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Abstract
Aims: This study aimed to analyze the potential association between cognition re-
serve (CR) components, including education, working activity, and leisure time activ-
ity, and cognitive function in subjects with white matter hyperintensities (WMH). The 
study also explored the role of the frontoparietal control network (FPCN) in such 
association.
Methods: White matter hyperintensities subjects with and without cognitive impair-
ment (CI) were evaluated with multimodal magnetic resonance imaging, neuropsy-
chological testing, and CR survey. FPCN patterns were assessed with dorsolateral 
prefrontal cortex seed-based functional connectivity analysis.
Results: Education was positively associated with cognitive function in WMH subjects 
with or without CI, whereas working activity and leisure time activity were positively 
associated with cognitive function only in those without CI. Similarly, education was 
associated with bilateral FPCN in both WMH groups, whereas working activity and 
leisure time activity were associated with bilateral FPCN mainly in the group with-
out CI. Furthermore, FPCN partially mediated the association between education and 
cognitive function in both WMH groups.
Conclusion: Education showed a positive impact on cognitive function in WMH sub-
jects regardless of their cognitive status, whereas working activity and leisure time 
activity exhibited beneficial effects only in those without CI. The FPCN mediated the 
beneficial effect of education on cognitive function.
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1  |  INTRODUC TION

White matter hyperintensities (WMH), the most common morpho-
logic feature on brain magnetic resonance imaging (MRI) in cerebral 
small vessel disease, is common among older people.1–3 There is in-
creasing evidence suggesting that WMH can cause cognitive decline 
and plays a significant role in the etiology of vascular cognitive im-
pairment (CI).4,5 However, individuals with WMH exhibit high levels 
of heterogeneity in cognitive performance, and a portion of these 
individuals even maintain normal cognitive function.6,7 This high het-
erogeneity may be related to the effect of cognitive reserve (CR) 
activities.

Cognitive reserve is a theoretical concept that explains the in-
dividual differences in maintaining cognitive function in the face of 
brain pathology. First, greater CR appears to be associated with bet-
ter cognitive performance in WMH subjects.6,8,9 Second, CR may act 
as a moderator between the burden of WMH and cognitive perfor-
mance. A more significant burden of WMH links to poorer cognitive 
performance in subjects with low CR. In contrast, this association 
tends to be weakened or disappear in subjects with high CR.10–12 
CR is commonly measured with proxies, and the Cognitive Reserve 
Index questionnaire (CRIq) evaluates CR from three aspects: educa-
tion, working activity, and leisure time activity.13 The three aspects 
contribute independently and differentially to CR.14 Whether these 
proxies play distinct roles in affecting cognitive function in WMH 
subjects remains elusive.

Recent studies on Alzheimer's disease (AD) have revealed stage-
dependent effects of CR on cognitive function across the AD spec-
trum. CR's positive effects on cognition are stronger in predementia 
stages than in dementia stages.15,16 High CR attenuates the cogni-
tive decline in predementia stages, but accelerates cognitive decline 
in dementia stages.17 For WMH subjects, Zahodne et al.18 showed 
that education mitigated the effect of WMH on cognitive function 
in subjects at lower risk for dementia, but exacerbated the effect 
in those at higher risk for dementia. To the best of our knowledge, 
whether the effects of CR on cognition differ between WMH sub-
jects with or without CI remains unclear.

The link between CR and brain activities has been widely ex-
plored using task-based functional magnetic resonance imaging 
(fMRI) techniques. Colangeli et al.19 performed a meta-analysis 
of 17 fMRI studies and found that higher CR was associated with 
greater activation in frontal, parietal, and anterior cingulate regions 
in healthy elderly subjects. The frontoparietal control network 
(FPCN) is thought to flexibly support multiple resting-state net-
works, e.g., the default mode network and dorsal attention network, 
to complete cognitive tasks, thus serving as a “regulating” role.20,21 
Alterations in FPCN patterns are related to executive function and 
attention, commonly affected in vascular CI.22–24 Our recent resting-
state fMRI study found that an altered FPCN pattern, i.e., increased 
within-network functional connectivity (FC) of the FPCN and de-
creased FC between the FPCN and the default mode network, was 
related to CI in subjects with WMH.25 However, the role of CR in 
such a relationship remains to be defined.

