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Abstract: Voxel-based morphometry provides an opportunity to study Alzheimer’s disease (AD)
at a subtle level. Therefore, identifying the important brain voxels that can classify AD, early mild
cognitive impairment (EMCI) and healthy control (HC) and studying the role of these voxels in AD
will be crucial to improve our understanding of the neurobiological mechanism of AD. Combining
magnetic resonance imaging (MRI) imaging and gene information, we proposed a novel feature
construction method and a novel genetic multi-kernel support vector machine (SVM) method to
mine important features for AD detection. Specifically, to amplify the differences among AD, EMCI
and HC groups, we used the eigenvalues of the top 24 Single Nucleotide Polymorphisms (SNPs) in
a p-value matrix of 24 genes associated with AD for feature construction. Furthermore, a genetic
multi-kernel SVM was established with the resulting features. The genetic algorithm was used to
detect the optimal weights of 3 kernels and the multi-kernel SVM was used after training to explore
the significant features. By analyzing the significance of the features, we identified some brain
regions affected by AD, such as the right superior frontal gyrus, right inferior temporal gyrus and
right superior temporal gyrus. The findings proved the good performance and generalization of the
proposed model. Particularly, significant susceptibility genes associated with AD were identified,
such as CSMD1, RBFOX1, PTPRD, CDH13 and WWOX. Some significant pathways were further
explored, such as the calcium signaling pathway (corrected p-value = 1.35 × 10−6) and cell adhesion
molecules (corrected p-value = 5.44 × 10−4). The findings offer new candidate abnormal brain
features and demonstrate the contribution of these features to AD.

Keywords: Alzheimer’s disease; MRI imaging; gene; eigenvalue; genetic multi-kernel SVM;
significant feature

1. Introduction

Alzheimer’s disease (AD) and other forms of dementia severely affect a variety of
cognitive functions, including memory. With the development of sequencing technology,
scientists have conducted in-depth analyses of the association of genome-wide data and
multimodal imaging phenotype data with the disease. This made it possible for scientists
to characterize the abnormal genes and brain regions of AD. Genome-wide association
analysis (GWAS), as an effective method to study the association between genetic data
and phenotypic data, has been adopted to mine the genes associated with phenotypes
through statistical methods [1]. Other scientists have developed new research methods for
association analysis [2–5]. Some important single nucleotide polymorphisms (SNPs) might
be missed only using GWAS, and the use of classical machine learning methods combined
with GWAS and MRI images to screen genetic variants has become another research focus.
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Rajeesh et al. [6] extracted 69 texture features from hippocampal MRI images of 133 AD
patients and 146 healthy controls (HC), and used a support vector machine (SVM) as a
benchmark to classify AD and normal people. They obtained a 93.6% classification accuracy
and proved that the purpose of screening MRI images could be achieved by extracting
the hippocampal texture characteristics of AD and normal people. Guenther et al. [7]
constructed the maximum likelihood method in genetic association analysis and proved
that this method could prevent bias and spurious signals in simulation studies and could
unearth real association signals from spurious signals. Seo et al. [8] used methods such
as machine learning, GWAS, linkage disequilibrium and principal component analysis to
label the SNPs of specific flocks and constructed a combination of SNP markers. Then
they used AdaBoost, random forests and decision trees for classification and achieved
good classification results. Li et al. [9] constructed a neural network model using MRI
images and used transfer learning to train the constructed model, demonstrating the
relationship between non-invasive MRI and the development of AD for the first time.
Huang et al. [10] applied a multi-kernel SVM to mine the white matter structural network
features from mild cognitive impairment (MCI) and HC. Fidel et al. [11], Kinreich et al. [12]
and Brabec et al. [13] applied machine learning methods to discover the features of AD and
other diseases. In addition, Matthews et al. [14] discussed the current state of functional
connectomics and envisaged greater potential to mine potentially significant information
by combining different methods. However, there are still some limitations when mining
GWAS results or MRI images using machine learning. For example, although genetic
markers could be mined using GWAS results and machine learning methods, the same
approach was not useful for mining abnormal brain regions. Using MRI images with
machine learning methods can obtain excellent features and good classification accuracy
for AD-HC. However, they did not perform well for EMCI-HC. Due to the huge amount
of GWAS results, how to extract useful information from it, integrate it with MRI image
information and apply it to further improve the accuracy of the machine learning methods
remains one of the key challenges in the diagnosis of AD.

To bridge this gap, we proposed a novel feature construction method and a genetic
multi-kernel SVM method to extract the important features that performed well in clas-
sification. Specifically, we used the p-value of the SNPs associated with AD to form a
matrix and calculated the eigenvalues of this matrix. We then applied the eigenvalues
and the original dataset to construct a new dataset. Subsequently, we proposed a genetic
multi-kernel SVM model to extract important features from the resulting dataset. Finally,
we used the extracted features to identify significant genes and analyzed the biological
significance of these genes. We used the mild cognitive impairment (EMCI) dataset to
verify the universality of our methods. The proposed feature construction method and
genetic multi-kernel SVM model are shown in Figure 1.
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15 May 2020). ADNI was launched in 2003 and provided the MRI, positron emission to-
mography (PET) and genetic data for HC, EMCI and AD. ADNI 1 was the first stage, and 
ADNI GO/2 was the second stage of ADNI. Data used in this study were downloaded 
from ADNI1/GO Month 6, ADNI 1/GO Month 12, ADNIGO Month 3 MRI and ADNI2 
Year 1 visit studies. Table 1 presents the details of these subjects. 

Table 1. Subject characteristics. HC = healthy control; EMCI = Early Mild Cognitive Impairment; 
AD = Alzheimer’s disease; M/F = male/female; Edu = education; sd = standard deviation. 

Subjects HC EMCI AD p 
Number 353 273 296 - 

Gender (M/F) 187/166 153/120 166/130 <0.001 
Age (mean ± sd) 72.2 ± 7.6 71.3 ± 7.1 75.1 ± 5.5 <0.001 
Edu (mean ± sd) 16.1 ± 2.7 16.1 ± 2.6 16.3 ± 2.6 <0.001 

We preprocessed and segmented the MRI scans using voxel-based morphometry 
(VBM). The resulting images were normalized to the Montreal Neurological Institute 
(MNI) space. We then used an 8 mm full width at half maxima (FWHM) kernel to smooth 
the gray matter density (GMD) maps. The obtained maps were down-sampled to 61 × 73 

Figure 1. The proposed feature construction method and genetic multi-kernel SVM model.

2. Materials and Methods
2.1. Imaging and Gene Data

In this study, we applied MRI Imaging and gene data to conduct the experiment. Data
from 922 subjects (HC:353, EMCI:273, AD:296) were downloaded from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (https://adni.loni.usc.edu/ (accessed on 15 May
2020). ADNI was launched in 2003 and provided the MRI, positron emission tomography
(PET) and genetic data for HC, EMCI and AD. ADNI 1 was the first stage, and ADNI
GO/2 was the second stage of ADNI. Data used in this study were downloaded from
ADNI1/GO Month 6, ADNI 1/GO Month 12, ADNIGO Month 3 MRI and ADNI2 Year
1 visit studies. Table 1 presents the details of these subjects.

Table 1. Subject characteristics. HC = healthy control; EMCI = Early Mild Cognitive Impairment;
AD = Alzheimer’s disease; M/F = male/female; Edu = education; sd = standard deviation.

