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Metabolomics has been reported as an efficient tool to screen biomarkers that

are related to esophageal cancer. However, themetabolic biomarkers identifying

malignant degrees and therapeutic efficacy are still largely unknown in the

disease. Here, GC-MS-based metabolomics was used to understand metabolic

alteration in 137 serum specimens from patients with esophageal cancer, which

is approximately two- to fivefold as many plasma specimens as the previous

reports. The elevated amino acid metabolism is in sharp contrast to the reduced

carbohydrate as a characteristic feature of esophageal cancer. Comparative

metabolomics showed that most metabolic differences were determined

between the early stage (0–II) and the late stage (III and IV) among the 0–IV

stages of esophageal cancer and between patients who received treatment and

those who did not receive treatment. Glycine, serine, and threonine metabolism

and glycine were identified as the potentially overlapped metabolic pathway and

metabolite, respectively, in both disease progress and treatment effect. Glycine,

fructose, ornithine, and threonine can be a potential array for the evaluation of

disease prognosis and therapy in esophageal cancer. These results highlight the

means of identifying previously unknown biomarkers related to esophageal

cancer by a metabolomics approach.
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Introduction

Esophageal cancer is a common malignant gastrointestinal

tumor that ranks seventh and sixth in global cancer incidence

and mortality, respectively. The cancer is known for typical

geographic distribution in incidence and poor prognosis (1, 2).

According to the data released by the International Agency for

Research on Cancer (IARC), there were 604,100 new cases of

esophageal cancer and 544,076 deaths due to the disease

worldwide in 2020, with China accounting for 53.7% and

55.4%, respectively (3). Notably, it is predicted that the

incidence and mortality of esophageal cancer will rise yearly

owing to the increasing aging of the population, posing a major

challenge for health practitioners and a huge threat to human

health (4). Thus, understanding the pathogenesis of esophageal

cancer is helpful to identify new biomarkers for disease

progression judgment and treatment prognosis.

Esophageal cancer is generally divided into two subtypes,

namely, esophageal squamous cell carcinoma (ESCC) and

esophageal adenocarcinoma (EAC); most esophageal cancers

are ESCC. ESCC carcinogenesis is related to external and

internal factors and, thus, is a multifactorial disease. External

factors include tobacco, alcohol, and behavior at high

temperature (5–7), while internal factors are attributed to

molecular events. However, the precise molecular events

underlying ESCC etiology are only partially understood and

thereby the detailed mechanism of occurrence and progression

of ESCC has not been holistically revealed yet (8, 9). These cause

limited targeted therapies and insufficient clinical management

in ESCC patients. Therefore, further understanding the

pathogenesis of esophageal cancer and identifying diagnosis

biomarkers can markedly improve the prognosis and therapy

of patients with esophageal cancer.

Recently developed metabolomics provides an efficient

approach to achieve a global assessment and validation of

endogenous small-molecule metabolites within a cell or

biologic system including cancer samples (10, 11).

Metabolomics is a key tool for biomarker discovery and

personalized medicine including cancers (12, 13). This leads to

the identification of quantitative metabolic biomarkers for

cancer detection and/or assessment of efficacy of anticancer

treatment. Yang et al. adopt liquid chromatography with

tandem mass spectrometry (LC-MS/MS)-based metabolomics

to identify biomarkers in 60 postoperative esophageal tissues

compared with 15 normal tissues adjacent to the tumor and

indicate that glycerophospholipid metabolism is associated with

the ESCC tumorigenesis and progression (14). Zang et al. use

spatially resolved metabolomics to discover cancer tissue-

relevant metabolic signatures and identify glutamine

metabolism, fatty acid metabolism, de novo synthesis

phosphatidylcholine, and phosphatidylethanolamine as the

metabolic signatures (15). Fujigaki et al. identify serum
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arabitol, glycine, L-serine, and L-arginine as biomarkers

predicting the chemoradiosensitivity of ESCC patients using

the targeted metabolomics approach (16). These results

indicate that metabolomics is an effective approach to identify

biomarkers that are related to esophageal cancer. However, the

association between metabolic alterations in serum samples and

progression and therapeutic effect of patients with esophageal

cancer remains unclear. In particular, how can differentiating

post-treatment and pre-treatment patients leads to “optimized

treatment” needs further exploration.

Here, gas chromatography–mass spectrometry (GC-MS)-

based metabolomics was performed to carry out a

metabolomics analysis of 137 serum specimens from

patients with esophageal cancer. Comparative metabolomics

showed that the patients with esophageal cancer exhibited

enhanced amino acid against the reduced carbohydrate as a

previously unknown characteristic feature of esophageal

cancer. Then, the association of metabolic modulation with

malignant degrees of esophageal cancer was investigated. The

most significant metabolic difference was detected between

stages 0–II and III–IV. Finally, the effect of treatment on

metabolism was explored between patients who received

treatment and those who did not. The treatment reverted

the metabolic state of the patients to close to that of healthy

individuals, but further studies are needed to verify them using

the same group of patients compared before and after

treatment. These results provide a novel insight to further

understand the pathogenesis of esophageal cancer and

previously unknown biomarkers for prognosis and treatment

evaluation of the patients.
Results

The detailed clinical characteristics of
patients with esophageal cancer

Sera were collected from 137 patients with esophageal

cancer, namely, 104 male and 33 female patients with 56

cases ≤60 years and 81 cases >60 years. Of these, 121 patients

had ESCC, 1 patient had EAC, and 15 patients had other

pathological types. A total of 137 patients were distributed in

five stages with 7 in stage 0, 26 in stage I, 27 in stage II, 30 in

stage III, and 17 in stage IV. Among them, 30 patients had

experienced treatment and 107 were still in the untreated stage.