In this study, WMH subjects without CI, WMH subjects with CI, 
and healthy control (HC) subjects underwent multimodal MRI scans, 
neuropsychological testing, and CR assessment. We aimed to (1) de-
termine the association of each CR aspect with cognitive function 
across the three groups and (2) explore the role of the FPCN in the 
association between CR and cognitive function in WMH subjects. 
We hypothesized that the FPCN could mediate a positive effect of 
CR on cognitive function in WMH subjects.

2  |  METHODS

2.1  |  Participants

This cross-sectional study initially enrolled 144 subjects with WMH 
and 101 HC subjects, all of whom were recruited for the Study on 
Register and the Diagnosis, Therapy and Prognosis of Cerebral Small 
Vessel Disease (Registration number: ChiCTR-OOC-17,010,562) in 
the Drum Tower Hospital, Medical School of Nanjing University 
from December 2016 to May 2020. The study was carried out in 
accordance with the latest version of the Helsinki Declaration of 
1975 and approved by the Drum Tower Hospital Research Ethics 
Committee. All subjects provided written informed consent.

The inclusion criteria and exclusion criteria were previously 
described.26 The inclusion criteria for subjects with WMH were 
as follows: (1) age >50  years; and (2) presence of WMH on brain 
MRI (Fazekas grade 1–3), no recent subcortical infarction, and no 
cerebral microbleeds. An HC group included participants showing 
normal global cognitive function [Montreal Cognitive Assessment 
(MoCA)], no presence of WMH on MRI (Fazekas grade 0), and no 
other MRI presentative characteristics of cerebral small vessel dis-
ease. The study excluded individuals with neurodegenerative dis-
eases, leukoencephalopathy of presumed nonvascular origin, history 
of ischemic stroke (diameter of infarct >15 mm) or cardiogenic ce-
rebral infarction, severe neurological diseases, or severe systemic 
diseases. Detailed exclusion criteria are shown in the Supplemental 
Material. Seven WMH subjects and six HC subjects were excluded 
due to incomplete data. Finally, a total of 137 WMH subjects and 95 
HC subjects were included in the present study. The sample size may 
be large enough for a fMRI study.27,28

2.2  |  Assessment of cognitive function and CR

All subjects completed a battery of neuropsychological examina-
tions at entry. The MoCA and the Mini Mental State Examination 
(MMSE) were used to assess global cognitive function. The WMH 
subjects with MoCA scores lower than education-adjusted norms29 
(the cutoff was ≤19 for 1–6 years of education, ≤24 for 7–12 years 
of education, and <26 for >12 years of education) were classified 
into a WMH with CI group (n = 77), and other patients were as-
signed to a WMH without CI group (n = 60). The assessment of 
each cognitive domain is shown in the Supplemental Material. The 
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individual scores for each domain were obtained by averaging the 
Z scores of the relevant neuropsychological tests. The Hamilton 
anxiety scale and the Hamilton depression scale were used to as-
sess mental status.

To quantify CR, we conducted a survey with the CRIq and 
generated the composite index of CR, i.e., the Cognitive Reserve 
Index (CRI).13 All participants with normal cognitive function were 
asked questions about three indicators of CR: education, work-
ing time activity, and leisure time activity. For those with CI, the 
questions were asked of a family caregiver who was familiar with 
the present and past habits of the subject. After collecting the 
self-reported information about CR, we obtained the scores for 
each of the three aspects of the CRIq: CRI-education, CRI-working 
activity, and CRI-leisure time activity, as well as the total CRI for 
each subject. Detailed information is shown in the Supplemental 
Material.