Subjects HC EMCI AD p

Number 353 273 296 -
Gender (M/F) 187/166 153/120 166/130 <0.001

Age (mean ± sd) 72.2 ± 7.6 71.3 ± 7.1 75.1 ± 5.5 <0.001
Edu (mean ± sd) 16.1 ± 2.7 16.1 ± 2.6 16.3 ± 2.6 <0.001

We preprocessed and segmented the MRI scans using voxel-based morphometry
(VBM). The resulting images were normalized to the Montreal Neurological Institute (MNI)
space. We then used an 8 mm full width at half maxima (FWHM) kernel to smooth the gray
matter density (GMD) maps. The obtained maps were down-sampled to 61 × 73 × 61 to

https://adni.loni.usc.edu/
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reduce the amount of data. Then, the Anatomical Automatic Labeling (AAL) atlas [15] was
applied to obtain the coordinates of the brain regions.

The SNPs were selected using the method described in [16,17]. Briefly, based on the
manufacturer’s protocol, Illumina GWAS arrays (610-Quad v1.0, OmniExpress-24 Kit or
HumanOmni2.5-4v1) (Illumina, Inc., San Diego, CA, USA) and blood genomic DNA samples
were applied for genotyping in downloaded subjects [18]. Using PLINK v1.9 [19], we extracted
SNPs satisfying the following conditions: (1) on chromosome 1–22; (2) call rate ≥ 95%;
(3) minor allele frequency ≥ 5%; (4) Hardy–Weinberg equilibrium test p ≥ 1.0 × 10−6; (5) call
rate of each participant ≥ 95%. A total of 5,574,300 SNPs passed the quality control.

Using the obtained results, we performed a GWAS (linear regression) in PLINK for
each group. Age, gender, education and the top 10 principal components from population
stratification analysis were included as covariates. We then performed Bonferroni correction
on the results for multiple testing.

2.2. Feature Construction

To extract the candidate features, we performed a weighted average on the three
groups of images. Let V′mn represent the vector of the AD-HC group. Then, the results
were saved as matrices M, N and O (M represents AD, N represents HC and O represents
EMCI). We defined the vector of one voxel as

(
vm′i, vn′i

)
, where vm′i ∈ M, vn′i ∈ N and

Vmn =
{(

vm′1, vn′1
)
, (vm′2, vn′2), . . . ,

(
vm′k, vn′k

)}
(k = 61 × 73 × 61 = 271,633) represented the

vector of all voxels. After removing the value zero, we obtained a new vector V′mn composed
of 64,411 features. Similarly, V′mo was the vector of the AD-EMCI group, V′no was the vector of
the EMCI-HC group, and the number of features in these two groups was 64,411.

For our binary classification, V′mn, V′mo and V′no were still not optimal. Therefore, we
defined the upper and lower bounds of the number of features to filter features. The lower
bound was obtained as follows: Equation (1) calculates the similarity between voxels in the
3 groups.

ρ1 =

√(
vm′i − vm′j

)2
+ (vn′i − vn′j)

2,
(
vm′i, vn′i

)
,
(

vm′j, vn′j
)
∈ V′mn

ρ2 =

√(
vm′i − vm′j

)2
+ (vo′i − vo′j)

2,
(
vm′i, vo′i

)
,
(

vm′j, vo′j
)
∈ V′mo

ρ3 =

√(
vn′i − vn′j

)2
+ (vo′i − vo′j)

2,
(
vn′i, vo′i

)
,
(

vn′j, vo′j
)
∈ V′no

(1)

where vm′i and vm′j (i, j = 1, 2, . . . , 64, 411) are the values of voxels in AD, vn′i and vn′j in
HC, vo′i and vo′j in EMCI. ρ1, ρ2 and ρ3 are the similarity between each pair.

Let Cmin represent the lower bound with a value equal to the number of minimal ρi
and Cmin = 132. The upper bound was defined as Cmax = Cmin +

√
64, 411 and Cmax ≈ 386.

Thus, the number of features was 132,386.
For each group, we used the 24 genes [20] associated with AD to generate genetic

features. First, we selected the top 24 SNPs of each gene to compute a matrix Mgene. Then,
we applied the corresponding p-values of SNPs to construct the matrix Mp. Finally, we
introduced Equation (2) to calculate the max feature λmax.(

λE−Mp
)

x = 0 (2)

where λmax = max(λ), E is the unity matrix, and x is the eigenvector. Mp is the p-value
matrix of SNPs in AD, EMCI and HC groups.

We obtained 3 λmax and defined them as λAD, λEMCI and λHC. Then, we applied the
λAD, λEMCI and λHC to the 64,411 voxels to calculate fusion features. Let MAD, MEMCI and
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MHC represent the 64,411 voxels of the AD, EMCI and HC groups. S1, S2 and S3, composed
of fusion features, were defined as Equation (3).

S1 = [[λAD ×MAD], [λHC ×MHC]]
S2 = [[λAD ×MAD], [λEMCI ×MEMCI ]]
S3 = [[λEMCI ×MEMCI ], [λHC ×MHC]]

(3)

where S1, S2 and S3 represent fusion features matrix of the AD-HC group, AD-EMCI group
and EMCI-HC, respectively. They are 649 × 64,411, 626 × 64,411 and 569 × 64,411, respectively.

2.3. Genetic Multi-Kernel SVM Construction

Using the HC and AD groups as examples, the multi-kernel SVM [21] method was
applied to classify AD subjects from controls using S1. Our multi-kernel SVM was based
on traditional SVM, which used a linear combination of multiple kernel functions to fuse
and then trained a SVM classifier based on the fused kernel.

The fused kernel function can be written as a linear combination of basic kernels [22],
as defined in Equation (4).

K
(

xi, xj
)
= w1K1

(
xi, xj

)
+ w2K2

(
xi, xj

)
+ w3K3

(
xi, xj

)
(4)

where w is the weight on the corresponding basic kernel K
(
xi, xj

)
. K1, K2 and K3 are

different kernel functions.
We selected basic kernels, such as linear, polynomial and radial basis function (RBF),

to compose the final kernel function. Then, the optimal w of each kernel was determined
using genetic evolution. Specifically, the initial population consisting by (w1, w2, w3) was
generated randomly, and the parents were randomly selected from the initial population.
Then, the offspring were obtained by the crossover of the parents, and the introduction of
new data was realized by setting a variogram. The decision function [23] in the classification
is written as Equation (5):

f (x) = sgn

{
n

∑
i=1

α∗i yi ∑
d

K
(
xi, xj

)
+ b∗

}
(5)

where αi is the Lagrange multiplier, * is the dot product of the vector. sgn represents the
symbolic function corresponding to the classification label. yi is the prediction result, and
b is the intercept in the linear equation. The decision function f (x) has only two output
values: −1 and +1.

The classification accuracy of AD and HC was defined as Equation (6).

Acc = NT/N (6)

where Acc is the classification accuracy, NT is the number of correct classifications, and N is
the total number of subjects in S1.

