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Over the last decade, the use of targeted therapies has immensely increased in the

treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged

behind, although potential molecular markers have been identified. This is particularly

problematic for the type II ECs, since these aggressive tumors are usually not responsive

toward the current standard therapies. Therefore, type II ECs are responsible for

most EC-related deaths, indicating the need for new treatment options. Interestingly,

molecular analyses of type II ECs have uncovered frequent genetic alterations (up to

40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric

protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type

I ECs and other common gynecologic cancers, albeit at much lower frequencies

(0–7%). Nevertheless, PP2A inactivation in the latter cancer types is common via

other mechanisms, in particular by increased expression of Cancerous Inhibitor of

PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss

the therapeutic potential of direct and indirect PP2A targeting compounds, possibly

in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the

potential of the PP2A status as a predictive and/or prognostic marker for type I and

II ECs.

Keywords: phosphatase targeted therapy, PPP2R1A, endometrial cancer, type II endometrial carcinoma, serous

endometrial carcinoma, CIP2A, PME-1, PP2A activating drug

INTRODUCTION

Treatment options for cancer have advanced immensely throughout history, with mainly one goal:
to specifically target the tumor with as little harm as possible for the patient (1–4). During the last
decade, molecular characterization of many tumors has brought cancer research another step closer
toward this goal (5), providing the keys to unlock the door toward personalizedmedicine. However,
treatment for endometrial cancer seems to lag behind, although potential markers for this disease
have been identified and successful precedents using such markers for targeted therapy have been
set in other cancers (e.g., lung cancer, chronic myeloid leukemia, breast cancer, melanoma) (6–13).

In this review, we will discuss the potential of the tumor suppressive protein phosphatase type
2A (PP2A) as a new biomarker and therapeutic target for both type I and type II endometrial
carcinomas (ECs). We will mainly focus on the potential predictive and prognostic value of
PPP2R1A, encoding the Aα subunit of PP2A, which is mutated in up to 40% of type II ECs,
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while largely being unaffected in type I ECs and other common
gynecologic cancers. In the latter cancer types, PP2A dysfunction
commonly occurs, however, by othermechanisms of inactivation,
stressing the importance of functional PP2A for preventing
tumor development and/or progression. Overall, we propose that
current, unsatisfactory (type II) EC treatments could be largely
improved by taking the PP2A status of the tumor into account
since it could be a potential useful indicator for prognosis and
therapy response.

WHY TARGETED THERAPIES SHOULD BE
THE FOCUS IN TYPE II EC

To date, the standard treatment for all ECs is surgery, followed
by adjuvant therapy if necessary (14). This treatment protocol
is usually sufficient for the clinically indolent and hormone-
responsive type I ECs, which comprise 80% of all ECs. However,
the other 20% of ECs are aggressive type II cancers, with serous
histology as the most prominent subtype (15, 16). Unfortunately,
most of these high-grade tumors are resistant to conventional
chemo- and radiation therapies, underscoring the major clinical
need for improved treatment regimens for this EC subgroup (17–
23). Additionally, due to their late stage detection and metastatic
character, surgery is usually not an option for type II ECs, since
the cancer has often already spread outside the uterus at the
time of diagnosis (24–26). Therefore, not surprisingly, most EC-
related deaths are due to the type II cancers, with dismal overall
survival rates of generally <30% (25, 27–29).

Despite the above knowledge, patients with type II EC are still
treated with largely ineffective chemotherapy regimens, thereby
leading to unnecessary physical and economic burdens for the
patient. In Japan, for example, one cycle of the commonly
used carboplatin/paclitaxel protocol consists of three courses
with a cost of ∼2,000 Euros per course (30). Additionally,
the medical care costs for managing the side effects were 1.6
times as much as the cost for one course, accumulating in a
total cost of ∼9,200 Euros per chemotherapy cycle. A study in
the United Kingdom further demonstrated that the total costs
(diagnosis/surgery, adjuvant therapy, and further treatment)
increased with increasing EC grade (31). Hence, more pre-
clinical studies and clinical trials should be focusing on targeted
therapies in order to provide more adequate treatment options
for patients with high-grade type II EC (32). This view seems
particularly justified in light of the fact that successful results
have already been obtained in other cancer types and several
molecular markers have been identified in EC (33–35). One
of the most promising markers in this context is certainly

Abbreviations: Bad, Bcl2-associated death promotor; CIP2A, Cancerous inhibitor

of PP2A; EC, Endometrial carcinoma; ERK, Extracellular signal-regulated

kinase; GSK-3β, Glycogen synthase kinase 3β; HPV, Human papilloma virus;

MAPK, Mitogen-activated protein kinase; MEK, Mitogen-activated protein kinase

kinase; mTOR, Mammalian target of rapamycin; PI3K, Phosphatidylinositol-4,5-

bisphosphate 3-kinase; PME-1, PP2Amethylesterase 1; PP2A, Protein phosphatase

2A; pRb, Protein retinoblastoma; PTPA, Phosphatase 2A phosphatase activator;

SET, Suvar/Enhancer of zeste/Trithorax; SMAP, Small molecule activator of PP2A;

SV40, Simian virus 40; TKI, Tyrosine kinase inhibitor.

PPP2R1A, encoding the Aα subunit of the tumor suppressive
phosphatase PP2A.

THE TUMOR SUPPRESSIVE PROTEIN
PHOSPHATASE PP2A

Reversible phosphorylation is the key pillar on which signal
transduction is built. The enzymes responsible for these
post-translational modifications are the protein kinases,
which catalyze phosphorylation of proteins, and the protein
phosphatases, which, in turn, remove the phosphate group
from their substrates (36–38). Importantly, the presence or
absence of a phosphate can affect the biological activity of the
modified protein, either positively or negatively, depending on
the substrate. Like that, kinases and phosphatases act as on/off
or off/on switches in cellular signaling. The balanced activities
between both enzymes ensures that cellular homeostasis is
preserved and that cells can generate the appropriate responses
(e.g., proliferation, differentiation, survival, apoptosis. . . ) to
specific external stimuli. However, in cancer cells, this balance
is genetically disrupted by mutations in key signaling molecules
that often directly or indirectly affect kinases and phosphatases,
so that signaling pathways will be constitutively activated or
inhibited, eventually leading to overall uncontrolled cell growth
and survival (39, 40).