There were no differences in gender between esophageal cancer

patients and healthy individuals, and between late stage and

early stage, but there was a difference between patients who

received treatment and those who did not. There was also no

difference in the smoking habit between the comparison groups

(Table 1). In addition, the population studied favors oriental

traditional diets.
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Quality control and metabolite
identifications for metabolomics

To ensure basic validation of the instrument for metabolite

profiling, quality control (QC) was conducted. We prepared

pooled QC samples by equally mixing small aliquots of sera

from the samples studied, and one QC sample was run after

every 14 samples. Orthogonal partial least-squares discriminant

analysis (OPLS-DA) showed that QC samples were tightly

clustered, which indicated that the sample analysis sequence had

satisfactory stability and repeatability (Supplementary Figure 1).

Meanwhile, for metabolite identification, 30 pure reference

compounds and alkane mix 34 (C7–C40) were analyzed. Two

independent parameters (mass spectra and retention index) were

recorded and matched. A total of 58 metabolites were identified,

where 28 and 18 were located inMetabolomics Standards Initiative

(MSI) level 1 and 2, respectively (Supplementary Table 1).
Metabolomic profiling of esophageal
cancer patients and healthy individuals

To study the metabolic changes of patients with esophageal

cancer, a nontargetedmetabolic profiling strategy based on GC-MS

was applied. A total of 167 serum specimens from 137 esophageal

cancer patients and 30 healthy individuals were enrolled in this

study. Each individual sample was subjected to two

technical repeats, yielding a total of 334 data sets. The

correlation coefficient between technical replicates varied

between 0.990 and 0.999 (Figure 1A), demonstrating the

reproducibility of the data. After the removal of internal

standard ribitol and any known artificial peaks and the

integration of the same compounds, 58 metabolites were

identified. These metabolites were categorized into carbohydrate
Frontiers in Oncology 03
(55%), amino acid (19%), nucleotide (4%), lipid (19%), and others

(3%) (Figure 1B). The metabolic profiles of patients with

esophageal cancer and healthy individuals were displayed as a

heatmap (Figure 1C), where the two groups were clearly separated.

OPLS-DA showed that component t[1] differentiates the two

groups (Supplementary Figure 2). These results indicate that

patients with esophageal cancer have a metabolic shift.
Differential metabolomic profiling of
patients with esophageal cancer
compared with healthy individuals

Among the 58 metabolites, 53 metabolites were differential

in abundance, compared with healthy individuals (p < 0.05).

These differential abundances of metabolites were categorized

into carbohydrate (56%), amino acid (21%), nucleotide (4%),

lipid (17%), and others (2%) (Figure 2A). Clustering analysis on

these differential metabolites showed that healthy individuals

and patients with esophageal cancer were separately clustered

(Figure 2B), suggesting that there is an esophageal cancer-related

metabolome. The number of upregulated and downregulated

metabolites in these categories is shown in Figure 2C. Among

these categories, amino acid and lipid were ranked as the first

and second with the greatest difference in number between

upregulated and downregulated metabolites, respectively

(Figure 2C). Z-value analysis indicated how many standard

deviations were away from the mean. The analysis showed

more deviations in upregulated than downregulated

metabolites. Glutamic acid, leucine, and serine were listed as

the top three out of the upregulated metabolites (Figure 2D).

Among the 53 differential metabolites, the abundance of 30

metabolites was positively or negatively correlated with disease

stages (Supplementary Figure 3). These results suggest that the
TABLE 1 Characteristics of subjects.

Characteristics Gender Age Smoking habit

Male (N) Female (N) p-value (years) p-value Smoke (N) No smoke (N) p-value

Subjects

Healthy 19 11 0.157 62.6 ± 6.7 0.859 12 18 0.246

Esophageal cancer 104 33 62.4 ± 9.7 46 42

Subjects

Healthy 19 11 0.753 62.6 ± 6.7 0.180 12 18 0.739

Early stage 40 20 65.2 ± 9.0 15 19

Difference stage

Stage 0–II 40 20 0.168 65.2 ± 9.0 0.271 15 19 0.897

Stage III–IV 37 10 63.2 ± 9.4 11 13

Treatment

Pre-treatment 77 30 0.041 64.3 ± 9.2 3.84E-6 26 32 0.052

Post-treatment 27 3 55.4 ± 8.4 20 10
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elevated amino acid metabolism is a characteristic feature in the

esophageal cancer-related metabolome.
Metabolic pathways of patients with
esophageal cancer