The genetic multi-kernel SVM was constructed by repeating the above process.
S1 was randomly split as Strain : Svalid : Stest = 6 : 2 : 2. To obtain the optimal

(w1, w2, w3), we first adjusted the parameters of the genetic process to determine the
optimal population size and genetic evolution iterations using Strain and Svalid. By setting
the optimal population size and genetic evolution iterations to (200, 1000) and (20, 100)
and the step size to 200 and 20, all parameter combinations were traversed to find the
optimal one.

We then used the optimal parameter combination with Strain and Stest to find the best
(w1, w2, w3) and features with high classification accuracy. To ensure the reproducibility of
the experiments, we performed 10 independent experiments following this process.
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We also applied the single kernel SVM (linear, polynomial or RBF) and the original
dataset (not adjusted using genetic data) to compare with the proposed method in this
paper to verify the superiority of our method.

2.4. Gene Identification and Biological Significance Assessment

Through the above steps, we obtained three sets of features from the AD-HC group,
AD-EMCI group and EMCI-HC group. We calculated the brain regions where the features
were located using their coordinates and the AAL atlas. Then, using the features from
each group as a phenotype, we performed a GWAS (linear regression) in PLINK with the
covariates described in Section 2.1. Then, we applied the effective chi-squared test (ECS)
method [24] to calculate p-values for genes and Bonferroni correction for multiple testing.
The resulting genes with a corrected p-value < 0.001 were selected to identify the significant
genes in all 3 groups and the significant specific genes in each group. Furthermore, they
were also used to assess biological significance through pathway analysis [25].

3. Results
3.1. Results of Parameter Optimization

Initially, n features (132 ≤ n ≤ 386) were randomly extracted from the candidate
features. With w1 = w2 = w3 = 1, we applied these features and weights in a genetic
multi-kernel SVM to adjust the optimal population size and genetic evolution iterations.
First, we randomly selected features and Strain and Svalid randomly. Then, as described in
Section 2.3, we traversed all parameter combinations. To determine the best parameter
combination, we repeated the steps above 100,000 times. The peak classification accuracy
of each parameter combination is shown in Figure 2.
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Figure 2. The optimal population size and generation times and their corresponding classification
accuracy. HC = healthy control; EMCI = Early Mild Cognitive Impairment; AD = Alzheimer’s disease.

As shown in Figure 2, the peak of the classification accuracy in the AD-HC group
is at the node of 800–100, and the corresponding accuracy is 90.84%. Therefore, the
best combination of population size and generation times for AD-HC was (800, 100).
Similarly, the best combinations for AD-EMCI and EMCI-HC were (600, 100) and (800, 40),
respectively. Their corresponding accuracy results were 90.18% and 80.6%.
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3.2. Comparison with Other Methods

Using the parameter combinations obtained, we conducted 10 independent repeat
experiments in each group to mine the optimal weights of the kernel functions. The results
are shown in Figure 3.

Genes 2022, 13, x FOR PEER REVIEW 7 of 15 
 

 

   
(a) (b) (c) 

Figure 3. The 10 independent repeat experiments with (a) AD-HC, (b) AD-EMCI and (c) EMCI-HC. 

From Figure 3a for AD-HC, we observed that all the results converge. The best accu-
racy was found in the 6th and 7th experiments, and the peak accuracy was 93.8%. From 
Figure 3b AD-EMCI, we observed that most of the experiments converged around gener-
ation 500, and the results of the 6th and 7th experiments did not converge. The best accu-
racy was found in the 9th and 10th and the peak accuracy was 94.73%. The best combina-
tion was 0.9897, 0.19483, 0.94445. From Figure 3c for EMCI-HC, we observed that the re-
sults of the 8th did not converge; and in this experiment, a suitable maximum value was 
not found by the genetic algorithm. In the other 9 experiments, suitable values were 
found, and the best results were obtained in the 3rd and 6th experiments. The accuracy of 
these two experiments was 85.6%, and their corresponding generation times were around 
600. The best (𝑤ଵ, 𝑤ଶ, 𝑤ଷ) was (0.55105, 0.66182, 0.63488). This indicates that parents with 
high accuracy had a greater chance of passing on their good genes to their offspring. The 
peak accuracy of the EMCI-HC group was lower than that of the other two groups. This 
may be caused by the lower difference between the EMCI and HC. Finally, we applied the 
optimal parameters to the genetic multi-kernel SVM and obtained 145 features in AD-HC, 
199 features in AD-EMCI and 315 features in EMCI-HC. 

Using the best (𝑤ଵ, 𝑤ଶ, 𝑤ଷ) obtained, we conducted 10 independent repeat experi-
ments with 5 methods, including linear kernel SVM, poly kernel SVM, radial basis func-
tion (RBF) kernel SVM, multi-kernel SVM and genetic multi-kernel SVM. The results are 
shown in Figure 4. 

   
(a) (b) (c) 

Figure 4. The 10 independent repeat experiments of the 5 methods on (a) AD-HC, (b) AD-EMCI and 
(c) EMCI-HC. 

Figure 3. The 10 independent repeat experiments with (a) AD-HC, (b) AD-EMCI and (c) EMCI-HC.

From Figure 3a for AD-HC, we observed that all the results converge. The best
accuracy was found in the 6th and 7th experiments, and the peak accuracy was 93.8%.
From Figure 3b AD-EMCI, we observed that most of the experiments converged around
generation 500, and the results of the 6th and 7th experiments did not converge. The
best accuracy was found in the 9th and 10th and the peak accuracy was 94.73%. The best
combination was 0.9897, 0.19483, 0.94445. From Figure 3c for EMCI-HC, we observed that
the results of the 8th did not converge; and in this experiment, a suitable maximum value
was not found by the genetic algorithm. In the other 9 experiments, suitable values were
found, and the best results were obtained in the 3rd and 6th experiments. The accuracy of
these two experiments was 85.6%, and their corresponding generation times were around
600. The best (w1, w2, w3) was (0.55105, 0.66182, 0.63488). This indicates that parents with
high accuracy had a greater chance of passing on their good genes to their offspring. The
peak accuracy of the EMCI-HC group was lower than that of the other two groups. This
may be caused by the lower difference between the EMCI and HC. Finally, we applied the
optimal parameters to the genetic multi-kernel SVM and obtained 145 features in AD-HC,
199 features in AD-EMCI and 315 features in EMCI-HC.

Using the best (w1, w2, w3) obtained, we conducted 10 independent repeat experiments
with 5 methods, including linear kernel SVM, poly kernel SVM, radial basis function (RBF)
kernel SVM, multi-kernel SVM and genetic multi-kernel SVM. The results are shown in Figure 4.

As shown in Figure 4, although the maximum and minimum accuracy of our model
varied widely, peak accuracy was produced by our model for all three groups. The accuracy
of RBF kernel SVM is the lowest among the 5 tested models. The application of the
RBF kernel function may have reduced the performance of the genetic multi-kernel SVM,
resulting in a large fluctuation in its accuracy. The high accuracy of genetic multi-kernel
SVM came from a specific fusion of different kernel functions. The peak accuracy in AD-HC,
AD-EMCI and EMCI-HC was 93.8%, 94.7% and 85.6%.
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3.3. Identification of Brain Regions and Genes

Using the extracted features and their coordinates, we calculated the brain regions
where they were located. The top 10 brain regions with the most features are listed in
Table 2. The right superior frontal gyrus (Frontal_Sup_R), the right inferior temporal gyrus
(Temporal_Inf_R) and the right superior temporal gyrus (Temporal_Sup_R) were the most
frequently highlighted brain regions for the three groups, respectively.

