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Abstract
The brain is a large-scale complex network often referred to as the “connectome”. Exploring

the dynamic behavior of the connectome is a challenging issue as both excellent time and

space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are

effective neuroimaging techniques allowing for analysis of the dynamics of functional brain

networks at scalp level and/or at reconstructed sources. However, a tool that can cover all

the processing steps of identifying brain networks from M/EEG data is still missing. In this

paper, we report a novel software package, called EEGNET, running under MATLAB (Math

works, inc), and allowing for analysis and visualization of functional brain networks from

M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp

electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in pre-

processing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct

the cortical sources, iii) the computation of functional connectivity among signals collected

at surface electrodes or/and time courses of reconstructed sources and iv) the computation

of the network measures based on graph theory analysis. EEGNET is the unique tool that

combines the M/EEG functional connectivity analysis and the computation of network mea-

sures derived from the graph theory. The first version of EEGNET is easy to use, flexible

and user friendly. EEGNET is an open source tool and can be freely downloaded from this

webpage: https://sites.google.com/site/eegnetworks/.

Introduction
Magneto/Electroencephalography (M/EEG) are key techniques to analyze functional connec-
tivity from surface signals [1, 2] or/and from reconstructed brain sources [3, 4]. The main
advantage of M/EEG is the excellent temporal resolution (sub-second) that offers the unique
opportunity i) to track brain networks over very short duration which is the case in many cog-
nitive tasks and ii) to analyze fast dynamical changes that can occur in brain disorders (like epi-
leptic seizures for instance).

So far, approaches based on graph theory have represented brain networks as sets of nodes
interconnected by edges [5]. Once the nodes and edges are defined from the neuroimaging
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data, algorithms based on graph theory can be applied to measure the topological properties of
considered networks. The application of these algorithms on functional, as well as on structural
connectivity matrices, have revealed many properties of brain networks, such as small-world-
ness [6, 7], modularity [8, 9], hubs [10] and rich-club configurations [11].

The graph theory based analysis has been widely used to characterize normal [12] and path-
ological [13] brain activities from several modalities. It has been used in many applications
such as aging [14–16], Alzheimer’s disease [17–20], epilepsy [21–23], schizophrenia [24, 25]
and autism [26].

In the M/EEG context, nodes represent either the electrodes or the dipole sources depending
on whether the connectivity is analyzed at scalp or at reconstructed source level, respectively.
The edges are defined by the values of the statistical dependencies among M/EEG signals or
among reconstructed time courses of cortical sources.

On the one hand, several tools were developed to process M/EEG signals such as EEGLAB
[27], CARTOOL [28], Fieldtrip [29] and Brainstorm [30]. On the other hand, many other tools
have been proposed to analyze and visualize complex networks such as Brain Connectivity
Toolbox (BCT) [31], BrainNet Viewer [32], the GCCA toolbox [33], the connectome mapper
[34], Gephi [35], the connectome Viewer [36], the eConnectome [37], the Connectome Visual-
ization Utility (CVU) [38] and GraphVar [39].

All these packages are typically specialized for processing a particular step in the whole pipe-
line aimed to identifying and characterizing brain networks. However, a tool that comprises
the complete pipeline fromM/EEG processing to analysis/visualization of brain networks is
still missing. This consideration led us to develop and present EEGNET, MATLAB-based soft-
ware with Graphical User Interface (GUI). Our main objective was to develop a complete
framework that can cover most of the processing from EEG recordings to graph analysis and
visualization. This pipeline includes: 1) loading and filtering the M/EEG signals, 2) the solution
to the inverse problem and the reconstruction of the cortical sources, 3) the computation of the
functional connectivity, 4) the calculation of the network measures and 5) the visualization of
2D (scalp level) and 3D (cortex level) brain networks and associated measures.

Methods and Results
EEGNET is a useful processing pipeline to identify, visualize and characterize brain networks
fromM/EEG recordings. It can perform all steps including the estimation of brain sources, the
computation of the functional connectivity and the mapping of brain networks at scalp level
and/or at source level. The basic workflow is shown in Fig 1.