2.3  |  MRI acquisition

The procedure for MRI scanning was described previously.25,30 
All subjects underwent MRI scanning on a 3.0-Tesla MRI scanner 
(Ingenia 3.0T, Philips Medical Systems, Eindhoven, Netherlands) 
with a 32-channel head coil. Detailed procedure is shown in the 
Supplemental Material.

2.4  |  Volume assessment of grey matter, whole 
brain, and WMH

As mentioned in our previous research,30 structural processing was 
performed using the Voxel-based morphometry 8 (VBM8) toolbox 
(http://dbm.neuro.unixx​jena.de/vbm8) for Statistical Parametric 
Mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/spm). 
Detailed procedure is shown in the Supplemental Material. The 
volumes of grey matter, white matter, and cerebrospinal fluid were 
obtained, and the whole brain volume was calculated as the sum of 
these three values. Grey matter atrophy is a calculation of grey mat-
ter volume divided by the brain volume.

The volume of WMH lesions was evaluated on T1 and T2-FLAIR 
images using the Lesion Segmentation Tool (LST) toolbox version 
2.0.151 (http://www.stati​stica​l-model​ling.de/lst.html) for SPM12.31 
Detailed procedure is shown in the Supplemental Material.

2.5  |  FMRI preprocessing and network mapping

The resting-state fMRI data were preprocessed using Data Processing 
and Analysis of Brain Imaging (DPABI 2.3, http://rfmri.org/DPABI) 
software based on SPM12.32 Six-millimeter radius spheres centered 
at the bilateral dorsolateral prefrontal cortex (DLPFC) (MNI space: 
−42, 34, 20/44, 36, 20) served as seed regions for the bilateral 
FPCN. Detailed procedure is shown in the Supplemental Material.

2.6  |  Statistical analysis

The Kolmogorov–Smirnov test was used to assess the data nor-
mality of continuous variables. Normally distributed data were 
presented as the mean  ±  standard deviation (SD) and analysed 
using one-way analysis of variance (ANOVA). Non-normally dis-
tributed data were presented as medians (interquartile range) and 
analysed using a Kruskal–Wallis test. Chi-square tests were ap-
plied to compare the sex ratio among the three groups. We ex-
amined the relationship between the total CRI or each aspect of 
CRI (as independent variables) and the MoCA and MMSE scores 
(as dependent variables) using multiple linear regression analysis 
with adjustment for age, sex, WMH volume, whole brain volume, 
and grey matter atrophy rate in each group. While each aspect 
of CR served as an independent variable, the other two aspects 
of CR were additionally treated as covariates. To explore the 
relationship among the three aspects of CR, Pearson's correla-
tion analyses were performed between any two aspects in each 
group. These analyses were performed using Statistical Package 
for Social Sciences (SPSS) V22.0 (IBM), and statistical significance 
was set at p < 0.05. A Bonferroni correction was performed on the 
results of the multiple linear regression analyses and the Pearson's 
correlation analyses.

In the FPCN analyses, correlative analyses in resting-state 
fMRI data analysis toolkit (REST) 1.8 were performed to exam-
ine the association between the FPCN and each CR aspect while 
controlling for age, sex, and grey matter images. The thresholds 
were set at a corrected p  <  0.05, determined by Monte Carlo 
simulation for multiple comparisons (voxelwise p < 0.05, cluster 
size >2646  mm3). The FC strength of regions with significance 
was extracted for further analysis. We performed Pearson's cor-
relation analyses using SPSS to examine the detailed associations 
between the FC values and CR aspects. Finally, we estimated the 
direct and indirect (through the FC of FPCN) associations of CRI-
education with cognitive performance using a mediation analysis 
controlling for age and gender. Statistical significance was deter-
mined at 2-sided p < 0.05, and the analyses were conducted using 
Hayes’ Process macro V3.5 (http://proce​ssmac​ro.org/index.html) 
in SPSS. According to the protocol,33 we selected Model 4 in the 
Process macro and computed bootstrapped (n = 5000) and bias-
corrected 95% confidence intervals for the mediation effects of 
FPCN FC.

