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Abstract 

Reproduction is a key event in life guaranteeing the propagation and evolution of a species. Infertility caused by 
abnormal germ cell development is a topic of extensive concern. Herein, in vitro germline specification studies pro-
vide a modeling platform to investigate gametogenesis. The differentiation of pluripotent stem cells (PSCs) into germ 
cells has been studied for more than 30 years, and there have been many astonishing breakthroughs in the last dec-
ade. Fertile sperm and oocytes can be obtained from mouse embryonic stem cells (ESCs) through a primordial germ 
cell (PGC)-based method. Moreover, human PGC-like cells (PGCLCs) can be derived with a similar strategy as that used 
for mouse PGCLC derivation. In this review, we describe the reconstitution of PGCs and the subsequent meiosis, as 
well as the signaling pathways and factors involved in these processes.
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Introduction
In mammals, gametes, as the origin cells of a new organ-
ism, carry parental genetic and epigenetic information 
and ensure that parental information can be passed down 
across generations. Primordial germ cells (PGCs) are the 
precursor cell type of functional gametes, which are the 
first germline cell population in many mammals and spe-
cialize in early embryo development [1]. They migrate 
to the gonads and further specialize to either sperm or 
oocytes [2]. However, PGC specification from pluripo-
tent stem cells (PSCs) is complicated and elusive,thus, 
the study of PGC reconstitution and subsequent meiosis 
in vitro is very important for the investigation of germline 
development. In addition, there are many patients with-
out functional sperm or eggs who desire to have healthy 
genetically related offspring, and studies in this area are 
therefore in strong clinical demand. Attempts to produce 

gametes in  vitro began in the early 2000s. Embryonic 
stem cells (ESCs) are PSCs with self-renewal ability and 
the potential to differentiate into diverse lineages [3, 4]. 
Whether ESCs could yield germline lineages and even 
functional gametes in  vitro has raised broad concerns. 
Recently, mouse PGC-like cells (PGCLCs) were obtained 
from ESCs or induced pluripotent stem cells (iPSCs) 
in vitro through “Epiblast-like cells (EpiLCs) aggregate”-
based induction and selection for specific markers [5, 
6]. These derived PGCLCs can further differentiate into 
functional sperm or oocytes when transferred to the 
gonads in  vivo or directly induced with specific chemi-
cal compounds and growth factors in vitro [7–9]. These 
were exciting breakthroughs for basic studies of devel-
opment and reproductive medicine. In addition, more 
genetic and epigenetic information on human germlines 
has been revealed through the development of single-cell 
sequencing technologies [10, 11], greatly facilitating stud-
ies of PGC specification in humans. Here, we review the 
specification of the germline in recent decades in detail.
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Development of germline in mice and human
The mouse PGCs (mPGCs) arise from a portion of the 
post-implantation epiblast [12], responding to certain 
specific factors. PGCs require epiblast cells to enter the 
germ cell fate rather than the somatic cell fate. In mice, 
around embryonic day 5.25–6.25 (E5.25–6.25), bone 
morphogenetic protein 4 (BMP4) from the adjacent 
extraembryonic ectoderm began to induce the produc-
tion of PGC precursors in the proximal epiblast cell pop-
ulation [13] instead of changing into somatic cells. In the 
extraembryonic mesoderm of embryos from E7.0–E7.25, 
BMP4-triggered cells expressing Blimp1 (also known as 
Prdm1) [14], Tfap2C (also known as AP2γ) [15], Prdm14 
[16] and Stella [17] can be detected by alkaline phos-
phatase (AP) staining. These AP-positive cells in this 
stage are named PGCs. PGCs expand and appear as clus-
ters on the amniotic membrane at approximately E7.25 
[18] and then migrate to the genital ridge beginning on 
E9, where they further develop to the next stage [19]. 
Male germ cells enter meiosis from mitosis beginning at 
E13.5, whereas female germ cells arrest at an early stage 
of meiosis until adult age to resume meiosis [2].

