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Abstract
Background: Esophageal cancer (ESCA) is one of the most deadly malignancies in the world. Although the management and
treatment of patients with ESCA have improved, the overall 5-year survival rate is still very poor.

Methods: The study aimed to identify potential key genes associated with the pathogenesis and prognosis of ESCA. In the study,
integrated bioinformatics methods were used to screen differentially expressed genes (DEGs) between ESCA and normal tissue in
the data set of gene expression profiles. The hub gene in DEGs was further analyzed by protein–protein interaction (PPI) network and
survival analysis to explore its relationship with the pathogenesis and poor prognosis of ESCA.

Results: 134 up-regulated genes and 183 down-regulated genes were obtained in ESCA compared with normal tissues.
Moreover, the PPI network was established with 176 nodes and 800 interactions. Ten hub genes (AURKA, CDC20, BUB1, TOP2A,
ASPM, DLGAP5, TPX2, CENPF, UBE2C, and NEK2) were filtered out based on the degree value. Functional enrichment analysis
indicated that a variety of extracellular related items and ECM–receptor interaction pathway were all correlated with the ESCA.

Conclusions: The results of this study would provide some guidance for further study of diagnostic and prognostic biomarkers to
promote ESCA treatment.

Abbreviations: CCRT = multimodal neoadjuvant concurrent chemoradiotherapy, DEGs = differentially expressed genes, EA =
esophageal adenocarcinoma, ESCA = esophageal cancer, ESCC = esophageal squamous cell carcinoma, GEPIA = The Gene
Expression Profiling Interactive Analysis, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, PPI = protein–
protein interaction.
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1. Introduction

Esophageal cancer (ESCA) ranks seventh in terms of incidence
and sixth in mortality overall.[1] The incidence of ESCA varies
from region to region, with Eastern Asia having the highest
incidence and China was referred to as the “esophageal cancer
belt”.[2] There are 2 common histological subtypes of ESCA,
which are esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EA).[3] The pathogenesis of ESCA is
still unclear, but heavy drinking, smoking, poor nutritional
status, low intake of fruits and vegetables, drinking high-
temperature drinks, chewing betel nut, gastroesophageal reflux
disease, overweight, and obesity can all be the cause of ESCA.[4–7]

ESCA is one of the most deadly malignant tumors in the world.
Although the management and treatment of patients with ESCA
have improved, the overall 5-year survival rate is still very poor.
Its 5-year survival rate is about 15% to 25%. The best results are
related to early diagnosis, commonly referred to as “early stage”,
however, ESCA patients are often diagnosed in the advanced
stage, mainly due to the lack of early clinical symptoms.[8,9] In
recent years, in order to improve the survival rate of patients with
ESCA, multimodal neoadjuvant concurrent chemoradiotherapy
(CCRT) has becomemore andmore widely used in therapy.[10,11]

After receiving CCRT, the 5-year overall survival rate and
recurrence survival rate of patients with ESCA were higher,
however, not all patients with ESCA could respond to neo-
adjuvant radiotherapy and chemotherapy. According to reports,
about 60% of patients have no response to neoadjuvant
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chemoradiation, reducing the success rate of surgery.[12,13]

Identifying susceptible genes and biomarkers can help predict
a patient’s response to treatment while improving patient
survival. Therefore, more genetic information remains urgently
needed to provide reference for precision medical treatment.[14]

Recently, cancer microarrays and high-throughput sequencing
technologies have been frequently used to explore common
biomarkers associated with cancer, as well as drugs that are
directly used in cancer treatment, diagnosis, and prognosis,
revealing key genetic or epigenetic variations in tumorigene-
sis.[15,16] He[17] performed an informatic analysis of EA chip data
in the GEO database to find relevant key genes and pathways;
Zhang[18] used bioinformatics to analyze esophageal squamous
cell carcinoma and found that 5 genes such as SPP1 are closely
related to the pathogenesis and prognosis of ESCC. In this study,
we tried to detect new indicators of poor prognosis in ESCA
patients through integrated bioinformatics methods, and endeav-
or to provide potential therapeutic targets for this challenging
disease.
In this study, we selected 5microarray datasets published in the

GEO database to identify differentially expressed genes (DEGs)
between ESCA tissues and normal tissues. Later, further
functional enrichment analysis was performed on DEGs to find
the main biological functions of their regulation. In addition, hub
genes affecting the pathogenesis and prognosis of ESCA patients
were identified by using protein–protein interaction (PPI)
networks and survival analysis. The detailed workflow of the
study is shown in Figure 1.