Initially, in cancer research, protein kinases got the bulk
of the attention, since their over-activation commonly drives
oncogenic signaling and their pharmacologic inhibition showed
promising clinical potential (6, 38, 41, 42). Furthermore, with
more than 500 genes encoding protein kinases, they were
thought to be the specific regulators of important oncogenic
signaling pathways (43). However, if one accepts that a change
in phosphorylation often just reflects an altered balance between
kinase and phosphatase activities, kinases and phosphatases seem
equally attractive therapeutic targets. Nevertheless, compared
to kinases, phosphatase research, and phosphatase-directed
therapies have lagged behind for a long time. This has in part
been due to the fact that the first phosphatase was discovered
20 years after the first kinase, and that protein phosphatases
were for a long time regarded as significantly less specific and
less amenable to regulation by external stimuli, rendering them
less attractive as therapeutic targets (44, 45). However, more and
more attention has been brought to the phosphatases nowadays,
hopefully resulting in more clinical applications in the near
future (37, 46, 47).

The large majority of protein phosphorylation occurs on
serine (Ser) and threonine (Thr) residues (48). The Ser/Thr
phosphatase PP2A constitutes about 1% of the total cellular
protein content and is together with Protein Phosphatase 1
(PP1) responsible for more than 90% of all Ser/Thr phosphatase
activity in the cell (49, 50). PP1 and PP2A are both holoenzymes,
consisting of different subunits. PP2A consists of a dimeric core
enzyme composed of a catalytic C subunit and a scaffolding
A subunit (Figure 1). In humans, each of these subunits have
two isoforms, α and β, of which the α isoform is the most
commonly expressed in most cell types (51, 52). However, in

Frontiers in Oncology | www.frontiersin.org 2 June 2019 | Volume 9 | Article 462

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Remmerie and Janssens PP2A in Endometrial Cancer

FIGURE 1 | The structure of the protein phosphatase PP2A. Three subunits can be distinguished: the scaffolding A subunit (Aα/Aβ) composed of 15 heat repeats

(HR), the catalytic C subunit (Cα/Cβ) and the 4 classes of regulatory B subunits. PPP2R1A hotspot mutations occur in HR 5 (p.P179R/L, p.R183G/P/Q/W) and HR 7

(p.S256F/Y), which are involved in B subunit binding. The many regulatory B subunits allow for PP2A to target a vast array of components of important signaling

pathways often involved in tumorigenesis.

order to target specific protein substrates, a third subunit needs to
be associated with the AC core dimer, resulting in the formation
of the trimeric PP2A holoenzyme (Figure 1). This third subunit
is referred to as the regulatory B subunit and determines the
subcellular localization and substrate specificity (53). The human
genome encodes four different families of B subunits, which
mutually exclusively bind the AC core dimer: PR55 (B/B55),
PR61 (B’/B56), PR72/130 (B”), and B”’ (Striatins). Furthermore,
each family of B subunits consists of several isoforms (α up to ε)
and splice variants, allowing for the formation of many different
PP2A holoenzymes (53).

This huge structural diversity of PP2A holoenzymes forms the
basis for its diverse functions in cellular signaling by allowing
PP2A to act on various components within important signaling
pathways (54). The main pathways affected by PP2A are the
PI3K (Akt), mTOR (p70S6K) and MAPK (MEK/ERK) pathways
(Figure 1). Additionally, PP2A also targets the oncoprotein cMyc
as well as components involved in Wnt (GSK-3β, β-catenin)
signaling, apoptosis (Bcl2, Bad, FOXO), cell cycle regulation
(cdc25, WEE1, pRb) and DNA damage response (p53, ATM,
Chk) (51, 55–60). All of these pathways are key regulators of
processes imbalanced in tumorigenesis (e.g., protein synthesis,
cell proliferation, cell survival, cell migration, and invasion).
Since PP2A usually negatively affects these pathways, it was
denoted as a potential tumor suppressor (61).

The tumor suppressive properties of PP2A were first
demonstrated in in vitro experiments using the tumor promoting
agent and selective PP2A inhibitor, okadaic acid (OA), as well as
the simian virus 40 (SV40) small T antigen. These experiments
showed that PP2A inactivation is an absolute requirement
in order to achieve oncogene-induced transformation of
immortalized human epithelial cells (e.g., by oncogenic H-Ras).
OA is able to inhibit PP2A by acting on the catalytic C subunit,

while SV40 small T antigen inhibits PP2A by binding the Aα

subunit, thereby replacing specific B subunits (61–64). The tumor
suppressive nature of PP2A was further corroborated by in vivo
evidence in mice. For example, mice completely lacking the
B56δ subunit, or showing ≥50% decreased expression of the
phosphatase 2A phosphatase activator (PTPA), spontaneously
developed tumors (65–67). Additionally, the general physiologic
importance of PP2A function was demonstrated in several
mouse models (68). For example, PP2A Aα or PP2A Cα knock-
out mice are embryonically lethal, indicating the importance
of PP2A already during development. Furthermore, a vast
array of pathological phenotypes were observed in mice with
different genetic PP2A dysfunctions, stressing the importance of
functional PP2A inmany crucial signaling pathways and in tissue
homeostasis (68).

In line with these studies, many human cancers have
shown to be associated with PP2A dysfunction (69–71).
The main mechanism of PP2A inactivation in cancer is via
the overexpression of the endogenous PP2A inhibitors SET
(Suvar/Enhancer of zeste/Trithorax) and CIP2A (Cancerous
Inhibitor of PP2A) (69, 72, 73). However, PP2A can also
be inactivated via aberrant post-translational modifications,
mostly via PP2A methylesterase (PME-1) upregulation, thereby
stabilizing inactive PP2A complexes through binding and/or
demethylation of the C subunit C-terminal tail (74–76). Another
way of PP2A inactivation is via mutations in one of its
subunits (77), or via mutations or heterozygous loss of the
cellular PP2A activator PTPA (PPP2R4) (66). Interestingly,
PP2A dysfunction is very common in endometrial cancer, as
well as in other gynecologic malignancies, such as ovarian
and cervical cancer. In the following part, we will give an
overview of how PP2A is specifically inactivated in these
gynecologic cancers.
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THE PP2A STATUS IN ENDOMETRIAL AND
OTHER COMMON
GYNECOLOGIC CANCERS

PP2A Status in Endometrial Cancer
Inactivation of PP2A is observed in both type I and type II ECs.
However, the way PP2A is inactivated seems to be quite different
in both EC subtypes.