Although the development of PGCs in mice is well 
known, the study of human PGCs (hPGCs) is still rare 
due to ethical difficulties in obtaining samples from 
early human embryos. Comparable to E6.25 to E7 stage 
embryos in mice, 2-week human embryos contain an epi-
blast and hypoblast, and the cytotrophoblast surround 
the epiblast. The amnioblast from the epiblast forms the 
amnion, containing the cytotrophoblast to form amniotic 
cavity [20]. With the beginning of gastrulation at 3 weeks, 
hPGCs have already formed. At approximately 4 weeks to 
6 weeks, hPGCs start to migrate to the gonad gradually. 
Some genes involved in regulating hPGC formation have 
been studied in  vitro to avoid ethical issues. Conserved 
genes such as Blimp1, Tfap2C, Nanos3, DDX4, Dazl and 
Nanog are highly expressed in both mice and humans. 
However, Sox17 is specifically expressed in hPGCs rather 
than in mPGCs [21]. Therefore, it is necessary to address 

the key modules and pathways involved in the generation 
of hPGCs.

Differentiation of germline from ESCs
In 2003, Yayoi et  al. co-aggregated mESCs (carrying a 
mouse Vasa homolog (MVH) reporter) with tropho-
blast cells or M15 cells (producing BMP4 or BMP8b) and 
obtained 2.9% MVH-positive cells from the aggregates 
within a day. These MVH-positive cells could partici-
pate in spermatogenesis when transferred into testicular 
tubules [22]. In the same year, Hübner et al. proved that 
mESCs could enter meiosis to produce oogonia. They 
enriched PGCs with gcOct4-GFP and Vasa double posi-
tivity and further cultured them with FBS to form oogo-
nia [23]. To produce male gametes in  vitro, Niels et  al. 
cultured EB-derived SSEA1-positive cells in the presence 
of retinoic acid (RA) to induce mPGCs and haploid gam-
etes from mESCs [24]. Thereafter, a more comprehen-
sive study revealed that retinoid signaling (role of RA) 
determined the cell fate of germ cells in mice [25]. Early 
studies of germline specification focused mainly on the 
generation of PGCs, however, whether functional haploid 
gametes could be obtained by differentiation needs more 
investigation (Fig. 1A).

Human germline development is rarely studied due to 
the shortage and inaccessibility of human embryos for 
ethical reasons. As hESCs and mESCs are genetically 
and epigenetically different [30], strategies for germline 
specification of hESCs might be different from those 
for mESCs (Fig. 1B). In 2004, hESCs were differentiated 
randomly in aggregates, expressing some germ cell-
specific markers, including VASA, BOL, and SCP1 [31]. 
Next, Kee et  al. found that the differentiation efficiency 
of PGCs can be improved with BMPs by enrichment for 
VASA and SYCP3 double-positive cells [26]. Bucay et al. 
reduced the size of cultured ESC colonies with low con-
fluence to plates and obtained hPGCs by enrichment for 
CXCR4-positive cells [27]. In addition, Park et al. found 
that coculturing hESCs with human fetal gonadal stromal 

(See figure on next page.)
Fig. 1.  Traditional induction of germ cells from ESCs in the 2000s. A Schematic of mouse germ cell specification in the 2000s. (i) mESCs were 
cocultured with M15 cells or trophoblast cells that secreted BMP4 or BMP8b to induce the specification of mPGCs [22]. (ii) gcOct4-GFP mESCs were 
cultured for 7 days in the presence of FBS to induce early germ cells, from which the VASA+ cells were enriched by fluorescence-activated cell 
sorting (FACS) and further cultured to generate oogonia [23]. gcOct4-GFP,conserved region 2 (CR2) and CR3, also termed the proximal enhancer, 
were deleted from the 5’ regulatory region of Oct4. OCT4 and GFP were driven by the distal enhancer. FBS, fetal bovine serum,VASA, a marker of 
postmigratory germ cells. (iii) EBs were formed from ESCs, and EB-derived SSEA1+ cells were enriched by FACS and further cultured with RA to 
induce mPGCs [24]. RA, retinoic acid. B Schematic of human germ cell specification in the 2000s. (i) hESCs were aggregated into hEBs when treated 
with BMPs, from which VASA+ and SYCP3+ double-positive cells with PGC identities were enriched by FACS [26]. (ii) hPGCs can be produced 
by reducing the size and confluence of plated hESC colonies. These cells could be purified by sorting with CXCR4 antibody [27]. (iii) hESCs were 
cocultured with human fetal gonad stromal cells to facilitate the production of hPGCs [28]. (iv) Overexpression of DAZL could promote the 
efficiency of hPGC (VASA+ cells sorted by FACS) specialization from hESCs with BMPs. In addition, co-overexpression of DAZ and BOULE could 
promote the meiosis of PGCs [29].
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cells significantly improved the generation efficiency of 
hPGCs [28]. Another report revealed that overexpression 
of DAZL promotes germ cell differentiation from hESCs, 
further yielding haploid cells through the overexpression 
of DAZ and BOULE [29]. Although germ cells expressing 
specific markers were obtained from mESCs and hESCs, 
whether authentic PGCs with the potential to function 
as gametes could be generated from PSCs is still unclear 
and of great interest.