Table 2. The top 10 brain regions with the most features.

AD-HC AD-EMCI EMCI-HC

Brain Region Number of
Features Brain Region Number of

Features Brain Region Number of
Features

Frontal_Sup_R 9 Temporal_Inf_R 7 Temporal_Sup_R 6
Frontal_Mid_L 5 Precuneus_R 6 Frontal_Sup_L 5

Lingual_R 5 Frontal_Mid_L 5 Frontal_Inf_Orb_L 5
SupraMarginal_R 5 Precuneus_L 5 Frontal_Sup_Medial_L 5
Temporal_Mid_L 5 Postcentral_L 4 Calcarine_R 5

Frontal_Sup_L 4 Temporal_Sup_R 4 Fusiform_L 5
Frontal_Mid_R 4 Frontal_Mid_R 3 SupraMarginal_L 5

Lingual_L 4 Calcarine_L 3 Precuneus_R 5
Fusiform_L 4 Occipital_Mid_L 3 Temporal_Mid_L 5

Postcentral_R 4 Occipital_Mid_R 3 Temporal_Inf_R 5

We also performed GWAS in each group and calculated p-values for genes. Then, we
used the top 10 Bonferroni-corrected genes for gene identification. The significant common
genes in the three groups are listed in Table 3. Our study also demonstrated that pathogenic
genes, such as CSMD1, RBFOX1, PTPRD, CDH13 and WWOX, were significantly related to
AD [26–30]. The significant specific genes in each group are listed in Table 4.

Table 3. Significant genes in the three groups.

Genes
AD-HC AD-EMCI EMCI-HC

References
p-Value p-Value p-Value

CSMD1 2.998108× 10−36 1.02583 × 10−29 1.61113 × 10−35 Parcerisas et al. [26]
RBFOX1 5.84303 × 10−22 1.37062 × 10−20 6.3792 × 10−26 Raghavan et al. [27]
PTPRD 3.43579 × 10−21 3.81205 × 10−24 1.52404 × 10−26 Uhl et al. [28]
CDH13 5.58042 × 10−20 1.85248 × 10−14 6.10705 × 10−13 Liu et al. [29]
WWOX 7.1123 × 10−17 2.9447 × 10−20 2.46024 × 10−22 Hsu et al. [30]
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Table 4. Significant specific genes in each group.

Group Gene p-Value References

AD-HC

MIR8063 1.827314 × 10−221 -
MEIS2 3.0419 × 10−147 Huang et al. [31]

DLGAP2 3.57803 × 10−19 Ouellette et al. [32]
MAGI2 8.108022 × 10−15 Kim et al. [33]

AD-EMCI

PRKN 2.52709 × 10−15 Panda et al. [34]
LRP1B 1.50983 × 10−13 Shang et al. [35]
ASIC2 4.2832 × 10−13 Kreple et al. [36]
PRKG1 5.64312 × 10−13 Koran et al. [37]

EMCI-HC
PTPRT 1.11037 × 10−14 Ben et al. [38]
NELL1 1.14303 × 10−12 James et al. [39]
AGBL1 2.88479 × 10−11 Dong et al. [40]

3.4. Biological Significance Assessment

The corrected genes with p-values < 0.001 were also applied for pathway analysis. The
top 15 pathways and their corrected p-values for each group are shown in Figure 5 [41].
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As shown in Figure 5, eight pathways were present in all three groups, and 5 path-
ways were present in both the AD-HC group and the EMCI-HC group. Only 1 pathway
(Glutamatergic synapse) was in both the AD-EMCI group and the AD-HC group. We
also found that 6 pathways from the AD-EMCI group did not intersect with the other two
groups, while there was only 1 in the AD-HC group and 2 in the EMCI-HC group that did
not intersect with the other groups. Moreover, the corrected p-values of pathways in the
AD-EMCI group were superior to the other two groups.

In addition, we counted the distribution of pathways with a corrected p-value < 0.001 in
the three groups. The results are shown in Figure 6 [41].
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From Figure 6, we observed that most of the pathways were found in all three groups.
Considering that MCI is a precursor state to AD, it is reasonable to find the same pathways
in multiple groups. The numbers of pathways shared by only two groups are 0, 1 and 1.
Interestingly, there were 3 pathways that are present only in AD-HC and 1 pathway only
in EMCI-HC. However, there were 15 pathways present only in AD-EMCI, significantly
exceeding the number of exclusive pathways in the other two groups. The number of top
genes used for pathway analysis among the three groups were 1 (AD-EMCI and EMCI-HC),
9 (AD-HC and EMCI-HC) and 10 (AD-HC and AD-EMCI). The difference in the number of
genes was small, but the number of identified pathways was far larger. The reason for this
may lie in the different top genes.

4. Discussion

In this paper, we propose a novel feature construction method and a novel feature
detection model. In particular, we applied the eigenvalues of the SNP matrix to the original
dataset and obtained promising classification results.

As shown in Figure 2, the optimal generation times of the three data groups were
either 600 or 800. This indicates that lower evolution times may not yield good classification
results, while higher evolution times may lead to a drop in accuracy due to overfitting and
random mutations. Figure 3 shows that the best accuracy of each experiment occurred
around 600 evolution times. This is consistent with previous findings. In comparison
experiments with the other methods, although good classification accuracy was achieved
by the single kernel SVM, the multi-kernel SVM achieved better. This confirms that the
multi-kernel SVM is able to take advantage of the differences among the multiple kernel
functions and apply them in the model training. The addition of gene data improved
the classification accuracy of the multi-kernel SVM. This proves that the genetic data
contains information useful for classification. How to scientifically and effectively integrate
genetic data is worth further investigation. In other papers, genetic data has been used
to construct fusion features [42–44], leading to satisfactory accuracy. In this paper, we
extracted 24 genes associated with AD [20] and calculated the eigenvalues of the matrix
formed by the corresponding SNPs. The maximum eigenvalue was applied to construct the
new dataset and higher accuracy was obtained using the resulting dataset. The eigenvalue
amplifies the differences in the imaging data among AD, EMCI and HC groups. By only
adjusting the parameters in our model, we obtained satisfactory accuracy for all three
different groups. This proves that our proposed model has excellent generalizability.

For the extracted features, we calculated the number of times they each appeared in 90
brain regions. Then, we found that the most frequently highlighted brain regions were the
right superior frontal gyrus (Frontal_Sup_R) in AD-HC, the right inferior temporal gyrus
(Temporal_Inf_R) in AD-EMCI, and the right superior temporal gyrus (Temporal_Sup_R)
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in EMCI-HC. The regional homogeneity value increased in the superior frontal gyrus
and affected memory and cognition [45]. The inferior temporal gyrus is involved in
cognitive impairment and immediate visual memory by forming the inferior longitudinal
fasciculus [46]. Although the right superior temporal gyrus was not found to be a significant
region for AD, the fractional amplitude of low-frequency fluctuation value was increased
in the left superior temporal gyrus and by jointly combining the regional homogeneity
value, the researchers could explore the mechanism of the brain [14,45].