3  |  RESULTS

3.1  |  Demographic, neuropsychological, and CR 
data

As shown in Table 1, no significant differences in sex, years of edu-
cation, whole-brain volume, grey matter atrophy rate, CRI, CRI-
education, or CRI-working activity were found among the three 
groups. WMH groups were significantly older than the HC group. 

http://dbm.neuro.unixxjena.de/vbm8
http://www.fil.ion.ucl.ac.uk/spm
http://www.statistical-modelling.de/lst.html
http://rfmri.org/DPABI
http://processmacro.org/index.html
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The WMH with CI group had significantly greater WMH volume, 
poorer performance in all cognitive domains, and lower CRI-leisure 
time activity than the other two groups. Correlative analyses 
showed that the three aspects of CR were significantly and posi-
tively correlated in both the WMH with CI group and the HC 
group, not in the WMH without CI group (Table S1 in Supplemental 
Material).

3.2  |  Association of CR with cognitive function

As shown in Table 2, CRI and CRI-education were positively associ-
ated with global cognitive functions (MMSE and MoCA) in all groups 
(except for MMSE scores in the WMH with CI group). In contrast, 
working activity and leisure time activity were positively associ-
ated with global cognitive functions in the WMH without CI and HC 
groups. After a Bonferroni correction was performed, the associa-
tion of both CRI and CRI-education with global cognitive functions 
remained unchanged. In contrast, CRI-working activity and CRI-
leisure time activity were significantly associated with MoCA scores 
only in the HC group.

3.3  |  Association of CR with FPCN

3.3.1  |  FPCN mapping

Consistent with previous studies,34,35 the FPCN encompassed the 
bilateral DLPFC, dorsomedial prefrontal cortex, and lateral parietal 
cortex (Figure S1 in Supplemental Material).

3.3.2  |  Association of each aspect of CR with the 
right FPCN

Both CRI-working activity and CRI-leisure time activity were sig-
nificantly associated with the FC of the right FPCN in frontal, pa-
rietal, and cingulate regions only in the WMH without CI group 
(Figure 1A,C), not in the WMH with CI group (Figure 1B,D). In con-
trast, CRI-education was significantly associated with the FC in 
the left DLPFC in both WMH groups (Figure 2A–B), although the 
association was significantly positive and negative in the WMH 
without CI group (Figure 2C, r = 0.448, p < 0.001) and the WMH 
with CI group (Figure  2D, r  =  −0.377, p  <  0.001), respectively. 

TA B L E  1  Demographic, neuropsychological, and CR data

Items HC (n = 95) WMH without CI (n = 60) WMH with CI (n = 77) F/Chi Square p-Value

Age, y (SD) 60.78 ± 7.36 64.78 ± 7.93a 65.52 ± 7.97a 9.853 <0.001

Gender (male/female) 46/49 28/32 42/35 0.998 0.732

Education, y (SD) 11.65 ± 4.75 11.37 ± 4.43 11.23 ± 3.20 0.238 0.788

Brain volume, ml (SD) 1328.6 ± 122.36 1340.74 ± 101.18 1356.38 ± 130.00 1.193 0.305

WMH volume, ml (IQR) 1.01 (0.50–2.02) 3.21 (1.49–6.67)a 6.10 (3.21–11.82)a,b - <0.001

Grey matter atrophy, 
% (SD)

41.36 ± 1.85 41.04 ± 1.94 40.90 ± 1.84 1.442 0.239

MMSE (IQR) 29 (28–30) 29 (28–30) 28 (27–29)a,b - <0.001

MoCA (IQR) 25 (22–27) 26 (25–27) 22 (19–23)a,b - <0.001

Memory (SD) 0.1544 ± 0.8878 0.1244 ± 0.6596 −0.2215 ± 0.8081a,b 5.111 0.006

Executive function (IQR) 0.2088 (−0.4512–0.7686) 0.0245 (−0.4831–0.5499) −0.4713 (−0.8936–0.0895)a,b - <0.001