Fertile gametes from pluripotent stem cells
Although there have been many studies of PGC speci-
fication from ESCs in mice, their further differentia-
tion to fertile gametes is still challenging. In mice, germ 
cell fate is initialized at the epiblast beginning at E5.75, 
which can be indicated conveniently with Blimp-mVenus 
(BV) and Stella-ECFP (SC) reporters [32]. Hayashi et al. 
cultured mESCs in a “2i/LIF” condition [33] and dif-
ferentiated them in the presence of activin A and bFGF 
to induce epiblast-like cells (EpiLCs), which exhibited 
similarities to the post-implantation epiblast at E5.75 
[6]. These EpiLCs were further aggregated with defined 
cytokines, including BMP4 [34] and other factors, for 
several days (Fig.  2A). Typical PGC-like cells (PGCLCs) 
could be enriched from aggregates with BVSC reporters 
or SSEA-1 and CD61 antibodies. These PGCLCs were 
transferred back into testes or ovaries, and both could 
further produce reproductive gametes [5, 6]. Through 
overexpression of Prdm14, EpiLCs can also swiftly and 
efficiently differentiate into PGCs [35]. It is known that 
coculture of mESCs with OP9 cells induces mesodermal 
differentiation in  vitro [36, 37]. Using these mesoder-
mal differentiation protocols, PGCLCs were efficiently 
induced from ESCs by coculture with OP9 cells and inhi-
bition of ERK signaling, attributed to the upregulation of 
germ cell marker genes and downregulation of mesoder-
mal genes [38]. The overexpression of Nanog in mEpiLCs 
could induce mPGCLCs, independent of BMP4. In 
addition, NANOG could bind to and activate the 

enhancers of Blimp1 and Prdm14 [39]. Altogether, this 
“EpiLC-based aggregates with defined cytokines” method 
greatly promoted the derivation of PGCLCs, while more 
specific double-positive enrichment and clearer germ cell 
regulation pathways guaranteed the authentic identities 
of derived PGCLCs.

Given that in  vitro-derived PGCLCs could generate 
functional gametes when transferred back to germlines 
in  vivo, it was fascinating to address whether PGCLCs 
were able to produce functional gametes in  vitro. In 
2016, Zhou et  al. cocultured SSEA1 and CD61 double-
positive PGCLCs with testicular cells in the presence of 
defined cytokines and hormones. Haploid spermatid-like 
cells (SLCs) were generated from the cell cultures and 
were capable of producing offspring via intracytoplas-
mic injection [9]. Another group cocultured PGCLCs 
from ESCs with gonad-derived somatic cells in a gas-
liquid interphase culture system, which further generated 
propagating spermatogonial stem cells [8]. In the same 
year, fertile oocytes were also obtained from cocultures 
of ESC-derived PGCLCs and gonad-derived somatic 
cells [7]. Thereafter, Ohta et  al. developed a chemically 
defined culture system in which PGCLCs could expand 
50-fold while still maintaining robust capacity for sper-
matogenesis [40]. Besides in the presence of forskolin and 
rolipram, cyclosporin A (CsA) and fibroblast growth fac-
tors (FGFs: FGF2 and FGF10) effectively enhanced nearly 
50-fold during the expansion of mPGCLCs in vitro. And 
mPGCLCs which expanded exposed in CsA and FGFs 
comprehensively erased their DNA methylation like the 
wild type gonadal germ cells in vivo [41]. Based on this 
culture system, Ishikura et  al. reconstituted whole male 
germ-cell development from mESCs in vitro [42]. Thus, 
both male and female gametes could be produced by 
in vitro mESCs using various strategies (Fig. 2B), which is 
beneficial for basic studies of germline development and 
clinical demands.