In type I endometrioid ECs, PP2A inactivation is likely
indirect via an upregulation of the endogenous PP2A inhibitors
CIP2A or PME-1. Immunohistochemical analysis of paraffin-
embedded EC tissue revealed positive CIP2A staining in 79%
of the cases. Additionally, increased CIP2A mRNA levels were
observed in fresh human EC tissue compared to healthy
endometrial tissue (78). CIP2A depletion in endometrioid cancer
cells decreased cell proliferation and invasion, while apoptosis
was increased, indicating the oncogenic role of CIP2A in type
I EC and its potential as a therapeutic target (78). Detailed
information on the mechanism of CIP2A overexpression in ECs
is still lacking. However, in estrogen receptor (ER)-positive breast
cancer cells, estradiol (E2) was able to increase CIP2A protein
levels through the ERα (79). Therefore, it can be hypothesized
that the same could be true for the estrogen-dependent type I
ECs. Additionally, it could be one of the explanations why CIP2A
overexpression is rare in the estrogen-independent type II ECs.

In addition, Wandzioch et al. demonstrated PME-1
overexpression in endometroid EC cell lines as well as patient
samples (80). PME-1 expression was about 20 times higher in
tumor tissue compared to healthy tissue, indicating PME-1 could
also be a new potential biomarker for type I ECs. In case of
PME-1 upregulation, PP2A activity was significantly reduced,

resulting in an increased oncogenic phenotype via upregulation
of the PP2A targets Akt and ERK (80).

In contrast to type I ECs, PP2A inactivation in type II ECs
is, to our knowledge, not associated with CIP2A or PME-1
overexpression. Instead, up to 40% of type II EC tumors are
associated with heterozygous missense mutations in PPP2R1A
(34, 35, 81–95). PPP2R1A mutations also occur in type I ECs,
albeit at very low frequencies (2.5–6.9%) (32).

PPP2R1A encodes the Aα subunit of PP2A and is an
established tumor suppressor gene (96, 97). The structure of Aα

is characterized by 15 Huntingtin-Elongation-A subunit-TOR
(HEAT) repeats (98) (Figure 1). Each of these HEAT repeats
consists of a pair of anti-parallel alpha helices connected via intra-
repeat loops. These intra-repeat loops are responsible for the
interaction with the C and B subunits. More precisely, HEAT
repeats 1–10 are able to bind the regulatory B subunits while
HEAT repeats 11–15 bind the catalytic C subunit. Remarkably,
most of the PPP2R1Amutations cluster together inHEAT repeats
5 and 7, which are involved in B subunit binding. Another
intriguing fact is that these PPP2R1A mutations almost always
occur at the same residues across several cancer types, forming
so called hotspot mutations. These hotspot mutations include
p.P179R/L, p.R183G/P/Q/W (HEAT repeat 5), and p.S256F/Y
(HEAT repeat 7) (93, 94, 99–101). Remarkably, in type II EC,
p.P179L/R hotspot mutations are a lot more abundant than
in most other cancer types (Figure 2). Biochemical studies in
endometrial cancer cells demonstrated that C subunit binding
for these hotspot mutations was significantly reduced. Strikingly,
loss of C subunit binding was more severe for p.P179R (80%
less C binding compared to wild type) than for p.R183W and
p.S256F (50–60% less C binding compared to wild type). This

FIGURE 2 | (A) PPP2R1A mutations across all available cBioportal cancer studies except ECs. The three hotspot mutations (p.P179; p.R183; and p.S256) are clearly

depicted. Most tumors (66.3%) had mutations in p.R183 while only 22.5% and 11.3% had mutations in p.P179 and p.S256, respectively. (B) PPP2R1A missense

mutations reported in type II ECs (cBioportal). In contrast with other cancers, PPP2R1A mutations mostly occur at residue p.P179 (56%), while only 20% had

mutations in residue p.R183. Also more EC tumors (24%) had mutations in p.S256 compared to other cancer types. HR, HEAT-repeat.
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biochemical difference between the hotspot mutations could
result in distinct functional consequences, although further
research is needed to investigate this. Moreover, PPP2R1A
hotspot mutations resulted in deficient binding to specific
regulatory B subunits (B55α, B56α,β,ε, B”/PR72), while some B
subunits (i.e., B56δ and B56γ, and the striatins) retained binding
to the mutated Aα subunit (102, 103). Nevertheless, despite the
retained binding of these B subunits, the phosphatase activity of
the Aα mutated PP2A-B56δ, γ trimers was reduced. Therefore,
it was suggested that PPP2R1A mutations are not simply
loss-of-function (i.e., by their inability to bind specific B-type
subunits), but may also lead to a dominant-negative inhibition of
specific PP2A complexes (i.e., by their ability to retain binding
to specific B-type subunits, but capturing them in trimeric
complexes with decreased phosphatase activity). This hypothesis
was further mechanistically underbuilt by mass spectrometry-
based identification of the (mutant) Aα interactomes. These
interactomes indeed revealed that the Aα mutants had an
increased binding to the endogenous PP2A inhibitor TIPRL1,
which could explain the decreased PP2A activities of retained
mutant Aα-PP2A trimeric complexes (102). In accordance,
ectopic expression of several Aα mutants, among which p.P179R
and p.S256F, in the wild-type PPP2R1A-expressing HEC-1A
EC cell line, resulted in increased anchorage-independent cell
growth and increased xenografted tumor growth in nude mice,
and correlated with increased Akt and mTOR/S6K oncogenic
signaling (102).

Besides the PPP2R1A mutations, also mutations in PPP2R1B,
encoding the PP2A Aβ isoform, have been reported for ECs in
the cBioportal database, albeit with occurrences of <1% (mainly
deletions) in both EC subtypes (93, 94).

PP2A Status in Ovarian and
Cervical Cancer
Inactivation of PP2A has also been reported in other gynecologic
cancers. In contrast to type II ECs, and similar to type I ECs,
ovarian (0–7%), and cervical cancers (0–1%) hardly present
any mutations in PPP2R1A (91, 93, 94, 104–112). Interestingly,
however, the few number of PPP2R1Amutations that are present
mainly occur at the hotspot residue p.R183, which is most
frequently affected across all cancer types (Figure 2A).

Likewise, mutations in PPP2R1B, were also reported in
ovarian and cervical cancers, albeit at very low frequencies, and
without any hotspot mutations. Furthermore, the presence of
PPP2R1Bmutations or loss of heterozygosity was not relevant for
ovarian and cervical tumorigenesis (113–116).