Visual-spatial ability 
(IQR)

0.2841 (−0.4721–0.7883) 0.2841 (−0.4721–0.5362) −0.2200 (−0.7242–0.2841)a,b - <0.001

Processing speed (SD) 0.1929 ± 0.8896 0.1615 ± 0.8208 −0.3415 ± 0.6627a,b 11.65 <0.001

CRI (IQR) 96.00 (88.50–115.00) 95.00 (87.00–110.00) 94.00 (86.00–106.00) - 0.695

CRI-education (IQR) 102.00 (93.00–112.00) 103.00 (90.00–115.50) 101.00 (94.00–112.00) - 0.928

CRI-working activity 
(IQR)

102.00 (91.00–114.00) 104.00 (92.00–117.00) 100.00 (90.00–117.02) - 0.866

CRI-leisure time 
activity (IQR)

87.00 (79.50–93.00) 89.00 (77.00–97.50) 84.00 (77.00–90.00)a,b - 0.037

Note: Values are presented as mean ± stand deviation (SD) or median (IQR, interquartile range). Grey matter atrophy is a calculation of grey matter 
volumes divided by the brain volume; lower values indicate more grey matter atrophy. One-way ANOVA was applied in the analyses of age, 
education, brain volume, brain atrophy rate, memory, and processing speed. χ2 test was applied in the analysis of gender. The Kruskal–Wallis test 
was applied in the analyses of WMH volume, MMSE, MoCA, executive function, visual-spatial ability, and cognitive reserve data. Significance is 
highlighted in bold (p < 0.05). ap < 0.05, differs from the control group. bp < 0.05, differs from the WMH without CI group.
Abbreviations: ANOVA, analysis of variance; CI, cognitive impairment; CRI, Cognitive Reserve Index; HC, healthy control; IQR, interquartile range; 
MMSE, mini mental state examination; MoCA, montreal cognitive assessment; SD, stand deviation; WMH, white matter hyperintensities.
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Similarly, the FC in the left DLPFC was significantly positively and 
negatively associated with cognitive function in the WMH without 
CI group and the WMH with CI group, respectively (Figure S2 in 
Supplemental Material).

Finally, the results of mediation analyses showed that the FC 
slightly but significantly mediated the association of CRI-education 
with visual-spatial ability in the WMH without CI group (indirect ef-
fect: 0.006; 95% CI: 0.001, 0.013) (Figure 3A) and the association of 
CRI-education with executive function in the WMH with CI group 
(indirect effect: −0.004; 95% CI: 0.003, 0.102) (Figure 3B).

3.3.3  |  Association of each aspect of CR with the 
left FPCN

Like the findings in the right FPCN, CRI-working activity and CRI-
leisure time activity were significantly associated with the left FPCN 
FC in the WMH without CI group (Figure S3A–C in Supplemental 
Material). In addition, the CRI-working activity was associated 
with the left FPCN in the WMH with CI group (Figure  S3B–D in 
Supplemental Material). Notably, CRI-education was significantly 
associated with the FC in the right DLPFC in both WMH groups 
(Figure S4A–B in the Supplemental Material). However, the associa-
tion was significantly positive and negative in the WMH without CI 
group (Figure S4C in Supplemental Material, r = 0.456, p < 0.001) 
and the WMH with CI group (Figure S4D in Supplemental Material, 
r  =  −0.430, p  <  0.001), respectively. Similarly, the FPCN FC was 
positively and negatively associated with cognitive function in the 
WMH without CI group and the WMH with CI group, respectively 
(Figure  S5 in Supplemental Material). No mediating effect was 
shown for the left FPCN.

4  |  DISCUSSION

The major findings of the present study are: (1) education has a posi-
tive effect on cognitive function in WMH subjects with or without 
CI, whereas the working activity and the leisure time activity have 
positive effects only in WMH subjects without CI. (2) FPCN FC in 
the DLPFC mediates the association between education and cogni-
tive function in WMH subjects. These findings extend our under-
standing of the neural network mechanisms associated with CR and 
cognitive function in individuals with WMH.