Reconstitution of the mouse germline in  vitro is 
well developed, providing a platform for infertility 

Fig. 2.  Generation of fertile gametes from ESCs in mouse. A Schematic of mouse germline specification in vitro. (i) mESCs were induced to 
differentiate into EpiLCs for 2 days in the presence of Activin A and bFGF. mEpiLCs were induced into mPGCLCs for 6 days by cytokines including 
BMP4 and BMP8. mPGCLCs were able to form fertile spermatozoa or oocytes in vivo [5, 6]. (ii) mESCs were transfected with DOX-inducible vectors, 
differentiated into mPGCLCs through a similar EpiLC process, and then aggregated by adding DOX to induce overexpression of Blimp1, Prdm14 
and Tfap2C. The efficiency of PGC derivation was improved just by overexpression of Prdm14 [35]. (iii) mESCs were cultured without 2i before 
induction for 3 days and cocultured with OP9 cells with MEK inhibitor and without LIF to induce the PGC fate [38]. 2i, GSK inhibitor and MEK 
inhibitor. (iv) mESCs were induced to differentiate into EpiLCs as described above, which were further induced into mPGCLCs without cytokines by 
overexpression of Nanog [39]. B Schematic of gamete specification from mPGCLCs in vitro. (i) Male mPGCLCs were cocultured with testicular cells 
supplemented with RA, BMPs, Activin A and testosterone, FSH and BPE to form mSLCs [9]. Male mPGCLCs were aggregated with somatic cells from 
embryonic gonads to form reconstituted testes (rTestes) by gas-liquid interphase culture and then cultured with GNDP, bFGF, LIF and EGF to form 
mGSCLCs [8]. mSLCs, mouse spermatid-like cells,mGSCLCs, mouse germline stem cell-like cells. (ii) Female mPGCLCs were aggregated with E12.5 
gonadal somatic cells to form reconstituted ovaries (rOvaries). rOvaries were cultured and differentiated for 5 weeks to further produce mature 
oocytes [7].

(See figure on next page.)
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research. The successful specification of germline 
cells from ESCs is mainly attributable to two factors: 
(1) initiation from the EpiLC state and (2) induction 
conditions including BMP signals. In addition, the 
derivation efficiency of mPGCLCs could be improved 
through the overexpression of transcription factors 
including Prdm14 and Nanog. Since the pluripotent 
state of hESCs was totally distinct from that of mESCs, 
the specification of PGCs from hESCs required dif-
ferent methods (Fig. 3A). Irie et al. cultured hESCs in 
‘‘4i’’ medium [43] to induce a ground state resembling 
mESCs. Thereafter, “4i hESCs” were cultured in the 
presence of bFGF, TGFβ and LIF to obtain “preinduced 
hESCs”, similar to mEpiLCs. Finally, with cytokines, 
including BMP4, “preinduced hESCs” differentiate 
into hPGCLCs [21]. Another group induced hiPSCs 
into primary mesoderm-like cells (iMeLCs) by adding 
Activin A and CHIR99021, which can stably produce 
hPGCLCs. The iMeLCs were cultured in the presence 
of BMP4, SCF, EGF and LIF and differentiated into 
Blimp1-tdTomato and AP2γ-EGFP double-positive 
hPGCLCs expressing PGC-specific genes, including 
Blimp1 [44]. To explore the differentiation potential 
of hPGCLCs, Yamashiro adopted a xenogeneic ovary 
strategy to aggregate hPGCLCs with mouse embry-
onic ovary somatic cells. After approximately 10 weeks 

of culture, hPGCLCs underwent epigenetic repro-
gramming and differentiated into oogonia structures 
(Fig. 3B). In another 4 months of culture, the cell cul-
tures began to express some key genes of premeiotic 
cells [45].