Overview
The main elements of EEGNET are:

The data. This file represents either the scalp EEG data or the reconstructed sources. The
default file format is the ‘.mat’. It should be a 3 dimensional matrix (Nc x Ns x Nt) where Nc, Ns

and Nt are the channels (brain regions in the case of sources file) number, the sample size and
the number of trials (Nt is considered 1 for data averaged over trials), respectively. When solv-
ing the inverse problem and for visualizing the network at scalp level, the electrode location file
is required. In the current EEGNET version, both the.xyz and.mat formats are supported.

Some basic preprocessing features are available in the current version of EEGNET. The
imported data can be firstly visualized. These signals can be then filtered using a Finite Impulse
Response (FIR) linear filter before computing the function connectivity (FC) matrices. This
feature allows users to choose the frequency band where to compute the FC. The data can also
resampled by changing the sampling frequency. This feature can be essential in some cases
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where users attempt to reduce the size of the data. The preprocessing tool allows user also to
specify the baseline from the visualized data. This baseline is essential for computing/normaliz-
ing the post vs. pre stimulus connectivity for instance or to compute the noise covariance
matrix when solving the inverse problem.

EEGNET provides also the possibility of computing the time-frequency representation of
the data. In the current version, the complex Morlet wavelet is used as it was shown to provide
a good compromise between time and frequency resolution [40–42]. This time frequency maps
can be shown trial by trial in the case of multi-trial data.

The adjacency matrix. This file is anNc xNc dimension. It contains the values of the func-
tional connections between all the channels (or brain regions). This file can be also inNs xNc xNc
in the case where it is the dynamics of functional networks that is being analyzed. To compute the
functional connectivity (FC) matrices, four methods are available: the cross-correlation, the mean
phase coherence (MPC), the mutual information (MI) and the Phase Locking Value (PLV), see
[43] for review. After choosing the desired method, the connectivity values can be computed over
scalp signals (generating 2D networks) or over the time series associated with the reconstructed
sources (generating 3D networks at cortex level). In the typical example presented in this paper,
the Phase Locking Value (PLV) was computed between scalp electrodes as well as between
sources. The PLV is a part of the method from PS family. It was initially proposed by Lachaux
et al. [44] and its main advantage is the possibility of computing FCmatrix at each instant as the
method look at the inter-trial information [2]. To assess the significance of the obtained connec-
tions, surrogates data analysis can be used and a level of significance can be set which allow users
to keep only the statistically significant connections (see [2] for details about this approach).

To ensure the significance of the obtained FC matrices, we integrated a statistical test based
on the surrogate data analysis. Briefly, we use multivariate Fourier transform surrogates gener-
ated from the original EEG data. Such surrogates correspond to realizations of linear stationary
process with conserved auto-and cross-correlation characteristics. The null hypothesis is tested
by comparing the original connectivity value (Corg) and those obtained using the surrogate
data (Csurr) using a statistical test. The “Rank test” is used to reject or accept the null hypothe-
sis. Basically, [Corg; Csurr] is sorted in increasing order and the rank index for Corg is returned.
With a number of surrogates (nsurr = 100 for example), if this rank is> 95 and< 5 (signifi-
cance level at 95%), this means that it lies in the tail of the distribution, and that the null
hypothesis can be rejected (two-tailed test) with a significance of p = 2�(1/ (nsurr+1)) = 0.019.
The output of this analysis is the matrix containing only the significant connections.

The networks. When realizing M/EEG source connectivity, the cortical surface file and its
corresponding scout file are required. The surface file contains the cortical mesh and the scout
file contains the labels of the brain regions in case of using specific atlas. The cortical parcella-
tion provides the ROIs that are used as network nodes in EEGNET. The surface files store
geometric information about the morphology of the cortex. It can be created using the open
source imaging analysis tool FreeSurfer http://surfer.nmr.mgh.harvard.edu/. The surface file
can be also checked using brainstorm http://neuroimage.usc.edu/brainstorm/. The identifica-
tion of the ROIs in the matrices is determined by a scout file which is a.mat file (can be gener-
ated also using Brainstorm). This file contains the labels of all the ROIs based on the already
used atlas for segmentation such as Desikan [45] and Destrieux [46].