We found five AD-related genes in the three groups (AD-EMCI, AD-HC, and EMCI-
HC; see Table 3). CSMD1 (p-value = 1.02583 × 10−29) has been associated with AβPP
metabolism and affected AD pathogenesis [26]. RBFOX1 (p-value = 5.84303 × 10−22) is
expressed in the brain and related to the brain function that had been confirmed to be
related to AD and MCI [27]. It can be seen from Table 4 that the risk AD genes, such
as MEIS2 (p-value = 3.0419 × 10−147), DLGAP2 (p-value = 3.57803 × 10−19) and MAGI2
(p-value = 8.108022 × 10−15) have been identified in the AD-HC group [31–33]. We suggest
that MIR8063 (p-value = 1.827314 × 10−221) may be associated with susceptibility to AD.
Furthermore, some genes associated with AD, including PRKN, LRP1B, ASIC2, PRKG1,
PTPRT, NELL1 and AGBL1, were also successfully identified.

By analyzing Figures 5 and 6, we found that when the threshold was set at 0.001, the
pathways in the EMCI-HC group and AD-HC group were fewer than in the AD-EMCI
group. Except for the pathways in all three groups, there was no intersection between
the AD-HC group and the EMCI-HC group. This suggests that the shared pathways
were prominent pathways for AD, while the distinct pathways were specific pathways of
distinct groups that correlated with the extent of AD pathology. In addition, the AD-EMCI
group had the most significant pathways and the most gene categories, indicating that
the AD-EMCI group also had the most SNP categories. We speculated that the AD-EMCI
group-specific genes and pathways might be in the transition state from HC to AD, and
that their changes led to the transition from EMCI to AD.

For the pathways common in the three groups, the calcium signaling pathway (hsa04020,
corrected p-value = 1.35 × 10−6) is a significant pathway. Ca2+ signaling has a certain regu-
latory effect on signal propagation in vivo. By regulating Ca2+, Calcium signaling pathway
plays a role in the synaptic function of Aβ and is associated with early AD [47]. For example,
high Ca2+ was found in neurites surrounding β-amyloid [48], and the application of Aβ

activated the N-methyl-D-aspartate receptors and led to the Ca2+ rise [49]. Elevated RYR2
(corrected p-value = 6.77 × 10−7 in AD-EMCI, corrected p-value = 1.47 × 10−5 in AD-HC
and corrected p-value = 9.76× 10−3 in EMCI-HC) and RYR3 (corrected p-value = 6.2 × 10−6

in AD-EMCI, corrected p-value = 2.22× 10−7 in AD-HC and corrected p-value = 4.4 × 10−6

in EMCI-HC) expression levels enhanced the Ca2+ release and caused the Ca2+ signal dys-
regulation in AD [50–52].

For the cell adhesion molecules (CAMs, corrected p-value = 5.44 × 10−4) pathway in the
EMCI-HC group, increased NCAM expression was found in the hippocampus, decreased
expression in the frontal/temporal cortex, and increased CSF levels [53–56]. Integrin unit
(IU) β1 was involved in fibrillar Aβ-mediated microglia internalization [57], IUα4 was found
near Aβ plaques [58], and IUβ3 was adjacent to Aβ plaques [59]. For the 3 pathways that
presented only in the AD-HC group (Renin secretion, corrected p-value = 2.4 × 10−4; Apelin
signaling pathway, corrected p-value = 3.29 × 10−4; Adrenergic signaling in cardiomyocytes,
corrected p-value = 4.04 × 10−4) only in the AD-HC group, hypertension was associated with
AD, and renin secretion was a pathway that regulated cerebral blood flow [60]. Among AD
patients, the level of apelin in the blood significantly decreased [61], which has a positive
effect on cognitive memory [62,63]. The adrenergic signaling in cardiomyocytes regulated
Ca2+ in vivo by acting on cardiac muscle contraction and further on the calcium signaling
pathway (https://www.genome.jp/kegg-bin/show_pathway?hsa04261). Changes in these
pathways might lead to the transition from EMCI to AD.

https://www.genome.jp/kegg-bin/show_pathway?hsa04261
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5. Conclusions

In this study, we fused the voxel-based features extracted from MRI imaging data with
the eigenvalue of SNPs and proposed a novel genetic multi-kernel SVM for AD detection.
Our model was superior to other methods, including traditional single kernel SVM and
standard multi-kernel SVM. We evaluated the generalizability of our model in different
data groups, which can also be evaluated in other diseases in the future. Moreover, we
analyzed the extracted features and showed that our method provides a new strategy
for imaging genetics analysis. Some AD-related brain regions, such as the right superior
frontal gyrus, right inferior temporal gyrus and right superior temporal gyrus, were found.
We have identified more robust and stable AD-related genes, including CSMD1, RBFOX1,
PTPRD, CDH13 and WWOX. Our investigation shows that the calcium signaling pathway,
cell adhesion molecule pathway, and oxytocin signaling pathway affected the development
of AD. All of these findings contribute to a better understanding of the pathological changes
in the course of AD.

Author Contributions: X.M., L.M. and W.L. led and supervised the research. X.M., L.M., W.L., Q.W.
and J.L. designed the research and wrote the article. Q.W. and J.L. performed the data processing,
visualization of results. Y.W. performed data pre-processing and quality control. X.M., L.M. and
W.L. revised on the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (61901063),
and by MOE (Ministry of Education in China) Project of Humanities and Social Sciences (19YJCZH120),
and by the Science and Technology Plan Project of Changzhou (CE20205042). This work was also
sponsored by Qing Lan Project of Jiangsu Province.

Institutional Review Board Statement: Ethical review and approval was not required for the study
on human participants, as data collection and sharing for this project was funded by a public database
(the Alzheimer’s Disease Neuroimaging Initiative, ADNI).

Informed Consent Statement: We applied the access from ADNI. The patients/participants provided
their written informed consent to participate in this study. Written informed consent was obtained
from the individual(s) for the publication of any potentially identifiable images or data included in
this article.

Data Availability Statement: Data used for this study were provided from ADNI studies via data
sharing agreements that did not include permission to further share the data. Data from ADNI are
available from the ADNI database (adni.loni.usc.edu) (accessed on 15 May 2020) upon registration
and compliance with the data usage agreement.

Acknowledgments: Data collection and sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The complete ADNI Acknowledgement is available at http:
//adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf (ac-
cessed on 15 May 2020).

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Newton-Cheh, C.; Hirschhorn, J.N. Genetic association studies of complex traits: Design and analysis issues. Mutat. Res. /Fundam.