Metabolic pathways are a linked series of chemical reactions,

leading to anabolism or breakdown of metabolites within a cell.
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Thus, investigation on differentially metabolic pathways is

necessary to understand the difference between abnormal and

normal metabolomes. To do this, 53 differentially abundant

metabolites were analyzed using online software (http://www.

metaboanalyst.ca). Ten metabolic pathways were enriched in

patients with esophageal cancer. They were alanine, aspartate,

and glutamate metabolism; citrate cycle (TCA cycle); glyoxylate

and dicarboxylate metabolism; arginine biosynthesis; pyruvate

metabolism; pantothenate and CoA biosynthesis; aminoacyl-
B

C

A

FIGURE 1

Serum metabolic profile of patients with esophageal cancer. (A) Reproducibility of metabolomic profiling platform. Abundance of metabolites
quantified in samples over two technical repeats is shown. Correlation coefficient between technical repeats varies between 0.990 and 0.999.
(B) Categories of the global metabolites. (C) Heatmap showing global metabolites. Yellow color and blue color indicate increase and decrease
of metabolites relative to the median metabolite level, respectively (see color scale).
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FIGURE 2

Differential metabolomes of patients with esophageal cancer. (A) Categories of the differential abundance of metabolites. (B) Heatmap showing
differential abundance of metabolites. Yellow color and blue color indicate increase and decrease of metabolites relative to the median
metabolite level, respectively (see color scale). (C) The number of differentially abundant metabolites is increased and decreased in every
category. (D) Z-score plot of differential metabolites based on control (health). The data of the esophageal cancer group are scaled to the mean
and standard deviation of control. Each point represents one metabolite in one technical repeat and is colored by sample types.
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tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis;

butanoate metabolism; and biosynthesis of unsaturated fatty

acids (Figure 3A). Out of the 10 pathways, 5 (alanine,

aspartate, and glutamate metabolism; glyoxylate and

dicarboxylate metabolism; aminoacyl-tRNA biosynthesis;

arginine biosynthesis; and butanoate metabolism) contained

glutamic acid, whose difference was the greatest in the elevated

differential metabolites; and 2 (aminoacyl-tRNA biosynthesis

and valine, leucine, and isoleucine) included leucine, whose

difference was the second in the elevated differential

metabolites. On the other hand, among the 10 metabolic

pathways, all metabolites were elevated in valine, leucine, and
Frontiers in Oncology 06
isoleucine biosynthesis; butanoate metabolism; and biosynthesis

of unsaturated fatty acids, and most metabolites were increased

in alanine, aspartate, and glutamate metabolism; TCA cycle;

glyoxylate and dicarboxylate metabolism; aminoacyl-tRNA

biosynthesis; arginine biosynthesis; and butanoate metabolism.

In addition, five metabolites (aspartic acid, malic acid, glyceric

acid, valine, and urea) were reduced in these enriched metabolic

pathways (Figure 3B). These results indicate that the top five

involved metabolic pathways include amino acid metabolism

(alanine, aspartate, and glutamate metabolism, and arginine

biosynthesis), the central carbon metabolism (TCA cycle and

pyruvate cycle), and glyoxylate and discarboxylate metabolism.
BA
B

A

FIGURE 3

Pathway analysis of patients with esophageal cancer. (A) Pathway enrichment of differential abundant metabolites. (B) The volume of the
differential metabolites of patients with esophageal cancer compared with normal individuals. Yellow and blue indicate increase and decrease of
metabolites, respectively.
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Biomarkers of patients with
esophageal cancer

In order to identify biomarkers that are most closely related to

the carcinogenesis of esophageal cancer, OPLS-DA was used to

perform this analysis. The score plot shows patients with

esophageal cancer distinguished from healthy individuals, and

correlation plots identified variables (Figure 4A). Discriminating

variables were shown in the S-plot, where cutoff values were set as

greater than or equal to 0.05 and 0.5 for the absolute value of p[1]

and p(corr)[1], respectively. A total of 16 biomarkers were

identified by component t[1], which differentiated most patients

from healthy individuals and variants of the two groups. The 16

biomarkers included elevated glycerol, citric acid, ribonic acid,

palmitic acid, methoxyestradiol, threonine, glutamic acid, serine,

leucine and reduced fructose, aspartic acid, threonic acid,

glucuronic acid g-lactone, glyceric acid, and xylulose

(Figure 4B). Among the nine elevated biomarkers, three

(glutamic acid, aspartic acid, and serine), two (threonine and

leucine), and one (palmitic acid) belong to non-essential amino

acids, essential amino acids, and biosynthesis of fatty acids,

respectively. Out of the six reduced biomarkers, four (fructose,

threonic acid, glucuronic acid g-lactone, and xylulose), one

(aspartic acid), and one (glyceric acid) were classified into

carbohydrate, amino acid, and lipid, respectively (Figure 4C).