Fig 1. Basic workflow of EEGNET. The M/EEG data are imported (256 dense EEG signals is this example). The functional connectivity is then computed
directly between the scalp signals. Network measures can be extracted from the adjacency matrix and the scalp network can be visualized in an interactive
way. On the other hand, the original M/EEG data can be used to estimate the brain sources by solving the inverse problem. Functional connectivity measures
can be applied on the reconstructed sources. Graph measures can also be computed and the correspondent cortex network can be visualized. Node’s size
and color can be used to encode any chosen network measures (their strength for instance) as well as the edges (their weight for instance).

doi:10.1371/journal.pone.0138297.g001
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To characterize the obtained networks, graph theory based analysis was widely used and
proved its high performance and usefulness [31]. A graph is a simple model of a system that
are based on a set of nodes (electrodes or brain regions in our case) and the edges between
them (functional connectivity values). Using EEGNET, several graph metrics can be computed
and can be divided into three categories:

A. Global features

- Density: the density of a graph is the fraction of present edges to all possible connections. If
the density of a graph is 1 then it is a complete graph (every vertex is connected to every
other vertex)

- The characteristic path length: is the average shortest path lengths in the network

- The global efficiency is the average inverse shortest path length in the network

- Radius: The radius of a graph is the minimum graph eccentricity of any graph vertex in a
graph. A disconnected graph therefore has infinite radius. Eccentricity is the maximum
graph distance between a vertex v and any other vertex u of the graph.

- Diameter: graph's diameter is the largest number of vertices which must be traversed in order
to travel from one vertex to another.

B. Node parameters

- Degree: Node degree is the number of links connected to the node. In case of directed graph,
the indegree is the number of inward links and the outdegree is the number of outward
links, and the total degree is the sum of both indegree and outdegree.

- Clustering Coefficient: The clustering coefficient is the fraction of triangles around a node i.e.
the fraction of node’s neighbors that are neighbors of each other.

- K-Coreness Coefficient: The k-core is the largest subgraph comprising nodes of degree at least
k. The coreness of a node is k if the node belongs to the k-core but not to the (k+1)-core.

- Node Betweenness: Node betweenness centrality is the fraction of all shortest paths in the net-
work that contain a given node. Nodes with high values of betweenness centrality partici-
pate in a large number of shortest paths.

- Participation Coefficient: Compares the number of links (degree) of node i to nodes in all
clusters with its number of links within its own cluster. The participation coefficient plays
an important role in classifying the nodes of a graph as connector hubs and provincial
hubs.

C. Edge parameters

- Edge Betweenness: Edge betweenness centrality is the fraction of all shortest paths in the net-
work that contain a given edge. Edges with high values of betweenness centrality participate
in a large number of shortest paths.

- Shortcut Edges: Shortcuts are central edges which significantly reduce the characteristic path
length in the network.

- Edges Neighborhood Overlap: is the number of nodes that are neighbors of the nodes of that
edge.

See [31] for details and equations of the mentioned and other graph metrics.
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Visualization
Scalp level. When the user is only interested in scalp networks, the EEG data should be

firstly loaded. The functional connectivity is then computed among scalp signals, according to
a pairwise procedure. For visualizing the network and computing the network measures, the
channel file is required. Users can also directly import their connectivity matrices (computed
elsewhere) to compute the network measures and visualizing the network. The channels posi-
tion is a file with four columns, the first for the node number or label, the next three for x, y
and z positions (an example of channel location file is contained within in the Examples folder
included in the downloaded EEGNET). This part supports the static and dynamic option. The
static option requires a 2D matrix (Nc x Nc) while the dynamic behavior option requires 3D
matrices (Ns x Nc x Nc). Typical examples of the static and dynamic scalp networks are pre-
sented in Fig 2A and 2B respectively.

Fig 2A shows the main steps after loading the connectivity matrix and its thresholding pro-
cess, computing the network measures and visualizing the scalp network. The nodes size and
color are used to encode any of the chosen features such as the modules for the color and the
strength for the size as presented in the Fig 2A. Fig 2B shows the ability of EEGNET to display
the dynamics of the functional networks at different time windows. The data used in this exam-
ple are from the same cognitive task (picture naming) as the one used in [47] and available on
the EEGNET webpage. It shows the tracking of functional scalp networks from the presenta-
tion of a visual stimulus to the naming process.