Key Regulators of PGC Specification
PGC specification consists of three key events: repression 
of somatic programming, regaining of pluripotency and 
genome-wide epigenetic reprogramming. The transcrip-
tion factors (TFs) Blimp1 (also known as Prdm1) and 
Prdm14 play important roles in mPGC formation [14, 
16]. Prdm1 deficiency might cause PGC apoptosis [46]. 
Prdm14 is a PR domain-containing transcriptional regu-
lator that regulates pluripotency and genome-wide epige-
netic reprogramming and is specifically expressed in the 
germline and PSCs. In Prdm14-deficient embryos, cells 
destined to become PGCs were unable to regain pluripo-
tency and fulfil epigenetic reprogramming [16, 47]. Func-
tionally, Blimp1 inhibited the differentiation of EpiLCs 
to mesoderm lineages, whereas Prdm14 inhibited neural 
differentiation and activated Blimp1. The TF Tfap2c was 
a downstream target gene of Blimp1, which was specifi-
cally expressed in E7.25-E12.5 PGCs population [48]. In 
addition, Sall4 is involved in PGC specification in con-
junction with Blimp1 to recruit repressor complexes of 
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somatic cell fates [49]. The co-overexpression of Blimp1, 
Prdm14 and Tfap2c enabled EpiLCs to differentiate into 
PGCLCs efficiently, indicating their core roles in the 
induction of PGCLCs [35]. In mice, it had been proven 
previously that cells respond to BMP4 by expressing 
Blimp1, Prdm14 and Tfap2c. The wingless/INT-1 (WNT) 
pathway responds to BMP-induced signals to control 
PGC specification [34]. T (also known as Brachyury) 
was subsequently found to have a similar function, and 
the genetic disruption of T prevented the expression of 
early mPGC markers as Prdm1 and others [50]. Recently, 
Zhang et al. found Otx2 to be a key roadblock to the dif-
ferentiation of germline fate. During the specification of 
PGCs, BMP4 and the activated WNT pathway repressed 
the expression of Otx2. When OTX2 is absent, the induc-
tion of PGCLCs does not require BMP4 or BLIMP1 [51]. 
Pluripotent TFs also play important roles in the develop-
ment and survival of PGCs. For example, Oct4 is a het-
erodimeric mate of Sox2, which is also required for PGC 
specification [52]. Oct4 is continuously expressed in epi-
dermal cells due to its role in PGC fate commitment, but 
the expression of Nanog and Sox2 is downregulated in 
epidermal cells in the pregerm stage and re-expressed in 
PGCs [53, 54]. The results of single-cell analysis of early 
mPGCs were consistent with these findings [55]. All of 
the above are the regulatory pathways involved in mouse 
germline specification (Fig. 4A).

Similar to the case in mPGCs, conserved genes such as 
BLIMP1, TFAP2C, NANOS3 and NANOG are also active 
in humans. However, the regulatory pathways are dif-
ferent from those in mice (Fig.  4B). The core regulators 
of PGC specification in humans are BLIMP1, TFAP2C 
and SOX17 but not PRDM14. The disruption of SOX17 
caused the failure of hPGC specification, while the over-
expression of SOX17 was able to improve the efficiency of 
hPGC specification [21]. In addition, GATA3 or GATA2 
as the immediate BMP effectors, combined with SOX17 
and TFAP2C was able to promote hPGCLCs generation 
[56]. EOMES encodes many T-box-containing TFs and 
is required for the development of extraembryonic ecto-
derm in mouse post-implantation embryos and for gas-
trulation [57]. In humans, EOMES is upstream of SOX17 
and downstream of the WNT pathway, which activates 
the expression of SOX17 and induces the specification of 
hPGCs [58]. In addition, SOX17 could activate BLIMP1, 
further upregulating TFAP2C [48]. Interestingly, the 
expression of TFAP2C was independent of SOX17 but 
responded to BMP4 [58]. Recently, scientists analyzed 
the landscape of hPGC specification and found that the 
differentiation from PSCs to germ cells was driven by the 
core TF network of OCT4, SOX2, PAX5 and PRDM1 [59]. 
The regulatory network of hPGC specification from PSCs 

was identified gradually through CPISPR/Cas9-based 
genetic screening [60].