Out of them, elevation of glutamic acid, leucine, and serine was

found at p < 0.05 in all esophageal cancer patients (Supplementary

Table 2). In addition, metabolomes were compared between

patients with early-stage esophageal cancer and healthy
Frontiers in Oncology 07
individuals as shown in Supplementary Figures 4–6. The

resulting biomarkers were the same as those in the comparison

between esophageal cancer patients and healthy individuals except

for lactic acid, linoleic acid, and leucine, while lactic acid and

linoleic acid were higher in early-stage esophageal cancer patients

than healthy individuals (Supplementary Figure 6). These results

suggest that the elevated amino acid metabolism is in sharp

contrast to the reduced carbohydrate in patients with

esophageal cancer.
Metabolic features in patients with
different malignant degrees of
esophageal cancer

Furthermore, to explore whether the metabolic state is

related to patients with different degrees of esophageal cancer,

differential metabolic profiles were compared among patients

with 0, I, II, III, and IV stages of esophageal cancer as shown in a

heatmap (Figure 5A). OPLS-DA showed that most samples of

each group were separately cycled but some overlapped between

groups, suggesting that they possessed relatively unique

metabolic characteristics. Specifically, stage 0 and stage I were

separated but overlapped with stage II, while stages III and IV

overlapped each other (Figure 5B). Component t[1]

distinguished stages 0, I, and II (early stage) esophageal cancer

from stages III and IV (late stage). Component t[2] separated

variables of the five stages (Figure 5B). These results indicate that

the metabolic state is related to stages of esophageal cancer.
B

CA

FIGURE 4

Identification for biomarkers in patients with esophageal cancer. (A) OPLS-DA analysis of healthy group and esophageal cancer group. Each dot
represents one technical repeat in the plot. (B) S-plot is generated from OPLS-DA. The triangle represents metabolites and candidate
biomarkers are highlighted in red. (C) Abundance of biomarkers. Results (C) are displayed as mean ± SEM.
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Among the five stages, the greatest difference in metabolites is

detected between the early stage and the late stage. The S-plot

showed that elevated glycine and urea, and reduced lactic acid

and glyceric acid were biomarkers that identify the most

significant difference (Figure 5C). Twenty-seven differential

abundances of metabolites between the early and late stages

were listed as a heatmap (Figure 5D). Z-scores were used to rank

the differential abundance of metabolites in the late stage

compared with the early stage. The top three increased

metabolites were glycine, valine, and succinic acid (Figure 5E).

They belong to amino acid and the TCA cycle, respectively.
Frontiers in Oncology 08
These results suggest that amino acid metabolism and the TCA

cycle play a more significant role than others in the malignant

degrees of esophageal cancer.
Metabolic pathways in patients with
different malignant degrees of
esophageal cancer

To further understand the metabolic alterations between

the early stage and the late stage in patients with esophageal
B

C

D E

A

FIGURE 5

Differential metabolomes among stages 0, I, II, III, and IV of patients with esophageal cancer. (A) Heatmap showing five stages of esophageal
cancer. (B) OPLS-DA of five stages of esophageal cancer. (C) S-plot is generated from OPLS-DA. The triangle represents metabolites and
candidate biomarkers are highlighted in red. (D) Heatmap showing stage 0–II and stage III–IV esophageal cancer. (E) Z-score plot of differential
metabolites based on control (stage 0–II esophageal cancer). The data of the stage III–IV esophageal cancer group were scaled to the mean
and standard deviation of control. Each point represents one metabolite in one technical repeat and colored by sample types.
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cancer, MetaboAnalyst was used to identify altered pathways,

leading to the enrichment of 11 metabolic pathways

(Figure 6A). According to impact value, they were ranked as

follows: glycerolipid metabolism; glycine, serine, and threonine

metabolism; glyoxylate and dicarboxylate metabolism; alanine,

aspartate, and glutamate metabolism; arginine biosynthesis;

TCA cycle; pentose phosphate pathway; pantothenate and CoA

biosynthesis; aminoacyl-tRNA biosynthesis; valine, leucine,

and isoleucine biosynthesis; butanoate metabolism; and

pyruvate metabolism. Among them, five pathways (glyoxylate

and dicarboxylate metabolism; alanine, aspartate, and

glutamate metabolism; arginine biosynthesis; aminoacyl-

tRNA biosynthesis; and butanoate metabolism) were shared

with those identified between patients with esophageal cancer

and normal individuals described in Figure 3. The others were

enriched specifically for malignant degrees of esophageal
Frontiers in Oncology 09
cancer, where glycerolipid metabolism and glycine, serine,

and threonine metabolism were ranked as first and second,

respectively. On the other hand, among the 11 enriched

metabolic pathways, all metabolites were upregulated

with disease stages in the TCA cycle; aminoacyl-tRNA

biosynthesis; valine, leucine, and isoleucine biosynthesis;

butanoate metabolism; and pyruvate metabolism, while

metabolites of the other enriched metabolic pathways were

upregulated or downregulated with disease stages except for

pentose phosphate pathway (only glyceric acid was reduced

with disease stages) (Figure 6B). These results indicate that the

modulation of metabolic pathways is a characteristic feature of

patients with esophageal cancer, which identified the early

stage from the late stage. Glycine, the top increased

metabolite, belongs to the second-ranked glycine, serine, and

threonine metabolism, suggesting the importance of the amino
B

A

FIGURE 6

Pathway enrichment in the early and late -stages of patients with esophageal cancer. (A) Pathway enrichment of differential abundant metabolites.
(B) The level of the differential metabolites of stage 0–II and stage III–IV esophageal cancer compared with healthy people. Yellow and blue indicate
increase and decrease of metabolites, respectively.
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acid and its metabolism in the malignant degrees of

esophageal cancer.
Biomarkers in patients with different
malignant degrees of esophageal cancer