Instead, the main way of PP2A inactivation in both ovarian
and cervical cancers is indirect. Indeed, a retrospective analysis
of serous ovarian cancer demonstrated 40.4% of the specimens
to have strong CIP2A immunoreactivity and another 42.4% had
weak positive staining (117). Another retrospective study of
152 ovarian cancer specimens (serous, endometrioid, mucinous
and clear cell) further corroborated this by showing CIP2A
overexpression in 65.79% of samples tested (118). Likewise,
recent studies have shown SET overexpression in ovarian
cancers (119).

Increased CIP2A expression levels have also been reported
in cervical cancer. For example, one study reported on the
expression of CIP2A in 60.8% of samples from patients with
squamous cervical cancer while this was only 5.7% in normal
cervical epithelial tissue. Furthermore, five cervical cancer cell
lines harbored elevated CIP2A levels (120). This was further
corroborated by a study of Huang et al. in which CIP2A
expression was observed in cervical cancer cell lines but not
in normal epithelial cells. Additionally, cervical cancer tissue
had higher CIP2A mRNA levels compared to healthy adjacent
tissue (121). In cervical cancer, CIP2A is mainly upregulated via
the E6 and E7 oncoproteins expressed by the human papilloma
virus (HPV) type 16 (122–124), the most common type of
HPV in cervical cancers (125). In addition to the indirect PP2A
inhibition via CIP2A, Pim et al. also proposed a direct way
of PP2A inhibition in cervical cancers. They observed that the
E7 oncoprotein is able to bind the PP2A Aα and Cα subunits,
thereby displacing the B subunit. This way E7 is probably acting
in the same way as the SV40 small T antigen rendering PP2A
unable to dephosphorylate and inhibit its oncogenic targets
(126, 127). In contrast, however, White et al. were not able
to demonstrate this interaction between the E7 oncoprotein
and PP2A, despite some similarities between E7 and the SV40
small T antigen (128). Finally, another way of decreased PP2A
activity during cervical carcinogenesis might be via reduced
PP2A Cα expression, potentially by a microRNA-dependent
mechanism (129).

Summarized, based on the mechanism of PP2A inactivation,
two groups can be distinguished within gynecologic cancers.
The first group comprises type I endometrioid EC, ovarian
and cervical cancers and is characterized by PP2A inactivation
mainly via CIP2A or PME-1, and perhaps also via SET. This
group also has a very low frequency of PPP2R1A mutations.
However, when present, these mutations recur mostly at hotspot
residue p.R183. The second group comprises the type II ECs.
This cancer type lacks CIP2A and PME-1 overexpression, but
harbors frequent heterozygous missense mutations in PPP2R1A.
Moreover, these missense mutations are different from the
ones associated with the first group. More precisely, PPP2R1A
mutations in type II ECs most frequently recurred at residues
p.P179 and p.S256 (Figure 2B). Indeed, when looking at the
cBioportal database, almost all hotspot mutations in p.P179 and
p.S256 were associated with type II ECs, while hotspot mutations
in p.R183 are more frequently observed across other cancer
types (Figure 2A) (90, 93, 94, 130). The reasons for this distinct
mutational pattern remain currently unclear. However, distinct
PPP2R1A missense mutations might affect B subunit binding
and PP2A activity in a slightly different way (102), thereby,
in part, contributing to a different tumor biology in type I
and II ECs as well as other cancers. However, further research
is warranted in order to fully understand the involvement of
specific PP2A holoenzymes in different cancers. Nevertheless,
the distinct PP2A inactivating mechanisms between type I
and type II ECs, as well as other gynecologic cancers, open
up specific opportunities for direct or indirect, personalized
therapeutic targeting of PP2A, in order to (re)-activate
this phosphatase.
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PP2A AS A POTENTIAL THERAPEUTIC
TARGET IN ENDOMETRIAL CANCER

In the last few years, the notion that phosphatases as opposed to
kinases could also be useful therapeutic targets has gained more
and more attention (54, 131–134). In contrast to therapeutic
inhibition of kinases, the focus with targeting phosphatases,
and in particular the tumor suppressive phosphatase PP2A, is
on the development of activating or reactivating compounds
(133). These compounds are either able to relieve the inhibition
by endogenous inhibitors, or directly bind and activate PP2A.
In contrast, some studies also reported on the benefit of
PP2A inhibition rather than activation. Despite the promising
therapeutic potential of these compounds in multiple pre-clinical
studies in several other human cancer types, pre-clinical studies,
specifically in EC, are however, mostly lacking. In the following
four subsections, we will provide an overview of the most
promising PP2A-targeted therapies, which—pending additional
dedicated studies—may become applicable to EC as well.

Compounds Indirectly Activating PP2A
CIP2A Targeting Compounds
Since CIP2A is commonly overexpressed in several cancers, it has
become an interesting therapeutic target in order to re-activate
PP2A. Specifically in type I EC, CIP2A depletion decreased
proliferation and invasion, and increased apoptosis in vitro (78),
indicating it could be a valuable therapeutic target. Furthermore,
depletion of CIP2A also showed anti-tumorigenic potential in
ovarian and cervical cancer cells (118, 120, 135).

Most of the currently described CIP2A targeting compounds
are able to increase PP2A activity by reducing the CIP2A
protein levels, either via downregulation of CIP2A expression
or by promoting its degradation. In cervical and endometrial
cancer cells, CIP2A expression is mainly regulated by two
transcription factors, Elk1 and Ets1, which are both necessary
for regulating CIP2A protein levels (136). Additionally, in
cervical cancer, the transcription factor E2F1 has also been
implicated in the regulation of CIP2A expression via the
E7 oncoprotein (124, 137). Therefore, compounds targeting
one of these factors could have potential therapeutic value.
For example, several erlotinib derivatives were able to reduce
CIP2A levels and increase PP2A activity in breast cancer and
hepatocellular carcinoma cells via disrupting the interaction
between the transcription factor Elk1 and the CIP2A promotor
(138, 139). On the other hand, lapatinib downregulated CIP2A
through regulation of protein stability in breast cancer cells
(140). Also, bortezomib, a US Food and Drug Administration
(FDA)-approved proteasome inhibitor, was able to reduce
CIP2A expression levels in several cancer cell lines, although
the mechanism of action is not elucidated yet (141–143).
Furthermore, increased CIP2A degradation through autophagy
was seen in breast cancer cells upon mTORC1 inhibition
(e.g., using rapamycin) (144). Additionally, several natural
compounds have demonstrated PP2A re-activating potential via
downregulation of CIP2A. Despite the lack of studies testing
these compounds in EC, positive results have already been
obtained in other cancer studies. For example, rhabdocoetsin B,