2. Materials and methods

2.1. Gene expression profile data

The gene expression profile datasets (GSE17351, GSE20347,
GSE29001, GSE92396, GSE100942) were obtained from Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/
).[19] All included datasets met the following criteria:
1)
 they employed tissue samples gathered from human esoph-
ageal cancer and corresponding adjacent or normal tissues;
2)
 they included at least 10 samples.

2.2. Integrated analysis of microarray datasets

The matrix data of each GEO data set is normalized and log2
converted using the Limma[20] software package in the R
software, and the DEG in each microarray is also filtered by the
Limma software package. Gene integration of DEGs identified
from 5 data sets was performed using RobustRankAggreg.[21]

jlog2FCj≥1 and adjust P value< .05 were considered statisti-
cally significant for the DEGs.

2.3. GO functional and KEGG pathway enrichment
analysis

To illustrate the role of DEGs in gene function and signaling
pathways, this study used the DAVID v 6.8[22] (https://david.
ncifcrf.gov/) database to perform gene ontology (GO) functional
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The results of
the GO functional enrichment analysis were visualized via
OmicShare platform (http://www.omicshare.com/. Accessed 19
July 2018) and GOplot[23] software package in the R software.
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2.4. PPI network and module analysis

Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) 10.5(https://string-db.org/) is a database of known
and predicted protein interactions that contains the direct and
indirect association of proteins. The number and quality of
interacting proteins can be set according to their confidence
settings and it has a score for each protein interaction
information. The higher the score, the higher the confidence of
the protein interaction.[24] The confidence score was set no less
than 0.7 in this study.
After this, the genes were introduced into Cytoscape 3.5.1

(http://www.cytoscape.org/)[25] to obtain PPI network map.
MCODE app in Cytoscape was used for cluster analysis, with
the degree cutoff=2, node score cutoff=0.2 and K-Core=2 were
set as the advanced options.
2.5. Survival analysis of hub genes

Kaplan Meier-plotter (KM plotter, http://kmplot.com/analysis/)
is an online tool for further understanding the molecular basis of
disease and identifying biomarkers associated with survival. This
tool is suitable for real-time meta-analysis of published cancer
microarray datasets to identify survival-related biomarkers.[26,27]
2.6. Expression level analysis and correlation analysis of
the hub genes

The Gene Expression Profiling Interactive Analysis (GEPIA)
(http://gepia.cancer-pku.cn/index.html) is a web server that
provides analysis of different tumor types or pathological stages,
differential expression analysis of tumor/normal tissues, survival
analysis, correlation analysis, and principal component analysis.
It contains 9736 tumor samples and 8587 normal tissue samples
covering 33 malignancies. Among them, we used 182 esophageal
cancer tissue samples and 256 normal tissue samples to study the
difference in expression of the same genes in ESCA and normal
tissues.[28]
3. Results

3.1. Gene expression profile data

In this study, we have adopted a total of 5 datasets including 60
cancer tissues and 61 normal tissues (Table 1). After analysis, we
obtained 134 up-regulated genes and 183 down-regulated genes
in ESCA compared with normal tissues (Supplementary file 1,
http://links.lww.com/MD/E263). Figure 2 shows the top 20
down- and up-regulated genes in the integrated microarray
analysis.

3.2. Functional enrichment analysis of DEGs

DEGs were put into David for GO and KEGG functional
enrichment analysis. The functional enrichment analysis results
were shown in Figure 3. According to KEGG pathway
enrichment analysis, the DEGs were mainly involved in
Amoebiasis and ECM–receptor interaction pathway (Fig. 4).
Likewise, in GO functional enrichment analysis, 21 GO entries
satisfy FDR and P values both less than .05, most of which are
biological processes, followed by molecular functions and
cellular components. The first 20 entries are extracellular space,
extracellular region, extracellular exosome, collagen catabolic
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Figure 1. Workflow for identification of hub genes and pathways for ESCA.