To find out which metabolites are related to the malignant

degrees of esophageal cancer, OPLS-DA was conducted to

recognize the sample pattern between the early stage and the

late stage. Component t[1] mostly distinguished the early stage

from the late stage, while component t[2] separated variables of

the two stages (Figure 7A). Discriminating variables were shown

by the S-plot, yielding two biomarkers by component t[1]. They

were upregulated glycine and downregulated lactic acid

(Figure 7B). However, compared with healthy individuals, only

glycine was elevated with the healthy individuals, the early stage,

and the late stage, while no difference in lactic acid was detected

between healthy individuals and the late stage, which was lower

than the early stage (Figure 7C). Glycine alone identified 70.1%

early stage and late stage of esophageal cancer (Supplementary

Table 3). These results indicate that the elevated glycine is related

to the progression from the early stage to the late stage.
Frontiers in Oncology 10
Metabolic features of esophageal cancer
patients who received treatment compared
with patients who did not start treatment

Moreover, to explore whether there were metabolic biomarkers

related to the prognosis, comparativemetabolomics was performed

in patients who received treatment compared to patients who did

not receive treatment. Twenty-five differential abundances of

metabolites were determined (Figure 8A). Then, PLS-DA was

carried out to recognize the sample patterns of metabolomes as

previously described (17) (here, PLS-DA is more sensitive than

OPLS-DA). Most post-treatment samples were located in the left

lower quadrant; the others and pre-treatment samples were

distributed in the other three quadrants (Figure 8B). The

variables responsible for components t[1] and t[2] were fructose,

ribonic acid, hydroxytryptophan, and fructose (Figure 8C).

Fructose overlapped between components t[1] and t[2],

suggesting that fructose is a potential biomarker to differentiate

the patients who received treatment from the patients who did not

receive treatment. Compared with the healthy individuals, low

fructose was detected in patients with esophageal cancer, but

fructose was higher in the patients who received treatment than

those who did not (Figure 8D). There were no difference in
B

CA

FIGURE 7

Identification for biomarkers in the early and late stages of patients with esophageal cancer. (A) OPLS-DA of stage 0–II and stage III–IV
esophageal cancer. Each dot represents one technical repeat in the plot. (B) S-plot is generated from OPLS-DA. The triangle represents
metabolites and candidate biomarkers are highlight in red. (C) Abundance of biomarkers. Results are displayed as mean ± SEM.
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B
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FIGURE 8

Differential metabolomes and biomarker identification between patients who received treatment and patients who did not receive treatment.
(A) Heatmap showing differential metabolites. (B) PLS-DA of esophageal cancer before and after treatment. (C) S-plot is generated from PLS-DA.
The triangle represents metabolites and candidate biomarkers are highlighted in red. (D) Abundance of biomarkers. Results are displayed as mean ±
SEM, **p < 0.01, and ***p < 0.001 as determined by Student’s t-test.
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fructose abundance between male and female, and between those

aged ≤60 and those aged >60 (Supplementary Figure 7). However,

the abundance of hydroxytryptophan and ribonic acid was lower

and higher, respectively, in the patients who received treatment

than those who did not, followed by healthy individuals. Thus, only

fructose may be selected as a potential biomarker to predict the

treatment efficacy.
Key metabolome changed with
treatment in esophageal cancer patients

To further explore the biomarkers that potentially predicted

treatment efficacy, comparative metabolomics was carried out

between healthy individuals and the patients who did not receive

treatment, and between the patients who received treatment and

the patients who did not. The comparison between healthy

individuals and the patients who did not receive treatment

identified 33 decreased and 19 increased differential

metabolites, while the comparison between the patients who

received treatment and the patients who did not determined 12

decreased and 13 increased differential metabolites (p < 0.05).

Among them, six decreased (glycine, propanediol, threonine,

ornithine, stearic acid, and serine) and two increased metabolites

(erythronic acid g-lactone and fructose) overlapped in the two

comparisons (Figure 9A). Then, pathway enrichment analysis

was performed on the eight overlapped metabolites. Among

them, three metabolites (glycine, threonine, and ornithine)

worked, leading to enrichment of four metabolic pathways,

namely, glycine, serine, and threonine metabolism; glutathione

metabolism; aminoacyl-tRNA biosynthesis; and valine, leucine,

and isoleucine biosynthesis (Figure 9B). The abundance of the

three metabolites ranked from lowest to highest as follows:

healthy individuals, the patients who received treatment, and

the patients who did not receive treatment (Figure 9C). There

was a significant difference among the three groups for glycine

and threonine, but no difference was found between healthy

individuals and the patients who received treatment for

ornithine (Figure 9D). Notably, no difference in abundance of

glycine, threonine, and ornithine was detected between male and

female, and between those aged ≤60 and those aged >60

(Supplementary Figure 7). These results indicate that glycine,

threonine, and ornithine may be selected as potential biomarkers

to predict the treatment effect.
Evaluation of glycine, threonine,
ornithine, and fructose as an array for
laboratory biomarkers