In PGC specification, in addition to TF regulation, epi-
genetic reprogramming was essential to erase parental 
imprinting (Fig. 4C). Correct epigenetic reprogramming 
leads to the normal development of offspring. Mouse 
PGCs underwent the demethylation of genomic DNA, 
erasure of imprinting, upregulation of H3K27me3, and 
downregulation of H3K9me2 in vivo [61, 62]. H3K9me2 
levels were inhibited at E7.25, and H3K27me3 levels 
increased at E8.25 [63]. In mice, the major histone modi-
fications in PGCLC specification include H3K27me3, 
H3K4me3 and H3K9me3. ESCs differentiate into 
EpiLCs with the change in H3K27 acetylation (H3K27ac) 
that occurs at this stage [64]. With the enrichment of 
H3K27ac, T activates the mesoderm program and the 
expression of Blimp1 [65]. H3K27ac is then decommis-
sioned and becomes H3K9me2 in EpiLCs [64]. Bivalency 
of H3K4me3 and H3K27me3 marks poised promot-
ers [20]. The level of H3K27me3 decreased through 
the activation of the mesoderm program, while during 
the induction of PGCLCs, H3K27me3 reappeared, and 
BLIMP1 acted as a potential nucleator for the enrichment 
and spreading of H3K27me3 [65]. Meanwhile, methyla-
tion was regulated by the expression of Prdm14. The level 
of 5mC increased during the transition from mESCs to 
EpiLCs but decreased during the induction from EpiLCs 
to PGCLCs [66, 67]. DNA methylation reprogramming 
in human PGC specification was similar to that in mice. 
By the expression of SOX17 and BLIMP1, de novo DNA 
methylation was repressed in hPGCLCs, and 5hmC was 
globally enriched, while the level of 5mC decreased [68]. 
The CpG levels in hiPSCs and iMeLCs were high initially 
and then decreased during the induction of hPGCLCs 
[44, 69].

Conclusions
PGCLCs have been achieved from PSCs in mice and 
humans and are promising for the reconstitution of the 
germline in vitro. Furthermore, although mPGCLCs can 
be successfully induced into functional oocytes and sper-
matozoa, the efficiency of spermiogenesis in vitro is still 
low, indicating that more mechanisms underlying sper-
miogenesis need to be clarified. All the findings related to 
germline specification in mice have facilitated the studies 
of hPGCLC generation; nevertheless, how hPGCLCs can 
be induced into haploid gametes warrants further investi-
gation. Since the regulatory pathways involved in human 
germline specification are distinct from those in mice, it 
is necessary to focus on the core module controlling this 
process, similar to the role of Otx2 in mice.
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Fig. 4.  Regulatory pathways and epigenetic modifications related to germline specification. A Regulatory pathways for PGC specification in mice. 
The BMP4 signaling pathway directly or indirectly activates the WNT signaling pathway, which activates T cells. T cells directly activate Blimp1 and 
Prdm14. Tcfap2c is a downstream target of Blimp1, enabling PGCs to maintain Blimp1 activity. Prdm14 activates Tfap2C, which enhances the activity 
of Blimp1, while the expression of Blimp1 activates the expression of Tfap2C. Otx2 functions repressively upstream of PGC transcription factors and 
is inhibited by the BMP4 and WNT signaling pathways. B Regulatory pathways for PGC specification in humans. The mechanism underlying hPGC 
specification was distinct from that of mPGC specification. Sox17 plays an important role in hPGC specification. The BMP4 signaling pathway initially 
activates Sox17, whereas WNT activates Eomes, which further activates Sox17. Sox17 is upstream of Blimp1 in the PGC specification circuit. Blimp1 
can be upregulated by Tfap2C, which is upregulated by Sox17 in response to the BMP4 signal. C Epigenetic modifications during the induction from 
ESCs to PGCLCs in mice and humans
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