Mol. Mech. Mutagenesis 2005, 573, 54–69. [CrossRef] [PubMed]
2. Huang, C.; Thompson, P.; Wang, Y.; Yu, Y.; Zhang, J.; Kong, D.; Colen, R.R.; Knickmeyer, R.C.; Zhu, H.; Alzheimer’s Disease

Neuroimaging, I. FGWAS: Functional genome wide association analysis. NeuroImage 2017, 159, 107–121. [CrossRef] [PubMed]
3. Stein, J.L.; Hua, X.; Lee, S.; Ho, A.J.; Leow, A.D.; Toga, A.W.; Saykin, A.J.; Shen, L.; Foroud, T.; Pankratz, N.; et al. Voxelwise

genome-wide association study (vGWAS). NeuroImage 2010, 53, 1160–1174. [CrossRef] [PubMed]
4. Hibar, D.P.; Stein, J.L.; Kohannim, O.; Jahanshad, N.; Saykin, A.J.; Shen, L.; Kim, S.; Pankratz, N.; Foroud, T.; Huentelman, M.J.;

et al. Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects.
NeuroImage 2011, 56, 1875–1891. [CrossRef]

5. Vounou, M.; Nichols, T.E.; Montana, G.; Alzheimer’s Disease Neuroimaging, I. Discovering genetic associations with high-
dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. NeuroImage 2010, 53, 1147–1159. [CrossRef]

adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://doi.org/10.1016/j.mrfmmm.2005.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15829237
http://doi.org/10.1016/j.neuroimage.2017.07.030
http://www.ncbi.nlm.nih.gov/pubmed/28735012
http://doi.org/10.1016/j.neuroimage.2010.02.032
http://www.ncbi.nlm.nih.gov/pubmed/20171287
http://doi.org/10.1016/j.neuroimage.2011.03.077
http://doi.org/10.1016/j.neuroimage.2010.07.002


Genes 2022, 13, 837 13 of 15

6. Rajeesh, J.; Moni, R.S.; Gopalakrishnan, T. Discrimination of Alzheimer’s disease using hippocampus texture features from MRI.
Asian Biomed. 2012, 6, 87–94.

7. Guenther, F.; Brandl, C.; Winkler, T.W.; Wanner, V.; Stark, K.; Kuechenhoff, H.; Heid, I.M. Chances and challenges of machine
learning-based disease classification in genetic association studies illustrated on age-related macular degeneration. Genet.
Epidemiol. 2020, 44, 759–777. [CrossRef]

8. Seo, D.; Cho, S.; Manjula, P.; Choi, N.; Kim, Y.-K.; Koh, Y.J.; Lee, S.H.; Kim, H.-Y.; Lee, J.H. Identification of Target Chicken
Populations by Machine Learning Models Using the Minimum Number of SNPs. Animals 2021, 11, 241. [CrossRef]

9. Li, Y.; Haber, A.; Preuss, C.; John, C.; Uyar, A.; Yang, H.S.; Logsdon, B.A.; Philip, V.; Karuturi, R.K.M.; Carter, G.W.; et al. Transfer
learning-trained convolutional neural networks identify novel MRI biomarkers of Alzheimer’s disease progression. Alzheimer’s
Dement. Diagn. Assess. Dis. Monit. 2021, 13, e12140. [CrossRef]

10. Huang, W.; Li, X.; Li, X.; Kang, G.; Han, Y.; Shu, N. Combined Support Vector Machine Classifier and Brain Structural Network
Features for the Individual Classification of Amnestic Mild Cognitive Impairment and Subjective Cognitive Decline Patients.
Front. Aging Neurosci. 2021, 13, 687927. [CrossRef]

11. Díez Díaz, F.; Sánchez Lasheras, F.; Moreno, V.; Moratalla-Navarro, F.; Molina De La Torre, A.J.; Martín Sánchez, V. GASVeM: A
New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector
Machines. Mathematics 2021, 9, 654. [CrossRef]

12. Kinreich, S.; Meyers, J.L.; Maron-Katz, A.; Kamarajan, C.; Pandey, A.K.; Chorlian, D.B.; Zhang, J.; Pandey, G.; Subbie-Saenz De
Viteri, S.; Pitti, D.; et al. Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family
history: A machine learning study. Mol. Psychiatry 2021, 26, 1133–1141. [CrossRef] [PubMed]

13. Brabec, J.L.; Lara, M.K.; Tyler, A.L.; Mahoney, J.M. System-Level Analysis of Alzheimer’s Disease Prioritizes Candidate Genes for
Neurodegeneration. Front. Genet. 2021, 12, 625246. [CrossRef]

14. Matthews, P.M.; Hampshire, A. Clinical Concepts Emerging from fMRI Functional Connectomics. Neuron 2016, 91, 511–528.
[CrossRef]

15. Amunts, K.; Mohlberg, H.; Bludau, S.; Zilles, K. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture.
Science 2020, 369, 988–992. [CrossRef]

16. Yao, X.; Cong, S.; Yan, J.; Risacher, S.L.; Saykin, A.J.; Moore, J.H.; Shen, L. Regional imaging genetic enrichment analysis.
Bioinformatics 2020, 36, 2554–2560. [CrossRef] [PubMed]

17. Yao, X.; Risacher, S.L.; Nho, K.; Saykin, A.J.; Wang, Z.; Shen, L. Targeted genetic analysis of cerebral blood flow imaging
phenotypes implicates the INPP5D gene. Neurobiol. Aging 2019, 81, 213–221. [CrossRef] [PubMed]

18. Saykin, A.J.; Shen, L.; Foroud, T.M.; Potkin, S.G.; Swaminathan, S.; Kim, S.; Risacher, S.L.; Nho, K.; Huentelman, M.J.; Craig, D.W.;
et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and
plans. Alzheimer’s Dement. 2010, 6, 265–273. [CrossRef]

19. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.;
et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81,
559–575. [CrossRef]

20. Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham,
G.W.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45,
1452–1458. [CrossRef]

21. Hinrichs, C.; Singh, V.; Peng, J.; Johnson, S.C. Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications
to Neuroimaging. Adv. Neural Inf. Process. Syst. 2012, 2012, 1430–1438. [PubMed]

22. Peng, Z.; Hu, Q.; Dang, J. Multi-kernel SVM based depression recognition using social media data. Int. J. Mach. Learn. Cybern.
2019, 10, 43–57. [CrossRef]

23. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
24. Li, M.; Jiang, L.; Mak, T.S.H.; Kwan, J.S.H.; Xue, C.; Chen, P.; Leung, H.C.-M.; Cui, L.; Li, T.; Sham, P.C. A powerful conditional

gene-based association approach implicated functionally important genes for schizophrenia. Bioinformatics 2019, 35, 628–635.
[CrossRef]

25. Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization
and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325.
[CrossRef] [PubMed]

26. Parcerisas, A.; Rubio, S.E.; Muhaisen, A.; Gómez-Ramos, A.; Pujadas, L.; Puiggros, M.; Rossi, D.; Ureña, J.; Burgaya, F.; Pascual,
M.; et al. Somatic signature of brain-specific single nucleotide variations in sporadic Alzheimer’s disease. J. Alzheimer’s Dis. JAD
2014, 42, 1357–1382. [CrossRef]

27. Raghavan, N.S.; Dumitrescu, L.; Mormino, E.; Mahoney, E.R.; Lee, A.J.; Gao, Y.; Bilgel, M.; Goldstein, D.; Harrison, T.; Engelman,
C.D.; et al. Association Between Common Variants in RBFOX1, an RNA-Binding Protein, and Brain Amyloidosis in Early and
Preclinical Alzheimer Disease. JAMA Neurol. 2020, 77, 1288–1298. [CrossRef]

28. Uhl, G.R.; Martinez, M.J. PTPRD: Neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain
phenotypes. Ann. N. Y. Acad. Sci. 2019, 1451, 112–129. [CrossRef]