The abundance of glycine, threonine, and ornithine

elevated with disease progression from the early stage to the

late stage and was lower in patients who received treatment
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than those who did not. In contrast, the abundance of fructose

decreased with the disease progression and was higher in

patients who received treatment than those who did not

(Figure 10A). Further analysis showed that the receiver

operating characteristic (ROC) curve of the four potential

biomarkers yielded an area under the curve (AUC) from

0.6036 to 0.9985 (p-value = 0.013–<0.001) except for

comparison between the early stage and the late stage in

ornithine and fructose, where no difference was found

(Figures 10B–E). Glycine, ornithine, threonine, and fructose

identified 80.3%, 60.6%, 58.4, and 58.4% of the patients who

received treatment from the patients who did not receive

treatment, respectively. The combination of glycine with the

other three differentiated 95.6% of the patients tested

(Supplementary Table 4). These results suggest that an array

for the four biomarkers can be regarded as a potential

esophageal cancer serum biomarker for therapeutic effect.
Discussion

Esophageal cancer is the most invasive disease associated

with inclusive poor prognosis worldwide, with a dramatic

increase in incidence in the Western world occurring over the

past few decades (18). The poor prognosis and rising incidence

of esophageal cancer highlight the need for improved prediction

methods that are essential to disease progression and therapeutic

efficacy (19). Here, a GC-MS-based metabolomics approach is

used to understand the pathogenesis of esophageal cancer and

identify diagnosis biomarkers to improve the diagnosis,

prognosis, and treatment efficacy of patients with esophageal

cancer. Glutamic acid, leucine, and serine are identified as the

top three upregulated metabolites. Amino acid metabolism, fatty

acid biosynthesis, the TCA cycle and pyruvate metabolism of the

central carbon metabolism, and glyoxylate and discarboxylate

metabolism are enriched as characteristic features in the

metabolic profile of patients with esophageal cancer. Further

analysis indicates that the greatest metabolic difference is

determined between the early stage (0–II) and the late stage

(III and IV). Glycerolipid metabolism; glycine, serine, and

threonine metabolism; and glyoxylate and dicarboxylate

metabolism as well as the reduced glycerate and the elevated

glycine within these pathways play a more important role than

other metabolic pathways and metabolites. Finally, the present

study reveals that the reduced fructose and elevated glycine,

threonine, and ornithine are the potential indicators that

evaluate the efficacy of the therapy. Further studies are needed

to verify them, but these findings indicate that the patients with

esophageal cancer have a characteristic metabolic shift, which is

changed with disease progression and therapeutic effect.

Therefore, patients with esophageal cancer have metabolomes

that are different from those of healthy individuals, which can be

designed as esophageal cancer metabolome as described in other
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FIGURE 9

Differential metabolites and metabolic pathway enrichment between patients who received treatment and patients who did not receive
treatment. (A) Venn diagram for overlapped and unique metabolites between healthy individuals/patients who did not receive treatment (pre-
treatment) and patients who received treatment/patients who did not receive treatment (pre-treatment). (B) Pathway enrichment of differential
abundant metabolites. (C) Abundance of the differential metabolites of pre-treated and post-treated esophageal cancer patients compared with
healthy individuals. Yellow and blue indicate increase and decrease of metabolites, respectively. (D) Abundance of biomarkers. Results are
displayed as mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 as determined by Student’s t-test.
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FIGURE 10

The clinical potential of glycine. (A) Comparison of glycine, fructose, threonine, and ornithine between healthy subjects and patients with early
stage and late stage of esophageal cancer, and between healthy subjects, patients who received treatment (post-treatment), and patients who
did not receive treatment (pre-treatment). Results are displayed as mean ± SEM, *p < 0.05, **p < 0.01, and ***p < 0.001 as determined by
Student’s t-test. (B–D) ROC curves to distinguish esophageal cancer patients from normal individuals, early-stage esophageal cancer patients
from healthy subjects, late-stage esophageal cancer patients from early-stage esophageal cancer patients, and post-treatment patients from
pre-treatment by glycine (B), fructose (C), threonine (D), and ornithine (E), respectively.
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areas, such as antibiotic-resistant metabolome and anti-infective

metabolome (20–23).