Zhou et al. Medicine (2020) 99:20 www.md-journal.com

3

http://www.md-journal.com


Figure 2. Volcano plot of gene expression profile data in ESCA samples and normal ones and heat map of differentially expressed gene (DEGs). (A) Volcano plot of
GSE17351. (B) Volcano plot of GSE20347. (C) Volcano plot of GSE29001. (D) Volcano plot of GSE92396. (E) Volcano plot of GSE100942. (F) Heat map of
differentially expressed genes. Green represents a lower expression level, red represents higher expression levels, and white represents that there is no different
expression amongst the genes. Each column represents one dataset and each row represents 1 gene. The number in each rectangle represents the normalized
gene expression level. The gradual color ranged from green to red represents the changing process from down-regulation to up-regulation.

Table 1

Information for the 5 GEO datasets included in the current study.

Dataset Platform Number of samples (tumor/control)

GSE100942 GPL570 10
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array (5/5)

GSE92396 GPL6244 22
(HuGene-1_0-st) Affymetrix Human Gene 1.0 ST Array (transcript (gene) version) (12/10)

GSE17351 GPL570 10
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array (5/5)

GSE29001 GPL571 45
(HG-U133A_2) Affymetrix Human Genome U133A 2.0 Array (21/24)

GSE20347 GPL571 34
(HG-U133A_2) Affymetrix Human Genome U133A 2.0 Array (17/17)
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Figure 3. Graph of the functional enrichment analysis results. (A) KEGG pathway and DEGs enriched in pathways. The yellow triangle represents the KEGG
pathways. The red dots are the common DEGs enriched in the 2 pathways, and the pink dots represent the other DEGs enriched in the pathways. (B) Top 20 of
pathway GO enrichment. (C) The circular map of the DEGs distribution of the top 5 GO pathway. The red indicates the up-regulated gene and the blue indicates the
down-regulated gene. (D) DEGs clustering map of the first 5 GO pathways. In the figure, from the inside to the outside are gene clustering, jlog2FCj and GO
pathway.

Zhou et al. Medicine (2020) 99:20 www.md-journal.com
process, extracellular matrix organization, proteinaceous extra-
cellular matrix, extracellular matrix, keratinocyte differentiation,
keratinization, peptide cross-linking, collagen fibril organization,
collagen trimer, cornified envelope, positive regulation of cell
proliferation, serine-type endopeptidase inhibitor activity, extra-
cellular matrix disassembly, midbody, serine-type endopeptidase
activity, epidermis development, and extracellular matrix
structural constituent.

3.3. PPI network analysis and module analysis

The PPI network was constructed in the STRING 10.5 database
including 176 nodes and 800 interactions. As shown in Figure 5,
the size of the nodes was proportional to the degree value. The
top 10 genes with the greater degree were considered to be hub
5

genes. Besides, in order to detect important cluster modules in this
PPI network, we performed module analysis and obtained the
first 4 modules of high scores (Fig. 6). Module 1 has the highest
number of nodes, edges, and scores, and may be the main
functional module.

3.4. The Kaplan Meier-plotter and expression level of hub
genes correlation and correlated analysis

The Kaplan Meier-plotter was adopted to analyze the prognostic
information of 10 hub genes in which ESCAwere divided into EA
and ESCC. It was found that the high expression of AURKA
(HR=2.75 (1.15–6.59), P= .018), BUB1 (HR=2.01 (1.02–
3.94), P= .038), DLGAP5 (HR=2.24 (1.17–4.26), P= .012),
TPX2 (HR=2.78 (1.44–5.36), P= .0015), UBE2C (HR=3.73,

http://www.md-journal.com


Figure 4. Graph of the ECM–receptor interaction pathway (17). The orange nodes show the DEGs in the pathway and the green nodes indicate other genes.
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(1.78–7.81), P=2e�04), and NEK2 (HR=2.76 (1.07–7.15),
P= .029) were associated with the worse overall survival(OS) of
for EA patients (Fig. 7), as well as the high expression of AURKA
(HR=0.32 (0.13–0.82), P= .013), BUB1 (HR=0.35 (0.15–
0.81), P= .011), TOP2A (HR=0.31 (0.11–0.86), P= .018),
ASPM (HR=0.35 (0.15–0.84), P= .014), DLGAP5 (HR=0.23
(0.1–0.53), P= .00019), TPX2 (HR=0.33 (0.14–0.79), P
= .0094), CENPF (HR=0.41 (0.18–0.95), P= .031), and
NEK2(HR=0.4 (0.18–0.92), P= .025) were relevant to the
worse OS for the ESCC patients (Fig. 8). Furthermore, GEPIA
was devoted to analyze the different expression of hub genes in
cancer tissues and normal tissues and 10 hub genes were
definitely highly expressed in ESCA cancer tissues (Fig. 9).
Moreover, the correlation between hub genes was analyzed by
GEPIA. The results showed that remaining 9 hub genes were
strongly associated with AURKA in the expression of ESCA cells
(Fig. 10).