29. Liu, F.F.; Zhang, Z.; Chen, W.; Gu, H.Y.; Yan, Q.J. Regulatory mechanism of microRNA-377 on CDH13 expression in the cell model
of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2801–2808. [CrossRef]

http://doi.org/10.1002/gepi.22336
http://doi.org/10.3390/ani11010241
http://doi.org/10.1002/dad2.12140
http://doi.org/10.3389/fnagi.2021.687927
http://doi.org/10.3390/math9060654
http://doi.org/10.1038/s41380-019-0534-x
http://www.ncbi.nlm.nih.gov/pubmed/31595034
http://doi.org/10.3389/fgene.2021.625246
http://doi.org/10.1016/j.neuron.2016.07.031
http://doi.org/10.1126/science.abb4588
http://doi.org/10.1093/bioinformatics/btz948
http://www.ncbi.nlm.nih.gov/pubmed/31860065
http://doi.org/10.1016/j.neurobiolaging.2019.06.003
http://www.ncbi.nlm.nih.gov/pubmed/31319229
http://doi.org/10.1016/j.jalz.2010.03.013
http://doi.org/10.1086/519795
http://doi.org/10.1038/ng.2802
http://www.ncbi.nlm.nih.gov/pubmed/25309107
http://doi.org/10.1007/s13042-017-0697-1
http://doi.org/10.1007/BF00994018
http://doi.org/10.1093/bioinformatics/bty682
http://doi.org/10.1093/nar/gkab447
http://www.ncbi.nlm.nih.gov/pubmed/34086934
http://doi.org/10.3233/JAD-140891
http://doi.org/10.1001/jamaneurol.2020.1760
http://doi.org/10.1111/nyas.14002
http://doi.org/10.26355/eurrev_201805_14979


Genes 2022, 13, 837 14 of 15

30. Hsu, C.Y.; Lee, K.T.; Sun, T.Y.; Sze, C.I.; Huang, S.S.; Hsu, L.J.; Chang, N.S. WWOX and Its Binding Proteins in Neurodegeneration.
Cells 2021, 10, 1781. [CrossRef]

31. Huang, M.; Deng, C.; Yu, Y.; Lian, T.; Yang, W.; Feng, Q. Spatial correlations exploitation based on nonlocal voxel-wise GWAS for
biomarker detection of AD. NeuroImage Clin. 2019, 21, 101642. [CrossRef] [PubMed]

32. Ouellette, A.R.; Neuner, S.M.; Dumitrescu, L.; Anderson, L.C.; Gatti, D.M.; Mahoney, E.R.; Bubier, J.A.; Churchill, G.; Peters, L.;
Huentelman, M.J.; et al. Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer’s
Dementia. Cell Rep. 2020, 32, 108091. [CrossRef] [PubMed]

33. Kim, H.R.; Lee, T.; Choi, J.K.; Jeong, Y. Polymorphism in the MAGI2 Gene Modifies the Effect of Amyloid β on Neurodegeneration.
Alzheimer Dis. Assoc. Disord. 2021, 35, 114–120. [CrossRef] [PubMed]

34. Panda, S.P.; Soni, U. A review of dementia, focusing on the distinct roles of viral protein corona and MMP9 in dementia: Potential
pharmacotherapeutic priorities. Ageing Res. Rev. 2022, 75, 101560. [CrossRef] [PubMed]

35. Shang, Z.; Lv, H.; Zhang, M.; Duan, L.; Wang, S.; Li, J.; Liu, G.; Ruijie, Z.; Jiang, Y. Genome-wide haplotype association study
identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals.
Oncotarget 2015, 6, 42504–42514. [CrossRef] [PubMed]

36. Kreple, C.J.; Lu, Y.; Taugher, R.J.; Schwager-Gutman, A.L.; Du, J.; Stump, M.; Wang, Y.; Ghobbeh, A.; Fan, R.; Cosme, C.V.; et al.
Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nature neuroscience 2014, 17,
1083–1091. [CrossRef]

37. Koran, M.E.; Hohman, T.J.; Meda, S.A.; Thornton-Wells, T.A. Genetic interactions within inositol-related pathways are associated
with longitudinal changes in ventricle size. J. Alzheimer’s Dis. JAD 2014, 38, 145–154. [CrossRef]

38. Ben-Avraham, D.; Karasik, D.; Verghese, J.; Lunetta, K.L.; Smith, J.A.; Eicher, J.D.; Vered, R.; Deelen, J.; Arnold, A.M.; Buchman,
A.S.; et al. The complex genetics of gait speed: Genome-wide meta-analysis approach. Aging 2017, 9, 209–246. [CrossRef]

39. James, A.W.; Shen, J.; Zhang, X.; Asatrian, G.; Goyal, R.; Kwak, J.H.; Jiang, L.; Bengs, B.; Culiat, C.T.; Turner, A.S.; et al. NELL-1 in
the treatment of osteoporotic bone loss. Nat. Commun. 2015, 6, 7362. [CrossRef]

40. Dong, C.; Beecham, A.; Wang, L.; Blanton, S.H.; Rundek, T.; Sacco, R.L. Follow-up association study of linkage regions reveals
multiple candidate genes for carotid plaque in Dominicans. Atherosclerosis 2012, 223, 177–183. [CrossRef]

41. Li, J.; Miao, B.; Wang, S.; Dong, W.; Xu, H.; Si, C.; Wang, W.; Duan, S.; Lou, J.; Bao, Z.; et al. Hiplot: A comprehensive and
easy-to-use web service boosting publication-ready biomedical data visualization. bioRxiv 2022. [CrossRef]

42. Bi, X.a.; Hu, X.; Wu, H.; Wang, Y. Multimodal Data Analysis of Alzheimer’s Disease Based on Clustering Evolutionary Random
Forest. IEEE J. Biomed. Health Inform. 2020, 24, 2973–2983. [CrossRef] [PubMed]

43. Bi, X.a.; Zhou, W.; Li, L.; Xing, Z. Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm
Based on Brain Imaging and Genetic Data. IEEE J. Biomed. Health Inform. 2021, 25, 3019–3028. [CrossRef] [PubMed]

44. Li, J.; Liu, W.; Cao, L.; Luo, H.; Xu, S.; Bao, P.; Meng, X.; Liang, H.; Fang, S. Hippocampal Subregion and Gene Detection in
Alzheimer’s Disease Based on Genetic Clustering Random Forest. Genes 2021, 12, 683. [CrossRef] [PubMed]

45. He, F.; Li, Y.; Li, C.; Fan, L.; Liu, T.; Wang, J. Repeated anodal high-definition transcranial direct current stimulation over the left
dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions.
PLoS ONE 2021, 16, e0256100. [CrossRef]

46. Heldmann, M.; Heeren, J.; Klein, C.; Rauch, L.; Hagenah, J.; Münte, T.F.; Kasten, M.; Brüggemann, N. Neuroimaging abnormalities
in individuals exhibiting Parkinson’s disease risk markers. Mov. Disord. 2018, 33, 1412–1422. [CrossRef] [PubMed]

47. Xie, C.-W. Calcium-regulated signaling pathways. NeuroMolecular Med. 2004, 6, 53–64. [CrossRef]
48. Kuchibhotla, K.V.; Goldman, S.T.; Lattarulo, C.R.; Wu, H.-Y.; Hyman, B.T.; Bacskai, B.J. Abeta plaques lead to aberrant regulation

of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008, 59, 214–225.
[CrossRef]

49. Ferreira, I.L.; Bajouco, L.M.; Mota, S.I.; Auberson, Y.P.; Oliveira, C.R.; Rego, A.C. Amyloid beta peptide 1–42 disturbs intracellular
calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium.
2012, 51, 95–106. [CrossRef]