A line of evidence has shown that characteristic alterations

have been determined in esophageal cancer metabolome

including samples from serum, tumor and stroma tissue, and

urine (11, 24, 25). However, among the studies with serum

samples, no investigations have more than 80 specimens. The

present study characterizes the changes in esophageal cancer

metabolome in approximately two- to fivefold as many plasma

specimens as the previous reports. Ten metabolic pathways are

enriched and 15 biomarkers are identified. Among them,

glycerolipid metabolism and alanine, aspartate, and glutamate

metabolism as the top two affected metabolic pathways and

glutamic acid as the most elevated metabolite are not revealed in

these reports. These previously unknown metabolic pathways

and biomarkers will be helpful in further understanding the

pathogenesis of esophageal cancer. Importantly, the present

study identifies the elevated amino acid metabolism in sharp

contrast to the reduced carbohydrate as a consequence of

esophageal cancer.

A core finding is that the metabolomes of early stage (0–II)

and those of late stage (III–IV) are different, indicating that the

differential metabolome may be used to judge disease

progression. Buck et al. suggest that the metabolic constitution

of tumor is superior to tumor regression grading for evaluating

response to neoadjuvant therapy of patients with EAC. They

identify GDP-glucose, dADP, nicotinate nucleotide, and acetyl-

D-glucosamine as the biomarkers (26). Zhang et al. investigate

the serum metabolomes of 25 patients with esophageal cancer

and identify significant changes in lipid metabolism, amino acid

metabolism, glycolysis, ketogenesis, tricarboxylic acid (TCA)

cycle, and energy metabolism. These results demonstrate that

metabolic profiling of serum could be useful as a screening tool

for early EC diagnosis and prognosis (27). The present study

highlights the crucial role of the previously unknown glycine,

serine, and threonine metabolism and glycerolipid metabolism

as well as the elevated glycine in the malignant degrees of

esophageal cancer.

Another core finding is that the metabolic profiling of

plasma could be useful as a screening tool for therapeutic

effect in patients with esophageal cancer. The biomarkers

between the patients who received treatment and the patients

who did not receive treatment revealed features resembling the

fructose, glycine, threonine, and ornithine concept. Specifically,

the elevation of fructose and the decrease of glycine, threonine,

and ornithine are related to the therapeutic efficacy. Liu et al.

compare serum metabolomes between pre- and post-

esophagectomy in 34 treatment-naive patients with ESCC and

reveal 12 ESCC tumor-associated serum metabolites with

potential for monitoring therapeutic efficacy and disease

relapse. They are phenylalanine hydroxyproline, pipercoic

acid, maltose, decanoic acid, nonanoic acid, 1,5-dehydrated

glucoside, hydroxybenzoic acid, glycolic acid, 2-pyrrolidone
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oleic acid, and glyceryl phosphate. These authors highlight

serum pipecolic acid as an attractive biomarker for predicting

ESCC tumorigenesis (28). The present study stressed on the

importance of the elevated fructose and the reduced glycine,

threonine, and ornithine in treatment efficacy, which is

consistent with the above conclusion that the elevated amino

acid metabolism is in sharp contrast to the reduced carbohydrate

as a characteristic feature of esophageal cancer.

Finally, comparison between esophageal cancer patients and

healthy individuals identifies elevated glycerol, citric acid,

ribonic acid, palmitic acid, linoleic acid, threonine, glutamic

acid, serine, and leucine, and reduced fructose, aspartic acid,

threonic acid, glucuronic acid g-lactone, glyceric acid, and

xylulose as biomarkers. Among the 15 biomarkers, glutamic

acid, leucine, and serine differentiate all patients from the

control, while citric acid, aspartic acid, ribonic acid, threonine,

glycerol, glucuronic acid g-lactone, xylulose, and fructose

identify 87.4%–97.6% of the patients. The combination of

glutamic acid, leucine, and serine, probably with others, will

provide an array to identify patients with esophageal cancer

from healthy individuals. Out of the 15 biomarkers identified in

the present study, glutamic acid, serine, leucine, linoleic acid,

and citric acid were reported in previous literature (27, 29–32).

Therefore, the present study provides new biomarkers for

auxiliary identification of esophageal cancer.

Importantly, these findings can be used not only as a clue to

explore metabolic mechanisms underlying esophageal cancer

progression, but also as potential candidates to develop

laboratory biomarkers for diagnosis and prediction of clinical

outcomes in esophageal cancer. Among the identified potential

metabolic pathways and biomarkers, glycine, serine, and

threonine metabolism and glycine are first recommended.

Glycine is the only biomarker and the one with the most

potential to predict the disease progress and the treatment

effect, respectively. Glycine, serine, and threonine metabolism

is the second ranked metabolic pathway in terms of impact in

the late stage compared with those in the early stage and glycine.

Glycine belongs to glycine, serine, and threonine metabolism.

The overlapping suggests the importance of the pathway in the

pathogenesis of esophageal cancer and of the metabolite as a

potential laboratory biomarker. Then, glycine, ornithine,

threonine, and fructose are recommended as a potential array

to evaluate treatment efficacy. Correspondingly, the elevated

amino acid metabolism is in sharp contrast to the reduced

carbohydrate, which provides a clue for the mechanistic

understanding of esophageal cancer. Finally, glutamic acid,

leucine, and serine are recommended as a potential array and

an auxiliary indicator in the diagnosis of esophageal cancer.