4. Discussion

ESCA is one of the most serious malignant gastrointestinal
tumors, although recent advances in multimodal treatment have
shown promise in reducing morbidity and improving survival,
this is not enough.[29] Therefore, understanding the pathogenesis
of ESCA is crucial to improve survival and reduce morbidity. The
6

rapid development of microarray technology, making break-
throughs in identifying cancer marker genes, and strengthening
disease prognosis.[30]

In the present study, a total of 317 DEGs were screened,
consisting of 134 up-regulated genes and 183 down-regulated
genes. Most of these DEGs were enriched in pathways closely
relevant to cancer, such as extracellular space, extracellular
region, extracellular exosome, and ECM–receptor interaction
pathway. Among all DEGs, the top 10 in the degree value were
the hub genes. Additionally, all hub genes were up-regulated in
ESCA cancer tissues compared with normal tissues and closely
related to the first hub gene AURKA.
Aurora kinase A (AURKA) – is a serine/threonine kinase that is

essential for normal mitotic spindle formation and centrosome
maturation as well as separation during cell division. When an
abnormality occurs in AURKA, it often leads to the functional
defect of the centrosome in mitosis and the disorder of the bipolar
spindle, which conduces to the asymmetric separation of
chromosomes during division, induces chromosomal instability,
forms aneuploidy, and causes abnormal mutations in cells. At the
same time, it begins to transform cancer and form a tumor.[31–33]

The AURKA gene is clearly overexpressed in several types of
cancer, including ESCA.[34] It is worth noting that AURKA
overexpression is significantly associated with advanced cancer
and poor prognosis.[35] Besides, a variety of AURKA inhibitors



Figure 5. PPI network of DEGs in ESCA. Purple represents the hub genes in DEGs, and the depth of the color and size of the nodes are proportional to the degree
value. Yellow dot represents the gene which degree value is greater than average and red represents other genes.
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have been developed for the treatment of cancers of the digestive
system.[32] CDC20 (cell division cycle 20 homologue) is over-
expressed in quantities of human tumors and also is currently a
potential target for the treatment of multiple cancers. It mainly
regulates cell cycle progression, and cells with CDC20 mutants
block cell division and stop the progression of the cell cycle to late
and chromosome separation.[36] BuB1 is the only Mad1
centromere receptor in yeast, which contributes to the localiza-
tion of Mad1, thereby loading MAD1 and MAD2 onto CDC20,
catalyzing the formation of mitotic checkpoint complex
(MCC).[37] As with MAD2, overexpression of BUB1 could be
a consequence of loss of normal protein functioning.[38]

Topoisomerase IIa (TOP2A) is a gene-encoding enzyme involved
in DNA replication and correlates with the response of
7

anthracyclines to various cancers.[39] Its overexpression is
common in a diversity of cancers including ESCA. Besides,
TOP2A inhibitors have been used in a variety of solid tumors
such as small cell lung cancer.[40,41] ASPM regulates the duration
ofmitosis and passage through the G1 restriction point and it also
shows overexpression in a range of cancers.[42,43] It has been
experimentally proven that knocking down ASPM can inhibit
tumor growth and lead to apoptosis.[44] Disc large (Drosophila)
homolog-associated protein 5 (DLGAP5) is a mitotic spindle
protein that promotes the formation of tubulin polymers,
resulting in tubulin fragments around the ends of microtubules.
DLGAP5 contains the guanylate kinase-associated protein
(GKAP) domain, which is conserved among various species.[45]

In addition, the involvement of DLGAP5 in the formation and

http://www.md-journal.com


Figure 6. Four significant modules identified from the PPI network. (A) Module 1 contained 28 nodes and 355 interactions, MCODE score=26; (B) module 2
contained 11 nodes and 55 sides, MCODE score=11; (C) module 3 contained 9 nodes and 36 interactions, MCODE, score=9; (D) module 4 contained 9 nodes
and 36 interactions, MCODE, score=9.