50. Briggs, C.A.; Chakroborty, S.; Stutzmann, G.E. Emerging pathways driving early synaptic pathology in Alzheimer’s disease.
Biochem. Biophys Res. Commun. 2017, 483, 988–997. [CrossRef]

51. Bruno, A.M.; Huang, J.Y.; Bennett, D.A.; Marr, R.A.; Hastings, M.L.; Stutzmann, G.E. Altered ryanodine receptor expression in
mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2012, 33, 1001.e1–1001.e6. [CrossRef] [PubMed]

52. Stutzmann, G.E.; Smith, I.; Caccamo, A.; Oddo, S.; Laferla, F.M.; Parker, I. Enhanced ryanodine receptor recruitment contributes
to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J. Neurosci. 2006, 26, 5180–5189. [CrossRef] [PubMed]

53. Mikkonen, M.; Soininen, H.; Tapiola, T.; Alafuzoff, I.; Miettinen, R. Hippocampal plasticity in Alzheimer’s disease: Changes in
highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur. J. Neurosci. 1999, 11, 1754–1764. [CrossRef]

54. Yew, D.T.; Li, W.P.; Webb, S.E.; Lai, H.W.L.; Zhang, L. Neurotransmitters, peptides, and neural cell adhesion molecules in the
cortices of normal elderly humans and alzheimer patients: A comparison. Exp. Gerontol. 1999, 34, 117–133. [CrossRef]

55. Aisa, B.; Gil-Bea, F.J.; Solas, M.; García-Alloza, M.; Chen, C.P.; Lai, M.K.; Francis, P.T.; Ramírez, M.J. Altered NCAM Expression
Associated with the Cholinergic System in Alzheimer’s Disease. J. Alzheimer’s Dis. 2010, 20, 659–668. [CrossRef] [PubMed]

56. Jin, K.; Peel, A.L.; Mao, X.O.; Xie, L.; Cottrell, B.A.; Henshall, D.C.; Greenberg, D.A. Increased hippocampal neurogenesis in
Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 343–347. [CrossRef]

http://doi.org/10.3390/cells10071781
http://doi.org/10.1016/j.nicl.2018.101642
http://www.ncbi.nlm.nih.gov/pubmed/30584014
http://doi.org/10.1016/j.celrep.2020.108091
http://www.ncbi.nlm.nih.gov/pubmed/32877673
http://doi.org/10.1097/WAD.0000000000000422
http://www.ncbi.nlm.nih.gov/pubmed/33323781
http://doi.org/10.1016/j.arr.2022.101560
http://www.ncbi.nlm.nih.gov/pubmed/35031512
http://doi.org/10.18632/oncotarget.6391
http://www.ncbi.nlm.nih.gov/pubmed/26621834
http://doi.org/10.1038/nn.3750
http://doi.org/10.3233/JAD-130989
http://doi.org/10.18632/aging.101151
http://doi.org/10.1038/ncomms8362
http://doi.org/10.1016/j.atherosclerosis.2012.03.025
http://doi.org/10.1101/2022.03.16.484681
http://doi.org/10.1109/JBHI.2020.2973324
http://www.ncbi.nlm.nih.gov/pubmed/32071013
http://doi.org/10.1109/JBHI.2021.3067798
http://www.ncbi.nlm.nih.gov/pubmed/33750717
http://doi.org/10.3390/genes12050683
http://www.ncbi.nlm.nih.gov/pubmed/34062866
http://doi.org/10.1371/journal.pone.0256100
http://doi.org/10.1002/mds.27313
http://www.ncbi.nlm.nih.gov/pubmed/29756356
http://doi.org/10.1385/NMM:6:1:053
http://doi.org/10.1016/j.neuron.2008.06.008
http://doi.org/10.1016/j.ceca.2011.11.008
http://doi.org/10.1016/j.bbrc.2016.09.088
http://doi.org/10.1016/j.neurobiolaging.2011.03.011
http://www.ncbi.nlm.nih.gov/pubmed/21531043
http://doi.org/10.1523/JNEUROSCI.0739-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16687509
http://doi.org/10.1046/j.1460-9568.1999.00593.x
http://doi.org/10.1016/S0531-5565(98)00017-5
http://doi.org/10.3233/JAD-2010-1398
http://www.ncbi.nlm.nih.gov/pubmed/20164549
http://doi.org/10.1073/pnas.2634794100


Genes 2022, 13, 837 15 of 15

57. Akiyama, H.; Kawamata, T.; Dedhar, S.; McGeer, P.L. Immunohistochemical localization of vitronectin, its receptor and beta-3
integrin in Alzheimer brain tissue. J. Neuroimmunol. 1991, 32, 19–28. [CrossRef]

58. Van Gool, D.; Carmeliet, G.; Triau, E.; Cassiman, J.-J.; Dom, R. Appearance of localized immunoreactivity for the α4 integrin
subunit and for fibronectin in brains from Alzheimer’s, Lewy body dementia patients and aged controls. Neurosci. Lett. 1994, 170,
71–73. [CrossRef]

59. Koenigsknecht, J.; Landreth, G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism.
J. Neurosci. 2004, 24, 9838–9846. [CrossRef]

60. Ashby, E.L.; Kehoe, P.G. Current status of renin–aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic
options for Alzheimer’s disease. Expert Opin. Investig. Drugs 2013, 22, 1229–1242. [CrossRef]

61. Eren, N.; Deni, Z.; Yildiz, Z.; Gö, N.; Gü, L.; Karabiyik, T. P200-levels of Apelin-13 and total oxidant/antioxidant status in sera of
Alzheimer patients. Turk. J. Biochem./Turk Biyokim. Derg. 2012, 37, 341.

62. Dai, T.-T.; Wang, B.; Xiao, Z.-Y.; You, Y.; Tian, S.-W. Apelin-13 Upregulates BDNF Against Chronic Stress-induced Depression-like
Phenotypes by Ameliorating HPA Axis and Hippocampal Glucocorticoid Receptor Dysfunctions. Neuroscience 2018, 390, 151–159.
[CrossRef] [PubMed]

63. Haghparast, E.; Esmaeili-Mahani, S.; Abbasnejad, M.; Sheibani, V. Apelin-13 ameliorates cognitive impairments in 6-
hydroxydopamine-induced substantia nigra lesion in rats. Neuropeptides 2018, 68, 28–35. [CrossRef] [PubMed]

http://doi.org/10.1016/0165-5728(91)90067-H
http://doi.org/10.1016/0304-3940(94)90241-0
http://doi.org/10.1523/JNEUROSCI.2557-04.2004
http://doi.org/10.1517/13543784.2013.812631
http://doi.org/10.1016/j.neuroscience.2018.08.018
http://www.ncbi.nlm.nih.gov/pubmed/30170158
http://doi.org/10.1016/j.npep.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29329678

	Introduction 
	Materials and Methods 
	Imaging and Gene Data 
	Feature Construction 
	Genetic Multi-Kernel SVM Construction 
	Gene Identification and Biological Significance Assessment 

	Results 
	Results of Parameter Optimization 
	Comparison with Other Methods 
	Identification of Brain Regions and Genes 
	Biological Significance Assessment 

	Discussion 
	Conclusions 
	References