In summary, the present study uses GC-MS-based

metabolomes to understand the metabolic shift of esophageal

cancer. The elevated amino acid metabolism in sharp contrast to

the reduced carbohydrate is defined as a characteristic feature of

the disease. The metabolic shift is related to the difference
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between esophageal cancer patients and healthy individuals, the

progression from the early stage to the late stage, and the

treatment efficacy. Specifically, there are three key findings: (1)

Elevation of glutamic acid, leucine, and serine is a marker to

identify esophageal cancer patients from healthy individuals. (2)

Glycine level is positively related to disease progression. (3) The

combination of glycine with fructose, threonine, and ornithine

provides an array to identify patients who received treatment

from those who did not. These findings not only provide

biomarkers for laboratory diagnosis, but also offer an

important clue to understand the metabolic mechanisms of

esophageal cancer pathogenesis. However, the patients in the

early-stage and late-stage groups and the pre- and post-

treatment groups were not the same. Therefore, these

identified metabolites as well as pathways can be considered

potential pathways and biomarkers, but further studies are

needed to verify them. Furthermore, the subjects used are not

matched in terms of number, age, sex, and other interventions,

thereby confounding non-matched variables that may influence

the metabolomics outcomes. In addition, there is no information

on obesity and there is limited information on smoking habit in

the study.
Materials and methods

Clinical sample collection
and pretreatment

We collected a total of 167 serum samples from all patients with

esophageal cancer from the First Affiliated Hospital of Zhengzhou

University and Henan Cancer Hospital from November 2017 to

August 2020, and collected a total of 30 serum samples from

patients who came to the hospital for medical examinations

during the same period. When all samples were collected, the

individuals were in a fasting state and were not injected with

nutrients such as glucose, amino acids, and fat emulsions, and the

skin was routinely sterilized according to clinical practice. Two

milliliters of peripheral venous whole blood was drawn, and

immediately centrifuged at 4,000 rpm for 5 min to obtain serum.
Metabolomic profiling

Metabolomic profiling was performed as previously

described (33, 34). An aliquot of 1 ml of −80°C pre-cooling

methanol (Sigma) was added to 100 ml of serum and the mixture

was vortexed for 1 min. Then, at 4C, the mixture was centrifuged

for 10 min at a rotation speed of 12,000 rpm. After that, 1 ml of

supernatant was transferred to a 1.5-ml centrifuge tube. To

normalize variations across all samples, an internal standard

(0.1 mg/ml ribitol) (Sigma) was added to the supernatant and
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dried in a vacuum centrifuge. Then, 80 ml of 20 mg/ml

methoximation-pyridine hydrochloride was added to the dried

samples, dissolving ultrasonically and reacting for 3 h at 37°C,

followed by adding 80 ml of N-methyl-N-(trimethylsilyl)

trifluoroacetamide (MSTFA, Sigma) for reaction for 30 min at

37°C. The derivatized sample with 1 ml was injected to a DBS-MS

column. The initial temperature was 85°C for 5 min, followed by

an increase to 270°C at a rate of 15°C/min and held for 5 min.

Helium was used as the carrier gas at a constant flow rate of 1

ml/min. The MS scan range was at 50–600 m/z. GC-MS data

were detected with an Agilent 7890A GC equipped with an

Agilent 5975C VL MSD detector (Agilent Technologies). Two

technical repeats were prepared for each sample. QC was

performed as described previously (35–37). Pooled QC

samples were collected by equally mixing small aliquots (10

ml) of sera from the samples studied, and it was prepared in the

same way as the samples described above for testing. One QC

sample was run after every 14 samples.
Metabolic profiling analysis

Data analysis was carried out as previously described (33,

34). Agilent software (Agilent 6.0) was used for initial peak

detection and mass spectrometry deconvolution, and the

National Institute of Standards and Technology (NIST) Mass

Spectral Library was employed for metabolite identification, and

then data matrix standardization was done using an internal

standard (ribitol) and the total intensity; finally, hierarchical

clustering was performed on the R platform (R × 64 4.0.3). The

software IBM SPSS Statistics 22 was used to conduct a significant

difference analysis (non-parametric test) on the standardized

data, and metabolites with a p-value of less than 0.05 were

considered significant. PLS-DA and OPLS-DA were carried out

on SIMCA-P (version 12; Umetrics, Umea, Sweden) (38). Z-

score was used to analyze the degree of dispersion of different

metabolites after normalized area. MetaboAnalyst 5.0 (http://

www.metaboanalyst.ca) was used to enrich the pathways of

differential metabolites, and metabolic pathways with a p

value <0.05 were drawn (39). GraphPad Prism 9.0 was used to

draw figures. ROC analysis was performed using IBM SPSS

Statistics 22 to obtain the AUC value and Youden index, and the

cutoff value was obtained according to Youden index. Spearman

analysis was carried out on IBM SPSS Statistics 22 to yield

correlation coefficients between metabolites and esophageal

cancer progression.
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Pathway analysis of early-stage esophageal cancer patients. A. Pathway
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and age. A. Levels of fructose, glycine, ornithine and threonine in patients
with esophageal cancer of different genders. B. Abundance of fructose,
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