endothelium mitigates atherosclerosis and oxidative stress. (A–C) Oil Red O staining for 
aortic roots, aortic arches, and data quantification, respectively (n = 9 in each group; p < 0.001). Scale bar = 500 µm (A) or 5 
mm (B). (D,E) Immunofluorescence staining of 3-NT for reactive nitrogen species (RNS) and quantification (n = 5; * ApoE−/− 
vs. EC-iDKO/ApoE−/−; p < 0.005). (F,G) Immunofluorescence staining of oxLDL for reactive oxygen species (ROS) and 
quantification (n = 5; ** ApoE−/− vs. EC-iDKO/ApoE−/−; p < 0.005).   

Figure 5. Loss of epsins from the endothelium mitigates atherosclerosis and oxidative stress. (A–C) Oil Red O staining
for aortic roots, aortic arches, and data quantification, respectively (n = 9 in each group; p < 0.001). Scale bar = 500 µm
(A) or 5 mm (B). (D,E) Immunofluorescence staining of 3-NT for reactive nitrogen species (RNS) and quantification (n = 5;
* ApoE−/− vs. EC-iDKO/ApoE−/−; p < 0.005). (F,G) Immunofluorescence staining of oxLDL for reactive oxygen species
(ROS) and quantification (n = 5; ** ApoE−/− vs. EC-iDKO/ApoE−/−; p < 0.005).

3.1.6. Epsins Bind Toll-like Receptors 2 and 4 to Potentiate Inflammatory Signaling

To further understand the role of epsins in inflammatory signaling, we treated MAECs
with LPS for 0, 15, and 30 min. LPS treatment induced binding interactions between epsin 1,
TLR2, TLR4, and MyD88 (Figure 6A; Supplementary Materials Figure S5A). Interestingly,
there was no change in the expression of TLR2 and TLR4 because of LPS treatment using
Western blotting and low cytometry (Supplementary Materials Figure S6). In a reciprocal
IP with TLR4, epsin 1 and MyD88 were found to bind TLR4 (Figure 6B; Supplementary
Materials Figure S5B). To confirm these results, we used MyD88 for IP and Western blot
detection of TLR2/4 and epsin 1, which were also detected (Figure 6C; Supplementary
Materials Figure S5C). In LPS signaling, inflammatory mediators such as NF-κB can interact
with receptor interacting protein 1 (RIP1) to induce cell death. Additional IP analyses
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showed that epsin 1 interacts with this protein (Figure 6D; Supplementary Materials
Figure S5D).
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Figure 6. Epsins interact with the TLR2/4 signaling complex to exacerbate inflammation. (A) Wild type MAECs were
treated with 100 ng/mL LPS for 15 or 30 min and lysates were used for IP with an epsin 1 antibody prior to Western blotting
with MyD88, TLR2, and TLR4 antibodies (n = 5). (B) The same treatment as described above using a TLR4 antibody for
IP and epsin 1, MyD88, and TLR2/4 antibodies for Western blotting (n = 5). (C) The same treatment as described above
using MyD88 antibody for IP and blotted with epsin 1, TLR2, and TLR4 antibodies (n = 5). (D) LPS-treated MAECs (30 min)
were used for IP with the epsin 1 antibody and blotting with RIP1, TLR2, and TLR4 antibodies (n = 5). (E) LPS-treated
MAECs were used for IP with an epsin 1 antibody and blotted with a TRAF6 antibody (n = 5). (F) Epsin 1 wt (HA tag) or
epsin 1∆UIM (HA tag) constructs were transfected to WT MAECs by electroporation. After 30 h, IP experiments using
a HA antibody were performed and blotted using HA, TLR2, and TLR4 antibodies (n = 3). (G) Epsin 1 wt (HA tag) or
epsin 1∆UIM (HA tag) were co-transfected to MAECs with MyD88 (Flag tag) by electroporation. After 30 h, cells were
lysed and IP was performed with a HA antibody, followed by blotting with Flag or HA antibodies. (H) Cytokines between
ApoE−/− and EC-iDKO/ApoE−/− mice stimulated by LPS (10 mg/kg, IP injection) after 4 h. Serum was collected and
cytokines were measured by ELISA (RND Systems). ***, INFγ; †, IL-6; #, TNFα; WT vs. DKO mice; all p < 0.05. (I) Diagram
showing how epsins modulate inflammatory signaling by potentiating NF-κB and MAPK signaling.
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As MAPK signaling pathways (JNK and p38) are also blocked by epsin deletions
(Figure 1), we speculated that TRAF6, a downstream kinase for MAPK signaling, may also
bind epsins. To test this, we performed IP experiments to show that epsin 1 interacts with
TRAF6 under inflammatory stimulation (Figure 6E; Supplementary Materials Figure S5E).
As the epsin ubiquitin interacting motif (UIM) has been proven to be critical for activated
receptor degradation [23,33], we proposed that this domain may be important for the
epsin-TLR2/4 interaction. Using deletion constructs, we found the interaction between
epsin 1 and TLR2/4 was largely abolished (Figure 6F; Supplementary Materials Figure S5F)
and the same was true for the epsin 1/MyD88 interaction (Figure 6G; Supplementary
Materials Figure S5G).