arctigenin and the red wine component ellagic acid were able
to reduce CIP2A transcription levels in breast and lung cancer
cells (145–147). On the other hand, celastrol and gambogenic
acid promoted CIP2A degradation in lung and liver cancer
cells (148, 149). Additionally, the compounds genistein and
ethoxysanguinarine promoted both transcriptional suppression
and proteasomal degradation of CIP2A (150, 151). Lastly,
fusogenic-oligoarginine peptide-mediated delivery of siRNA
targeting CIP2A has also appeared as a new therapeutic strategy,
showing anti-tumorigenic potential in vitro and in vivo in oral
cancer cells (152, 153). It would be extremely interesting to test
whether any of these known CIP2A inhibiting compounds would
have therapeutic benefits in CIP2A-overexpressing endometrioid
EC models.

PME-1 Targeting Compounds
PME-1 has also emerged as a potential therapeutic target in
endometrioid EC, especially since PME-1 depletion using RNA
interference resulted in increased PP2A activity, thereby reducing
the oncogenic phenotype of type I EC cells in vitro and in
xenograft assays (80). Additionally, PME-1 depletion in HeLa
cells, a cervical cancer cell line, also led to decreased proliferation
and colony formation by increasing PP2A activity and thereby
inhibiting MAPK pathway activity (154).

So far, two classes of pharmacologic PME-1 inhibitors have
been discovered, the ABL (Aza-β-lactam) inhibitors and the
sulfonyl acrylonitrile inhibitors, which both irreversibly bind to
PME-1 and inhibit PME-1 esterase activity (155, 156). Pusey et al.
tested two of these PME-1 inhibitors, ABL-127 and AMZ-30, of
which ABL-127 was the most potent one in ECmodels. However,
in vivo testing of this compound in xenograft assays could not
corroborate the in vitro data, implying that inhibition of solely
the PME-1 esterase activity may be insufficient to inhibit PME-1’s
oncogenic characteristics (157).

SET Targeting Compounds
Although the relevance of SET overexpression (if any) in EC
is currently unclear, SET inhibitors can mainly be divided
into three groups according to their origin. The first group
comprises sphingolipid-based compounds, such as ceramide and
FTY720 (also called Fingolimod), as well as their derivatives.
The second group resembles the apolipoprotein E (ApoE)
and these compounds are denoted as SET interfering peptides
(e.g., COG112 and OP449). More recently, potent cytotoxic
effects were reported for cell penetrating peptides, the third
group of SET inhibitors, which constitute the precise SET-
PP2A interaction interface (158). Although the mechanism of
action of all these SET inhibitors is not always well understood,
they most likely increase PP2A activity in the same way, i.e.,
via disruption of the interaction between SET and PP2A (53,
59, 133). Recently, the interaction between the sphingolipid-
based compounds (i.e., ceramide and FTY720) and PP2A were
investigated inmore detail usingNMR spectroscopy (159). In this
study, they observed that the sphingolipid compounds probably
work by disrupting the dimerization of SET, which is thought to
be important for its PP2A binding and inhibiting activity.
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Compounds Directly Activating PP2A
Recently, small molecule activators of PP2A (SMAPs) have
been developed (160). These SMAPs are derived from the
anti-psychotic phenothiazines and are predicted to directly
activate PP2A. Although a direct binding to the PP2A
Aα subunit has been demonstrated (161), the mechanism
by which these SMAPs are able to activate PP2A remains
unknown. Nevertheless, several pre-clinical studies have
shown the promising anti-proliferative potential of SMAP
treatment, for example in T-cell acute lymphoblastic leukemia,
castration-resistant prostate cancer, KRAS mutant lung
adenocarcinoma, and tyrosine kinase inhibitor (TKI)-
resistant lung adenocarcinoma (161–164). Hence, it would
be of amazing interest to test these promising compounds
in pre-clinical EC models with intact as well as impaired
PP2A functionality.

The Therapeutic Potential of
Combination Therapies
Besides the therapeutic potential of single agent targeting
of PP2A, also combination therapies of PP2A activators
with other drugs have gained attention (47, 165). The
combination of a PP2A activator with a kinase inhibitor seemed
particularly beneficial in cases where oncogenic kinase activation
simultaneously resulted in PP2A inhibition, and therapy
resistance to a single agent kinase inhibitor occurred (166–168).
For example, KRAS-mutant lung cancer and pancreatic ductal
adenocarcinoma cells showed resistance to MEK inhibitors and
mTOR inhibitors, respectively. This resistance occurred due
to cross-talk with the PI3K/Akt/mTOR pathway and cMyc
oncoprotein upregulation, probably via PP2A inhibition. Hence,
they tested the combination of a direct PP2A activator (SMAP)
with a MEK or mTOR inhibitor, which resulted in significantly
increased anti-cancer effects in vitro as well as in vivo (169, 170).
Such combinatorial benefit was further demonstrated in myeloid
leukemia where the combination of a SET inhibitor (indirect
PP2A activation) with a tyrosine kinase inhibitor resulted in
synergistic anti-cancer effects (171, 172). In TKI-resistant lung
adenocarcinoma cells, the synergistic effects of a SMAP and the
TKI afatinib were in part also contributed to a downregulation of
CIP2A (164).

The combination of PP2A activators with chemotherapy
has also been investigated, although not yet in EC. Several
studies tested the effect of combining SET inhibitors (FTY720,
OP449) with different chemotherapy regimens (e.g., doxorubicin,
cisplatin). These studies demonstrated synergistic anti-cancer
effects in myeloid leukemia, breast cancer cells, colorectal cancer
cells as well as in cisplatin-resistant melanoma and lung cancer
cells (171, 173–175).

Overall, these successful precedents open up possibilities to
test these PP2A activating compounds in EC models, possibly
in combination with kinase inhibitors or chemotherapeutics.
This could be specifically interesting for the type II serous
ECs, in which therapeutic combinations with PP2A activators
might sensitize these cancer cells toward the current, mainly
ineffective, therapies.