Cortex level. To compute the brain networks at source level from M/EEG data, the inverse
problem must be solved. It consists of reconstructing the brain sources from the scalp M/EEG.
When the M/EEG signals are checked and approved for further analysis, the time series of the
reconstructed sources can be estimated. After loading the coordinates of the electrodes as well
as a brain surface mesh, the lead field matrix can be computed using different tools such as
‘OpenMEEG’ [48]. The time courses of the sources are then estimated by solving the inverse
problem. Several algorithms for solving the inverse problem can be used (see [49] for review).
In the example showed here, the weighted Minimum Norm Estimate (wMNE) was used [50].

This step can be performed within EEGNET or elsewhere (in Brainstorm for instance). The
file containing the time series of the sources can be directly loaded as input for the next step,
which consists in computing the functional connectivity, see [3] for comparison of several
inverse algorithms and connectivity measures. In addition, the user can directly import the
connectivity matrix computed elsewhere (see Examples folder for an example of source level
matrix). Once the connectivity matrices are obtained and loaded, a set of measures can be
extracted from these matrices. We integrated a number of network measures developed in the
BCT toolbox [31]. EEGNET also provides the possibility of interacting with the different calcu-
lated network measures such as controlling the size and color of node (Fig 3) and edges (Fig 4).
Figs 3 and 4 are typical examples representing the network obtained during picture naming
task at 190ms-320ms segmented using k-means clustering tool of the functional connectivity
[47].

First, Fig 3A shows the visualization of nodes on the cortex—without showing the edges—
(modules are color-coded). As depicted, the obtained network contains two main modules.
The thresholded network indicates the presence of two main modules. The first ones contain a
nodes located in the bilateral occipital region and the second module is mainly located in the
left frontal lobe. Second, Fig 3B shows the left view of the same network. It shows also the pos-
sibility for the user to show the corresponding atlas.

Fig 4 displays the same network as the one showed in Fig 3 but with the addition of the
edges. The edges can be also coded in color and size. In Fig 4A, the color represents the weight.

EEGNET: The M/EEG Networks Tool
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Three options are available for coding the edges: i) show all edges with the same color, ii) using
a specific color-map or iii) coding the edges in three different colors normalized to the highest
weight values.

Fig 4B shows the ‘multiview’ option that consists in showing the network from different
views in the same figure. Different ‘multiview’ options are available. The user has also the
option to customize his ‘multiview’ by selecting the desired views from the control panel.

Quantification
An essential feature of EEGNET is the possibility of quantifying the obtained networks. The
network measures computed from the BCT toolbox can be visualized in a quantitative way as
shown in Fig 5. The figure shows the results of the strength values of the different ROIs in the
left and right hemispheres. It shows that the main ROIs involved in the network are the occipi-
tal regions such as occipital pole in the left hemisphere and the inferior occipital in the right
hemisphere. Other features can be also chosen such as the efficiency, the degree, the clustering
coefficient or any other desired measure. It requires only the selection of the measure in the
control panel showed in Fig 5.

The quantification can be realized in different level. It can show the averaged values over the
brain lobe (occipital, parietal, temporal, central and frontal), the averaged values over the ROIs
segmented from a given Atlas such as the 148 of Destrieux Atlas or/and the values of each sub-
divided ROI as shown in Fig 5 where the Destrieux Atlas was segmented into ~1000 ROIs.
These values can be also exported to excel file containing the label of the ROIs and the values of
all the calculated network measures. This gives the user the choice of representing the data on
his way.

Experimental results
In this section, we show the difference steps realized using EEGNET to identify networks
involved during picture naming task for a given subject. Participant was asked to name 148 dis-
played pictures on a screen. The brain activity was recorded using dense-EEG, 256 electrodes,
system (EGI, Electrical Geodesic Inc.). EEG signals were collected with a 1 kHz sampling fre-
quency. After loading the signal, to obtain the scalp level network, the functional connectivity
was computed using PLV method at gamma band (30–45 Hz), Fig 6A. The signal shown in Fig
6A corresponds to the average signal over trials. The vertical blue line represents the onset time
instant (presentation of the visual stimulus). In our case, 200ms were taken as pre-stimulus
period. After computing the network measure, the node’s color and size represent the modular-
ity and the degree respectively. The Fig 6B shows a mainly the occipital electrodes are involved
in the period between 120–200ms.