This study investigated the role of each CR aspect in WMH sub-
jects with or without CI. Although the three aspects of CR were 
significantly and positively correlated, they differed in their effects 
on cognitive function and the FPCN. A meta-analysis of 135 stud-
ies explored the associations between CR and cognitive function 
in older adults and found that all three aspects of CR had positive 
associations with cognitive performance in almost all cognitive do-
mains.36 A positive association between education and cognitive 
function was also shown in older adults with WMH.37 Our findings 
further showed that positive associations existed in WMH subjects TA
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with and without CI. In contrast, working activity and leisure time 
activity were only positively associated with cognitive function 
in those without CI. Therefore, education may contribute more 
to cognitive function in WMH subjects than working activity and 
leisure time activity. Higher educational attainment provides indi-
viduals with more knowledge, skills, and cognitive stimulation, thus 
improving cognitive performance.38 Higher educational attainment 
also has other benefits, including healthier lifestyles, more chal-
lenging jobs, better healthcare, and better controls for vascular risk 
factors.39,40 These benefits may directly or indirectly affect cogni-
tive function. It should be noted that although lower leisure time 
activity was shown in the WMH with CI group than in the other 
two groups, no significant effect of leisure time activity on cogni-
tive function or the FPCN was found in WMH subjects with CI. The 
lower leisure time activity could reflect the functional impairment 
related to CI.

Another main finding of the present study was that the effects of 
CR on the FPCN were similar to those on cognitive function in WMH 
subjects. Several previous studies focusing on the associations be-
tween CR and FC or activities of functional networks showed that 
the associations were dependent on the cognitive status or disease 
stages.19,41–44 Interestingly, the present study only found cognitive 
status-dependent effects of working activity and leisure time activ-
ity. Education had positive effects on the FPCN in WMH subjects 
regardless of their cognitive status, whereas working activity and 
leisure time activity mainly showed effects in those without CI. 

Furthermore, although the FC in the DLPFC partially mediated the 
associations between education and cognitive function in WMH 
subjects, the mediating patterns were the opposite. Education may 
maintain cognitive function by increasing the bilateral DLPFC FC in 
WMH subjects without CI but decreasing the FC in those with CI.

Previous studies investigating the relationship between the in-
creased FC in the frontal lobe and cognitive function have yielded 
conflicting results. Some studies showed that increased frontal FC 
was associated with better cognitive performance in cognitively 
normal older adults, suggesting a compensatory neural process.45–47 
According to the famous model named the "scaffolding theory of 
aging and cognition (STAC)", with the neuronal declines, compen-
satory scaffolding, i.e., compensatory recruitment or reallocation of 
cognitive resources, could be induced to maintain cognitive function 
and life-course factors (including CR) could regulate the process.48,49 
However, other studies showed that increased frontal FC was as-
sociated with worse cognitive performance in healthy elderly or 
subjects with mild cognitive impairment,50,51 suggesting that the in-
creased FC might reflect pathology- or age-related dedifferentiation 
of brain activities and could be harmful. In the present study, higher 
FC between bilateral DLPFC was associated with better cognitive 
performance in WMH subjects without CI and poorer cognitive 
performance in those with CI. The increased frontal FC suggests a 
compensatory process in subjects with WMH before the onset of CI 
but pathology-related dedifferentiation of brain activities with the 
onset of CI.