Exploiting PP2A Inhibition for
Therapeutic Purposes
In contrast to the therapeutic potential of PP2A activation,
some studies also reported on the therapeutic relevance of
PP2A inhibition, when applied together with a DNA damaging
treatment, or when combined with immunotherapy (176, 177).
The anti-cancer effect of PP2A inhibition in combination with
DNA damaging agents can be explained by the enabling role
of PP2A in DNA damage response and repair pathways as well
as in cell cycle regulation. Hence, PP2A inactivation in this
situation (i.e., combined with chemo-or radiation therapy) leads
to aberrant cell cycle progression and checkpoint activation,
resulting in mitotic catastrophe and, consequently, cell death
(133, 178, 179). Likewise, PP2A is also involved in the immune
response by negatively regulating the function of cytotoxic T-
lymphocytes (176, 180). Therefore, PP2A inhibition combined
with immunotherapy could enhance the immune-mediated anti-
tumor response.

The small molecule LB-100 is one of the best studied PP2A
inhibitors so far, without any apparent toxicities in animals and
with promising results in a first human clinical trial (181, 182).
Pre-clinical studies demonstrated LB-100 was able to sensitize
many different solid tumor cells to DNA damaging agents.
For example, LB-100 enhanced cisplatin-mediated cytotoxicity
in ovarian carcinoma cells in vitro and in vivo in xenografts
(178, 183, 184). Likewise, the combination of LB-100 with the
immune checkpoint inhibitor aPD-1 in colon and melanoma
cancer cells resulted in an enhanced and durable T-cell-
dependent anti-tumor response, with more effector T-cell and
less suppressive regulatory T-cell infiltration (176). On a critical
note, it needs to be mentioned here though, that recent
evidence has suggested that LB-100 is not entirely specific for
PP2A, and also inhibits the catalytic activity of the related
Ser/Thr phosphatase PP5 (182). As PP5 is considered as tumor
promoting, PP5 inhibition could contribute to the anti-tumor
activities of LB-100. This was further corroborated in vitro
in ovarian cancer cells, where knockdown of PP5 resulted in
decreased cell proliferation and colony formation.

To conclude, further research is warranted to fully understand
how both PP2A activation and inhibition can be therapeutically
viable as anti-cancer treatment for EC.

PP2A DYSFUNCTIONS AS PREDICTIVE
BIOMARKERS FOR TARGETED
THERAPIES IN EC

CIP2A-Mediated PP2A Inhibition
So far, a wealth of studies reported on the role of CIP2A
overexpression, and thereby likely PP2A inactivation, as a
potential predictive biomarker for diverse therapies (targeted
and untargeted), in a large variety of solid cancers (54). For
example, in lung and breast cancer, the overexpression of CIP2A
resulted in resistance to the EGFR inhibitors lapatinib and
erlotinib, while RNA interference-mediated CIP2A depletion
sensitized the cells toward these compounds (140, 185). CIP2A
overexpression also resulted in resistance toward Chk1 kinase
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inhibitors in gastric adenocarcinoma and breast cancer cells
(186). Furthermore, CIP2A overexpression conferred resistance
to chemotherapy in several solid tumor types, including cervical
and ovarian cancers (187–190). Liu et al. further demonstrated
that in HeLa cells, treated with several chemotherapeutics
such as paclitaxel, doxorubicin and cisplatin, CIP2A expression
was significantly associated with drug insensitivity through
increased expression of p-glycoprotein drug efflux pumps (190).
Additionally, the use of siRNA, targeting CIP2A in vitro, resulted
in sensitization of HeLa cells to different chemotherapeutics
(190). Finally, the natural CIP2A inhibitors, ethoxysanguinarine
and gambogenic acid, sensitized lung and hepatocellular cancer
cells to chemotherapy (149, 151).

While there is a general lack of studies on the predictive
potential of CIP2A expression in EC models, it is very likely that,
based upon the evidence obtained in other solid (gynecologic)
tumors, CIP2A expression could mediate therapeutic resistance
in EC cells as well. This further implies that CIP2A status of the
EC tumors should better be taken into account in clinical trial
set-ups. Additionally, the data illustrate the potential advantages
of combining PP2A activators with EC therapies that are mainly
ineffective on their own.

Recurrent PPP2R1A Hotspot Mutations
Whether PPP2R1A mutations are present in EC tumors or not,
could have consequences for the efficacy of targeted therapies.
For example, kinase inhibitors targeting the PI3K/Akt/mTOR
pathway or MEK/MAPK pathway, commonly affected in
ECs, could be less effective when PP2A, counteracting the
targeted kinase, is mutated. The rationale behind this is that a
kinase inhibitor can only work to its full potential when the
opposing phosphatase is not inactivated. In case the phosphatase
is dysfunctional, the net phosphorylation would be largely
unaffected and the pathway would remain activated. Simply put,
the use of certain kinase inhibitors in case of PP2A dysfunction
would be the equivalent of pouring water into a bucket with holes
in it. This biochemical logic was nicely underscored by Kauko
et al. who showed that PP2A inhibition achieved by siRNA-
mediated knockdown of Aα, conferred resistance to a MEK
inhibitor in KRAS-mutant lung cancer cells (169).

On the other hand, PPP2R1A mutations in type II ECs
could also be predictors of positive outcome to certain kinase
inhibitors. For example, Haesen et al. showed hyperactivation
of the PI3K/Akt/mTOR pathway in PPP2R1A mutated EC
cells, while the MAPK pathway was actually downregulated
(102). This indicates single agent kinase inhibitors targeting
the PI3K pathway might be effective in PPP2R1A mutated
ECs, since cross-talk to the MAPK pathway would possibly be
absent and PPP2R1A mutant EC cells might be dependent on
PI3K/Akt/mTOR signaling for growth and survival (32). Patient
stratification based on PPP2R1A status of the tumor could also be
applied to other gynecologic cancer types, even when PPP2R1A
mutations are rare. For example, Papp et al. demonstrated
ovarian cancer cell lines harboring PPP2R1A mutations to be
more sensitive to a PI3K/mTOR inhibitor (108). However, in this
experiment they took cell lines with mutations in PPP2R1A and
PARP1 into account, which could bias the results.

Finally, the response of type II ECs to SMAPs could also be
dependent on the PPP2R1Amutational status of the cancer cells,
especially since these SMAPs bind to the Aα subunit in close
proximity to the PPP2R1A hotspot mutations (161). Therefore,
mutations in this subunit could disturb the interaction with
the SMAPs and consequently render the compound ineffective.
Targeted pre-clinical studies addressing these possibilities should
provide further insights in these issues in the near future.