The source level network at the same period is shown in Fig 6C. The quantification of this
network by computing the degree for each node shows that highest values correspond to the
left/right inferior occipital, right occipital anterior and occipital pole (Fig 6D). These regions
are well known to play a capital role in the processing of visual information and object recogni-
tion [51, 52]. Moreover, the gamma activity in this time period was shown to marker of object
recognition and binding [52, 53]. The network in another period (190–320ms) was also illus-
trated and the corresponding degree values (Fig 6E and 6F). The network involves the left infe-
rior temporal gyrus in addition to the inferior temporal sulcus. These regions were stated to be

Fig 2. Scalp networks. A) The different steps performed to obtain a ‘static’ scalp network, B) typical example of the dynamics of scalp networks obtained
during a picture naming task (see [47] for about the data). The node color represents the modules and the size represents the strength values.

doi:10.1371/journal.pone.0138297.g002
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Fig 3. Example of the nodes visualization control. A. All nodes are showed with and without thresholding (about 1000 ROIs). Node’s color represents the
module and nod’s size represents the strength values. B. The left view of the same network with the corresponding Desikan Atlas imported from scout file.

doi:10.1371/journal.pone.0138297.g003
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in direct relation to semantic processing (Martin & Chao, 2001). It is also the time window in
which the N200 classically appear. The N200 is a marker of semantic processing in go/no-go
tasks (Thorpe et al., 1996). For more details about the picture naming task and the networks
corresponds to different periods, see [3].

Technical details
EEGNET was developed using MATLAB as programming language with a user-friendly GUI
under 64 bit Windows 7 environment, this toolbox has been successfully tested on different
operating systems with MATLAB installed, including Windows 7, Linux and Mac OS under
64-bit versions. To facilitate the first use of EEGNET, tutorial and user manual documents are
available in the download webpage that also provides the user with some examples for scalp
and source networks. It is worth mentioning that EEGNET depends on other software tools.
Some of these tools are written in MATLAB such as the BCT toolbox [31]. Preferably, the corti-
cal surfaces and the scout files may be generated using Freesurfer [54] and checked/visualized
using Brainstorm [30].

Software License
EEGNET is licensed under the GNU General Public License version 1. This is a free software
license, such that EEGNET may be freely redistributed and modified by any party. However,
when distributing the software, the imposition of any restrictions on any further redistribution
is forbidden.

Data
The sample data used in the paper was approved by the National Ethics Committee for the Pro-
tection of Persons (CPP), conneXion study, agreement number (2012-A01227-36), promoter:
Rennes University Hospital, Rennes, France. Participants provided their written informed con-
sent to participate in the study.

Discussion
To identify networks fromM/EEG data, at least four tools are required from loading/prepro-
cessing the EEG data, solving the inverse problem, computing the functional connectivity,
computing the network measures to then visualizing the identified networks in interactive way.
However, researchers always look for reducing the number of tools they use to accomplish a
complete data processing. As a network identification/visualization tool, EEGNET achieves
most of these functions.

In addition, the interactive analysis/visualization is a crucial part of scientific research. The
easy visualization of data can inspire novel hypotheses, help researchers to quickly evaluate
their results, and allow for significant quality control. EEGNET has novel interactive visualiza-
tion features not available in existing software packages for visualization of the connectome
such as the ability to interactively threshold networks based on the network measures for
instance.

Fig 4. Example of the edges visualization control. A. Edge’s color represents strength values B. Multiview option (5 views) selected from the control panel
(bottom).

doi:10.1371/journal.pone.0138297.g004
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Approaches for data collecting
EEGNET provides all the steps from loading the EEG signals to the identification of the brain
networks. However different files are needed to accomplish these steps. Here we show some
suggestions to how obtain these files.

A. The cortical surface. This file is very crucial to the analysis/visualization of the cortex
level networks. Using the structural MRI of the participant (or template), FreeSurfer [54] can
be used to compute all the different cortical parcellation with the correspondent different
atlases. Performing all the cortical reconstruction steps, including subcortical segmentation for
both hemispheres may take about ~16h for each MRI. The Destrieux and Desikan reconstruc-
tions atlases [45, 46] can be generated automatically using FreeSurfer and divide the cortical
surface into parcels based on macroscopic sulcal and gyral profiles. The parcellation can be fur-
ther subdivided into finer regions in order to generate for instance ~1000 regions (see [3, 10]).
This parcellation can be realized/visualized in Brainstorm [30] and related.mat file could be
exported. After choosing the desired spatial resolution (number of ROIs), the scout file con-
tains the position and the label of each of the ROIs can be also exported. This exported file can
be then used in EEGNET.