Figure 7. Prognostic roles of 10 hub genes in the EA patients. Survival curves are plotted for EA cancer patients. (A) ASPM; (B) AURKA; (C) BUB1; (D) CDC20; (E)
CENPF; (F) DLGAP5; (G) NEK2; (H) TOP2A; (I) TPX2; and (J) UBE2C.

Zhou et al. Medicine (2020) 99:20 Medicine
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Figure 8. Prognostic roles of 10 hub genes in the ESCC patients. Survival curves are plotted for ESCC cancer patients. (A) ASPM; (B) AURKA; (C) BUB1; (D)
CDC20; (E) CENPF; (F) DLGAP5; (G) NEK2; (H) TOP2A; (I) TPX2; and (J) UBE2C.

Figure 9. Analysis of 10 hub genes expression level in human ESCA. The red and gray boxes represent cancer and normal tissues, respectively. (A) ASPM; (B)
AURKA; (C) BUB1; (D) CDC20; (E) CENPF; (F) DLGAP5; (G) NEK2; (H) TOP2A; (I) TPX2; and (J) UBE2C.

Zhou et al. Medicine (2020) 99:20 www.md-journal.com
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Figure 10. Correlation analysis of 9 hub genes and AURKA in ESCA. (A) AURKA; (B) BUB1; (C) CDC20; (D) CENPF; (E) DLGAP5; (F) NEK2; (G) TOP2A; (H) TPX2;
and (I) UBE2C.

Zhou et al. Medicine (2020) 99:20 Medicine
development of cancer affects cell migration, invasion, and
adhesion ratio, suggesting that the gene and its products may be
potential therapeutic targets.[46] TPX2 acts as a microtubule-
associated protein (MAP) to control the nucleation, function, and
interaction of microtubules with other cellular structures. Studies
have shown that improper expression of TPX2 leads to
chromosomal instability, resulting in centrosome expansion
and development into aneuploidy which is highly correlated with
the occurrence and development of various tumors.[47,48] As a
downstream regulatory gene of MMP13, CENPF plays an
important role in cell cycle, mitosis, and regulation of PLK1
activity in G2/M transition.[49] Furthermore, different kinds of
experiments have confirmed that the high expression of CEPNF is
a prognostic indicator of survival and metastasis in ESCA
patients.[50,51] Recently, the ubiquitin-conjugating enzyme E2C
10
(UBE2C), a prominent tumor biomarker candidate, is considered
to be a key player in the cell cycle progression. And by qRT-PCR
analysis and immunohistochemical analysis, UBE2C protein was
up-regulated in ESCA tissues.[52] Never in mitosis (NIMA)-
associated kinase 2 (NEK2) plays a key role in the regulation of
mitosis. Due to its abnormal overexpression and malignant
transformation in a variety of human cancers it has become a key
target for the treatment of cancer.[53]

In enrichment analysis, GO enrichment analysis revealed that a
series of extracellular related items were closely associated with
ESCA. The interaction of multiple genes with the extracellular
matrix combined with poor signaling can also enhance the
metastasis of ESCA cells.[54] Exosomes is an important
component of the tumor microenvironment and plays a complex
role in the progression and treatment of ESCA.[55] On the other
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hand, in KEGG enrichment analysis, ECM–receptor interaction
pathway affects cellular activities such as adhesion, migration,
differentiation, proliferation, and apoptosis.[56] There have also
been related RNA array studies in the early stage to confirm the
correlation between ECM–receptor interaction pathway and
ESCA.[57,58]

The limitations of our study were as follows: Firstly, our
research is based on the data already in the database and research
results need to be verified by corresponding experimental studies.
For example, chemistry experiments comparing expression in
ESCA tissues and normal tissues, should be conducted to confirm
the target genes and potential key functional enrich pathway.
Secondly, we obtained data in the GEO database, the sample size
is small and its quality cannot be verified. Finally, our study has
some limitations because it focuses on genes that are typically
identified as significant changes in multiple data sets, without
regard to gender, age, tumor classification, and staging.
5. Conclusion

In conclusion, we have identified a total of 10 hub genes
associated with the development and poor prognosis of ESCA in
this integrated bioinformatics analysis. However, since our
research is based on data analysis, further experiments are needed
to confirm. At the same time, we hope that our research results
can have certain guiding significance for the future prognosis and
treatment of ESCA.
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