Others
Although no studies have yet addressed the predictive role of
PME-1 overexpression in type I EC, overexpression of PME-
1 in glioma drives resistance to various multikinase inhibitors.
Consequently, PME-1 depletion resulted in enhanced sensitivity
to these inhibitors in vitro and in vivo in xenografts (191).

As identified through a large siRNA screen, decreased
expression of the PP2A activator PTPA conferred significantly
increased resistance of cervical HeLa cells to several cytotoxic
agents, including cisplatin, taxol, and etoposide (192),
perhaps suggestive for a similar dismal predictive role for
heterozygous loss or mutation of PTPA in type II endometrial
carcinosarcoma (66).

Likewise, increased SET expression has been associated with
resistance to TKI’s, cisplatin, paclitaxel, oxaliplatin, and 5-fluoro-
uracil in diverse cancer types (54, 193, 194). Whether this would
be relevant for EC, remains, again, to be determined.

PP2A DYSFUNCTIONS AS PROGNOSTIC
BIOMARKERS FOR EC

CIP2A Overexpression
In several cancers, PP2A inactivation is associated with
significantly worse prognosis (54). For example, overexpression
of the PP2A inhibitor CIP2A is correlated with worse prognosis
in several solid tumors as well as in myeloma (195–197).
Specifically, for gynecologic cancers, several studies reported on
the prognostic potential of CIP2A in cervical and ovarian cancer.
In serous ovarian cancers, strong CIP2A immunoreactivity
correlated with worse prognosis (117), and the same was
observed in a retrospective study on 152 ovarian cancer
specimens, including serous, endometrioid, mucinous, and clear
cell subtypes (118). In cervical cancer, CIP2A was found
to associate with H-Ras to promote epithelial-mesenchymal
transition, resulting in increased migration and invasion of
cervical cancer cells in vitro and in vivo (120). Furthermore,
cervical cancer tissue analysis revealed that CIP2A expression
correlated with lymph node metastasis and high-grade and
advanced stage cervical cancer (120). However, these results
are in contrast with the human protein atlas database (www.
proteinatlas.org) which does not put CIP2A forward as an
unfavorable prognostic marker in both ovarian and cervical
cancers (198).

Data concerning the prognostic potential of CIP2A in EC
are scarce. One study of Yu et al. demonstrated that CIP2A
expression in type I endometrioid EC correlated with increased
FIGO stage and tumor grade (78). Furthermore, according to
the human protein atlas, CIP2A expression correlated with worse
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prognosis in patients with EC. Nevertheless, more studies are
necessary to further demonstrate the prognostic potential of
CIP2A in EC.

Recurrent PPP2R1A Hotspot Mutations
In the absence of any published work on the prognostic marker
potential of PPP2R1A in type II EC so far, we used the cBioportal
database to analyze the survival data of type II ECs. However,
survival data were only available for 44 patients (UCEC-TCGA
study) with type II serous EC, of which only 12 presented with
mutations in PPP2R1A (93, 94). Analysis of this limited data
set revealed no significant difference in overall survival between
patients with and without PPP2R1A mutations (P = 0.39)
(Figure 3). However, more patient data are definitely required
in order to obtain more conclusive results. Longer patient
follow-up and centralized data collection in multi-institutional
centers could boost the data collection for patients with this rare
endometrial cancer subtype.

Others
Similarly, PP2A inactivation via PPP2R4 (PTPA)
haploinsufficiency leads to a worse prognosis in many cancer
types, including endometrial carcinosarcomas (66). Also, lower
PP2A/C expression in cervical cancer was closely associated with
the nodal status of cervical cancer patients (129).

Although there is a lack of studies on the role of SET in
EC, the protein atlas database (www.proteinatlas.org) indicates
that there is no correlation between SET expression and a worse
prognosis in gynecologic cancers (198). On the other hand, a
strong correlation was seen between SET expression levels and
decreased survival of ovarian cancer patients (119).

FUTURE STEPS

In this review, we discussed the therapeutic potential of PP2A
targeting as well as the biomarker potential of PP2A dysfunctions
in EC, and other gynecologic cancers. Specifically, in type II

FIGURE 3 | The overall survival of patients with type II serous EC with (blue

line) and without PPP2R1A mutations (red line). (n = 44), data were extracted

from the UCEC-TCGA study available in the cBioportal database.

EC, PPP2R1A mutations are remarkably common, while in type
I EC, PP2A dysfunction rather occurs through non-genomic
mechanisms, involving increased expression of PP2A inhibitors
CIP2A and PME-1. However, in order for PPP2R1A to become
a clinically relevant biomarker for type II ECs, reliable and fast
detection of somatic mutations in this gene will be necessary.
Therefore, future development of methods able to detect somatic
mutations in tumor samples, or preferably in liquid biopsies, will
be crucial.

Over the last few years, several promising methods have
been developed for the detection of mutations in oncogenes.
For example, Spaans et al. designed a Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF) based somatic mutation panel able to detect
hotspot mutations in 13 genes frequently mutated in gynecologic
cancers (199). This method is able to provide reproducible, high-
throughput data based on low quality and quantity DNA from
formalin-fixed paraffin-embedded (FFPE) samples. Additionally,
next-generation sequencing (NGS) has come forward as a
potential technique to detect mutations in the clinic. NGS is able
to rapidly detect all mutations in the complete gene of interest.
However, data analysis is still rather complex and differentiating
between somatic passenger and driver mutations can be time
consuming. However, optimizations of this technique could
lead to a more user-friendly method for the detection of specific
mutations. For example, Cottrell et al. validated a NGS assay
(WuCaMP) which targets a specific panel of genes with known
clinical importance (200). This highly specific and sensitive assay
allowed for a fast analysis of the target genes, thereby reducing
time and costs of NGS.