B. The functional connectivity matrices. The functional connectome is characterized by
statistical independences between neural activities in different regions. In the M/EEG context,
the FC is usually computed between signals recorded at the scalp signals using different meth-
ods such as cross-correlation [55, 56], phase locking value [44], nonlinear correlation coeffi-
cient [57, 58], phase lag index [59], imaginary coherence [60], mutual information [61] and
others (see [43] for review). This can be realized in resting states or evoked activities. MNE
python [62], Brainstorm [30], Brainwave (http://home.kpn.nl/stam7883/brainwave.html) and
the MATLAB toolbox for FC [63] are open-source software packages with the ability to calcu-
late many FC metrics fromM/EEG data.

Comparison between EEGNET and existing tools
In fact, EEGNET makes use of one third-party toolbox, namely the Brain Connectivity
Toolbox (BCT). BCT provides tools for network analysis based on graph theory; It was inter-
faced with EEGNET such that measures on networks can be immediately computed without
any interaction with the BCT codes. However EEGNET goes beyond the sole computation, as
we added a unique feature allowing the user to visualize the BCT measures as “intuitive” graph-
ical features related to network nodes (for instance the sphere radius/color) and edges (for
instance the thickness/color).

EEGNET and the exiting M/EEG toolboxes (such as EEGLAB or Brainstorm) respond to
distinct (and somewhat complementary) objectives. The main originality of EEGNET is to pro-
vide functional connectivity measures (phase synchronization, mutual information,. . .), 2D/
3D connectivity visualization nor network measures (via BCT, based on graph theory). In the
latest version of brainstorm, some connectivity measures (with circular visualization) were
included. However, it does not implement EEG scalp connectivity visualization or EEG source
connectivity 3D visualization. Moreover, network measures were not included in brainstorm.

Freesurfer is open-source software widely used by the Neuroimaging community. It was not
integrated with EEGNET but can be optionally used to get the cortical surface fromMRI in the
case where subject-specific data is necessary. The corollary is that users interested in scalp EEG

Fig 5. An example of the quantification analysis. The strength measure is selected. The strength values for each ROIs in the left (L) and right (R)
hemispheres are showed. The labels of the ROIs are used from the already loaded scout file.

doi:10.1371/journal.pone.0138297.g005
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connectivity do not need to use Freesurfer. Users interested in the EEG connectivity at the
source level will need to load their own cortical surface or use the template provided in
EEGNET.

eConnectome [37] is the closest tool to EEGNET. Although both tools have the same objec-
tive of identifying and analyzing networks from M/EEG data, including preprocessing, solving
of inverse problem, connectivity analysis and network visualizing, several considerable differ-
ences between EEGNET and eConnectome can be addressed:

i. Network measures. A crucial difference between eConnectome and EEGNET is that
EEGNET offers the possibility of computing the network measures (graph theory based analy-
sis) directly on the graph. This step became crucial when analyzing functional brain networks
[64]. With EEGNET, the topological property of the networks can be investigated from global
features such as density, modularity and small-worldness to more node specific properties such
as degree, strength, clustering coefficient, shortest path length and edge property such as edge
betweenness, shortcut edges and edges neighborhood overlap.

ii. Connectivity measures. The two tools include totally different family of connectivity
measures. The current version of EEGNET provides four different functional connectivity
measures, the cross-correlation, the mean phase coherence (MPC), the mutual information
(MI) and the Phase Locking Value (PLV) while eConnectome offers methods of functional
connectivity based on the multivariate autoregressive mode (mainly Directed transfer function
DTF and adaptive DTF).

iii. Visualization. EEGNET also provides the possibility of visualizing the network based
on the computed metrics. Therefore, the visualization is very different between eConnectome
and EEGNET. In EEGNET, the nodes and edges can encode the network measures providing
the user with direct and intuitive representation of graph features. For instance, the node size
and color can be changed to render the degree, strength, modules or any other nod’s features.
Similarly, the edge size and color can represent the weights for instance.

On the other side, EEGNET is restricted to M/EEG signals while eConnectome offers the
possibility of analyzing functional networks from ElectroCorticographic (ECoG) data.