Lastly, we measured blood cytokine levels in our mouse models, as these molecules
are the effectors of inflammation. LPS stimulated release of INF-γ, IL-6, and TNF-α into the
blood was significantly reduced in EC-iDKO/ApoE−/− mice compared to WT/ApoE−/−

mice (Figure 6H), which strongly suggests that epsin loss from the endothelium reduces
cytokine production under inflammatory conditions (e.g., LPS stimulation). Taken together,
our results indicate that epsins interact with the TLR2/4 machinery to promote inflamma-
tory signaling through modulation of adhesion molecules, chemoattractants, and cytokines
(Figure 6I).

3.1.7. Epsin Loss Has no Effect on Glucose or Lipid Levels in Atherosclerotic Mice

It is worth noting that glucose and lipid profiles of ApoE−/− and EC-iDKO/ApoE−/−

mice were not changed. This implies that epsin deficiency does not systemically affect
whole body glucose or lipid metabolism (Supplementary Materials Table S2).

4. Discussion

Here we show a novel role for the epsin 1 and 2 endocytic adaptor proteins in en-
dothelial cell (EC) activation and atherogenesis. Using epsin mutant mice and in vitro
approaches, we demonstrate that epsins are important regulators of inflammatory signaling
pathways and downstream effectors including adhesion molecules and chemokines. This
study links epsins to endothelium activation in response to inflammatory stimuli prevalent
in vascular diseases such as atherosclerosis.

Endothelial activation is one of the key mechanisms of inflammation that initiates
atherosclerosis [7,14,41]; however, the underlying molecular mechanisms remains elusive.
In the widely accepted ‘endothelium injury’ model, EC activation plays a critical role in
atherosclerosis [4,7,42]. The events that occur in the early stages of this disease include
EC activation followed by immune cell-endothelial cell interactions [43], resulting from
the expression of molecules such as ICAM-1, VCAM-1, P-selectin, and MCP-1 on the EC
surface [18,44–46]. Under inflammatory conditions, such as exposure to oxidized low
density lipoprotein (oxLDL) and circulating cytokines [47,48], the expression of adhesion
molecules attracts immune cells that adhere to and infiltrate the endothelium through the
process of tethering, adhesion, rolling, and migration [13].

Once in the intima, leucocytes and monocytes differentiate into macrophages that
engulf oxLDL to form foam cells. Our results show that loss of epsins in ECs attenuates
activation of the endothelium and reduces expression of adhesion molecules and MCP-1.
In endothelial epsin-deficient mice, oxidant stress and ER stress are both significantly
abrogated (Figures 2 and 5), which are critical components of inflammation [49]. From a
clinical perspective, the CANTOS trial clearly establishes that a reduction in inflammation
in patients using Interleukin-1β antibodies (i.e., canakinumab) significantly reduces the
risk of atherosclerotic disease in humans [50].

Using endothelial-specific epsin-deficient mice, we found that these proteins play a
critical role in mediating inflammatory signaling through the modulation of the NF-κB and
MAPK pathways (i.e., the JNK and p38 pathways) (Figures 1 and 2). These signaling cas-
cades are important for the expression of adhesion molecules, cytokines, and chemokines.
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In particular, the loss of epsins attenuates expression of these molecules in in vitro and
in vivo models of atherosclerotic inflammation (Figures 3 and 4).

Endothelial dysfunction can be induced by multiple mediators, such as those found in
diabetes, hypertension, obesity, inflammation, and smoking. These pathological conditions
elevate the generation of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) and are characterized by an imbalance in intracellular calcium handling and ER
stress [32], among other mediators, which includes free fatty acids and advanced glycation
end products, insulin resistance, and hyperlipidemia, apoptosis, hyperinsulinemia, and
hyperglycemia [4]. These insults eventually affect the function of the endothelium, which
can initiate atherogenesis. The loss of endothelial epsins can improve endothelial function
in blood vessels and reduce inflammation. Our data suggest that epsin loss is beneficial by
maintaining EC homeostasis under inflammatory conditions.

5. Conclusions

We demonstrated that the loss of epsins 1 and 2 in endothelial cells inhibits endothe-
lium activation during acute and chronic inflammation through reduced expression of
adhesion molecules and the chemoattractant protein MCP-1. Mechanistically, epsins, at
least in part, modulate inflammatory signaling to potentiate endothelial activation by
interacting with components of the Toll-like receptor signaling pathway (Figure 6). Our
studies suggest that epsins represent therapeutic targets for the treatment of inflammation
of the endothelium associated with atherosclerosis (Figure 7).
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