More recently, also non-or minimally-invasive liquid biopsies
have been investigated as a way to detect somatic mutations
in patients with EC (201). For example, circulating tumor cells
(CTCs) and circulating tumor DNA (ctDNA) extracted from
blood samples or uterine aspirates showed potential as a way to
screen for somatic mutations. However, whether CTCs can be
useful for patients with high-risk EC is still unclear due to its
debatable prevalence in blood samples. Bogani et al. reported
a low prevalence of CTCs in pre-operative blood samples of
patients with high-risk EC and even an absence of CTCs in
patients with type II EC (202). In contrast, Alonso-Alconada et al.
demonstrated the presence of CTCs in patients with high-risk
EC (203). Thus, further research is warranted in order to prove
the potential usefulness of CTCs in type II ECs. On the other
hand, also cell-free DNA can be used to detect mutations. NGS
was able to detect specific endometrioid EC-associated mutations
in the cell-free DNA derived from peripheral blood samples of
patients with early and late stage endometrioid EC (204). These
promising results indicate the potential of this technique for the
detection of type II ECs, when implementing PPP2R1A in the
targeted gene panel.

Furthermore, also DNA obtained during a routine Pap
(Papanicolaou) test can be analyzed for the detection of
oncogenic mutations. For example, Wang et al. designed a
test called PapSEEK, which is able to detect mutations in 18
commonly mutated genes in endometrial cancer (205). This
is particularly interesting since with this method, oncogenic

Frontiers in Oncology | www.frontiersin.org 9 June 2019 | Volume 9 | Article 462

www.proteinatlas.org
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Remmerie and Janssens PP2A in Endometrial Cancer

mutations could be detected already during a routine check-
up, making early stage detection of (type II) EC possible. This
is especially important since patients with type II EC show few
symptoms until the disease is already in late stages and therefore
less amenable to the current therapies.

In contrast, detection of CIP2A or PME-1 overexpression in
(type I) EC cannot rely on genetic methods, but should rather
focus on the mRNA or protein level, and is therefore, much
more dependent on the availability of tumor biopsies or resected
tumor material. In this respect, the use of reliable, validated
antibodies, able to specifically detect these oncoproteins via
immunohistochemistry techniques is crucial. However, the fact
that CIP2A is always found expressed at high levels in the tumor
tissue, while being nearly undetectable in the corresponding
non-proliferating normal tissue, virtually eliminates the issues
associated with the poorer suitability of immunohistochemistry
as a technique to reliably quantify protein expression in tissues.
In addition, the use of autoantibodies as serum biomarkers for
CIP2A showed promising results in breast cancer patients (206).
Therefore, it might also be interesting to investigate this in the
setting of EC.

Despite the identification of the phosphatase PP2A as a
promising molecular marker for ECs, few pre-clinical studies
have investigated its potential as a direct therapeutic target,
nor as a stratification marker for targeted kinase inhibitor
treatments in this cancer type. Nevertheless, a plethora of
studies in other solid tumor types suggest PP2A to have
potential as a new therapeutic target for both type I and, more
importantly, for the more aggressive type II ECs. We put several
potential therapeutic compounds forward that could be tested
in EC studies, potentially in combination with chemotherapy or
targeted therapy.

So far, hormonal intervention and the immunotherapeutic

pembrolizumab are the only two FDA-approved targeted
therapies for hormone-dependent type I ECs, while there are

none for the type II ECs (207). Nevertheless, molecular analyses
of ECs have revealed that, in the large majority of ECs, the
PI3K pathway is overactivated, which led to a number of
(pre-)clinical studies investigating kinase inhibitors targeting
this pathway (e.g., several mTOR and PI3K inhibitors) (32).
The outcome of these studies was largely disappointing, not
only due to the development of inherent resistance mechanisms
(e.g., cross-talk to MEK/MAPK pathway), but also in a big
part due to the complete lack of patient stratification in
clinical studies (208, 209). The importance of the latter was
further illustrated by the clear therapeutic benefit of the HER2
inhibitors trastuzumab (anti-HER2 antibody) and lapatinib
(tyrosine kinase inhibitor, TKI), in type II serous EC cells
stratified based onHER2 amplification vs. normalHER2, or based
on HER2 amplification and functional PI3K vs. those with HER2
amplification and mutant PIK3CA (32, 210, 211). Likewise, we
hypothesized here that the PP2A status of the endometrial tumor,
should be an important additional stratification marker for
testing these targeted kinase inhibitors, given that PP2A mainly
acts as a negative regulator of PI3K and HER2 downstream
signaling, and hence its functional or dysfunctional state

could co-determine kinase inhibitor therapy outcome. In case
dysfunctional PP2A would mediate therapy resistance, the use
of SMAP combination therapy could be a valuable solution.
Also type I ECs could benefit from the combination of PP2A
activators with standard therapies, since sensitization of the cells
to chemo- or radiation therapy could result in a lower dose and
duration of the therapy, required to treat type I ECs. This in
turn, would reduce the physical and economic burden associated
with chemotherapy.

Furthermore, since the mechanism of PP2A inactivation is
different between both subtypes of EC, it will be important to
stratify patients in those having type I and those having type
II tumors within (pre)-clinical trials. This way, existing, or new
therapeutic compounds will be tested on a more rational basis
and no bias will occur toward the biggest group of indolent type I
ECs. Therefore, the presence of certain PP2A dysfunctions in the
EC tumor could indicate whether the patient is eligible for certain
(targeted) therapies.

In conclusion, we highlighted the therapeutic potential of
PP2A activating as well as inactivating compounds in several
gynecologic cancers. However, it has to be noted that more
studies should focus on these promising compounds in the
specific context of type I and type II ECs. Furthermore, we
demonstrated, based on studies in several other cancers, among
which ovarian and cervical cancer, that PP2A dysfunction, due to
mutations or cellular PP2A inhibitors, could be an indicator for
worse prognosis as well as a predictor for therapeutic outcome in
EC. Therefore, stratification of patients with type II EC based on
their PPP2R1A mutational status, or of patients with type I EC
based on their CIP2A or PME-1 status could help to establish
more reliable testing of current and future targeted therapies
in clinical trials. Furthermore, the presence of CIP2A or PME-
1 expression could also broaden the therapeutic possibilities
for the type I ECs. Dedicated pre-clinical studies in EC cells,
with functional vs. dysfunctional PP2A status, should address
these issues in the near future. Additionally, the presence of
PPP2R1A mutations could also help to diagnose patients with
type II EC in earlier stages (e.g., via liquid biopsies), thereby
also contributing to a better patient outcome. However, further
research is warranted in order to confirm this marker potential of
PPP2R1A in type II ECs. In the end, only such dedicated studies,
will help treatments for patients with type I and type II EC to
catch-up with the emerging personalized medicine and targeted
therapies already established in many other cancers.
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