Applications
Many studies reported that scalp magneto/electro-encephalography (M/EEG) connectivity
may bring relevant information for example about disrupted functional networks associated
epilepsy [65] or with tumors [1]. Yet, the interpretation of connectivity measures from sensor
level recordings is not straightforward, as these recordings suffer from a low spatial resolution
and are severely corrupted by effects of field spread [4]. For this reason, the past years have wit-
nessed a noticeable increase of interest for functional connectivity at the level of brain sources
reconstructed fromM/EEG scalp signals. This approach is conceptually very appealing as net-
works are directly identified in the source space, typically in the neocortex. The advantage is
that this approach provides an excellent temporal and very good spatial resolution [3, 4]. This
method involves two main steps: i) solving the M/EEG inverse problem to estimate the cortical
sources and reconstruct their temporal dynamics and ii) measuring the functional connectivity
to assess statistically significant relationships among the temporal dynamics of sources. Several

Fig 6. Identification of brain networks involved in picture naming task. A. The signals were loaded to EEGNET and the averaged signal over trials was
visualized. The connectivity measure was chosen (PLV in this case) and the frequency bands were set to 30–45Hz (Low Gamma band). B. The network
obtained at scalp level in the period 120–150ms. C. The network obtained at the same period after source reconstruction using wMNE and connectivity
measurement (using PLV). D. The degree value of each nodes (based on Destrieux Atlas) was computed and visualized. E. The network obtained at 190–
320ms after source reconstruction using wMNE and connectivity measurement (using PLV) and F. the corresponding degree values. Node’s color and size
represent the modularity and the degree respectively. The time periods were chosen based on automatic segmentation of such cognitive task [47, 74].

doi:10.1371/journal.pone.0138297.g006
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studies showed the usefulness of this technique mainly in brain disorder context such as the
epilepsy [66–68]. However, it became trivial to characterize brain networks using approaches
based on the graph theory [64].

In this context, EEGNET provides the unique tool that combines the functional connectivity
analysis from EEG data with the possibility of characterizing the networks using graph theory
based analysis. This possibility of computing the network measures in EEGNET is in great
interest for different application such as detecting disrupted nodes/edges properties during
brain disorders.

Limitations and future directions
Further ways for software improvements may include the use of new visualization approaches
or improve the existing ones. For instance, EEGNET will be updated to visualize modular parti-
tions of brain networks, allowing for comparisons to well-studied brain networks (e.g., default
mode network). The circular view of the brain network used in different tools such as CVU
will be also included in EEGNET. Analyzing the dynamics of the identified networks is an
important direction of future work, by including algorithms for functional connectivity states
for instance [47].

The current version of EEGNET does not provide all preprocessing features. Different pre-
processing modules will be included in the next version of EEGNET such as bad channel/trials
and artifact removal [69]. EEGENT will be improved to support also the different M/EEG for-
mat/devices.

In the current version of EEGNET, the analysis can be realized on a single subject or on
averaged data. In the next version, group analysis will be included in order to study the inter-
subject variability and the possible difference between subjects or/and conditions. Concerning
the inverse problem algorithms, three different algorithms are integrated in the current version:
the Minimum Norm Estimate (MNE), the weighted MNE and the Low resolution Brain Elec-
tromagnetic Tomography (LORETA). Descriptions about these methods can be found in [3].
Other algorithms are also expected to be included such as MUSIC-based algorithms [70], the
beam-forming algorithm [71] or algorithms based on the maximum entropy [72, 73]. Con-
cerning the connectivity measures, we also expect to add other methods in the next version
mainly the effective connectivity methods. Note the EEGNET in its current version is support-
ing the effective representation (using arrows indicating the direction of the connectivity). In
the context of effective connectivity, eConnectome can be the best alternative to use [37].

Conclusion
We have developed a new software tool called EEGNET. The main objective of this tool is to
cover the complete processing framework from the M/EEG pre-processing to the identification
of the functional brain networks. EEGNET includes mainly the calculation of the functional
connectivity between scalp M/EEG signals as well between reconstructed brain sources
obtained from the solution of the inverse problem. It also includes the characterization of the
brain networks by computing the network measures proposed in the field of graph theory.
EEGNET provides user-friendly interactive 2D /3D brain networks visualization.
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