F I G U R E  1  The associations of CRI-working activity and CRI-leisure time activity with the right FPCN in the WMH groups. (A–B) The CRI-
working activity was significantly associated with FPCN FC in the frontal, parietal, and cingulate regions in the WMH without CI group not in 
the WMH with CI group. (C–D) The CRI-leisure time activity was significantly associated with FPCN FC in the frontal, parietal, and cingulate 
regions in the WMH without CI group not in the WMH with CI group. Correlative analyses were performed between the FPCN and each 
CRI aspect while controlling for age, sex, and grey matter images. The thresholds were set at a corrected p < 0.05, determined by Monte 
Carlo simulation for multiple comparisons (voxelwise p < 0.05, cluster size >2646 mm3). The color bars present correlation coefficients. CI, 
cognitive impairment; CRI, cognitive reserve index; FC, functional connectivity; FPCN, frontoparietal control network; WMH, white matter 
hyperintensities
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Education usually represents early experiences that may not be 
easily improved in later life, while the other two aspects of CR, work-
ing activity and leisure time activity, are relatively more modifiable. 
Cognitive training can improve cognitive function in the general 
older population.52 Physical exercise, classified as a leisure time ac-
tivity, also benefits specific cognitive domains, i.e., processing speed 
and attention, in older people with normal cognitive function.53 For 
subjects with cerebral small vessel disease, the beneficial effects of 
cognitive training and physical exercise exhibited at predementia 
stages.54,55 Together with the cognitive status-dependent effects of 
working activity and leisure time activity in this study, these findings 

suggested that improving CR at early stages could better preserve 
cognitive function.

Our study had some limitations. First, the present findings were 
based on cross-sectional data and did not reflect the causal effects 
of CR on cognitive function and brain networks across stages of 
WMH. Longitudinal data would help investigate the causal effects 
of CR during the progression of WMH. Second, the recruitment 
diagnosis for WMH subjects with CI was based on clinical criteria. 
WMH might not have caused the CI in some participants, e.g., AD 
pathology-related CI. Finally, the present study did not assess some 
vascular risk factors, e.g., hypertension, diabetes, atrial fibrillation, 

F I G U R E  2  The associations of CRI-education with the right FPCN in the WMH groups. (A–B) CRI-education was significantly associated 
with FPCN FC in the left DLPFC in WMH subjects with or without CI. Correlative analyses were performed between the FPCN and each 
CRI aspect while controlling for age, sex, and grey matter images. The thresholds were set at a corrected p < 0.05, determined by Monte 
Carlo simulation for multiple comparisons (voxelwise p < 0.05, cluster size >2646 mm3). The color bars present with correlation coefficient. 
(C) FPCN FC in the left DLPFC was positively associated with CRI-education in the WMH group without CI. (D) The FPCN FC in the left 
DLPFC was negatively associated with CRI-education in the WMH group with CI. The FC values were transformed to Z scores using Fisher's 
Z-transformation. CI, cognitive impairment; CRI, cognitive reserve index; DLPFC, dorsolateral prefrontal cortex; FC, functional connectivity; 
FPCN, frontoparietal control network; WMH, white matter hyperintensities

F I G U R E  3  The mediating effect of the left DLPFC on the association between CRI-education and cognitive function. (A) In the WMH 
group without CI, FC in the left DLPFC significantly mediated the association of CRI-education with the visual-spatial ability (indirect effect: 
0.039; 95% CI: 0.001, 0.062). (B) In the WMH group with CI, FC significantly mediated the association of CRI-education with executive 
function (indirect effect: −0.004; 95% CI: 0.001, 0.027). The associations of FC with CRI-education and cognitive function were opposite 
between the two WMH groups. a, b, and c present regression coefficients. CI, cognitive impairment; CRI, cognitive reserve index; DLPFC, 
dorsolateral prefrontal cortex; FC, functional connectivity; FPCN, frontoparietal control network; WMH, white matter hyperintensities
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and related pharmacological treatments. These factors and treat-
ments are associated with cognitive performance56–58 and may af-
fect the present findings. Future studies should assess the effects 
of these factors on the relationship between WMH and cognitive 
function.

In conclusion, education showed a positive effect on cognitive 
function in WMH subjects with or without CI, whereas working 
activity and leisure time activity mainly showed positive effects in 
those without CI. The FC of the FPCN with the DLPFC mediated the 
effect of education on cognitive function in WMH subjects. These 
findings provide insights into the role of each CR proxy in maintain-
ing the cognitive function of individuals with WMH and suggest the 
importance of improving CR before the onset of CI.
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