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Biomedical named entity recognition (BioNER) from clinical texts is a fundamental task for clinical data analysis due to the
availability of large volume of electronic medical record data, which are mostly in free text format, in real-world clinical
settings. Clinical text data incorporates significant phenotypic medical entities (e.g., symptoms, diseases, and laboratory
indexes), which could be used for profiling the clinical characteristics of patients in specific disease conditions (e.g.,
Coronavirus Disease 2019 (COVID-19)). However, general BioNER approaches mostly rely on coarse-grained annotations of
phenotypic entities in benchmark text dataset. Owing to the numerous negation expressions of phenotypic entities (e.g., “no
fever,” “no cough,” and “no hypertension”) in clinical texts, this could not feed the subsequent data analysis process with well-
prepared structured clinical data. In this paper, we developed Human-machine Cooperative Phenotypic Spectrum Annotation
System (http://www.tcmai.org/login, HCPSAS) and constructed a fine-grained Chinese clinical corpus. Thereafter, we proposed
a phenotypic named entity recognizer: Phenonizer, which utilized BERT to capture character-level global contextual
representation, extracted local contextual features combined with bidirectional long short-term memory, and finally obtained
the optimal label sequences through conditional random field. The results on COVID-19 dataset show that Phenonizer
outperforms those methods based on Word2Vec with an F1-score of 0.896. By comparing character embeddings from different
data, it is found that character embeddings trained by clinical corpora can improve F-score by 0.0103. In addition, we
evaluated Phenonizer on two kinds of granular datasets and proved that fine-grained dataset can boost methods’ F1-score
slightly by about 0.005. Furthermore, the fine-grained dataset enables methods to distinguish between negated symptoms and
presented symptoms. Finally, we tested the generalization performance of Phenonizer, achieving a superior Fl-score of 0.8389.
In summary, together with fine-grained annotated benchmark dataset, Phenonizer proposes a feasible approach to effectively
extract symptom information from Chinese clinical texts with acceptable performance.
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1. Introduction

The natural language processing (NLP) and information
extraction (IE) techniques are the vital parts of data mining
and knowledge discovery in EMRs and have become a hot
research field in biomedical informatics [1, 2]. Biomedical
named entity recognition (BioNER) as a basic task in bio-
medical IE has received constant research attention over
the recent years [3-5].

BioNER is a critical task designed to identify and classify
clinical terms in EMRs, such as symptoms, diseases, body
parts, operations, and drugs [6]. In EMRs, the same word
can refer to more than one kind of entities, while various
words can describe the same entities [7]. Moreover, there
are abbreviations or acronyms and multiple variants of same
entities in EMRs [8]. These entities rarely or even do not
occur in EMRs, but it is still a problem that cannot be
ignored. Both of these problems make BioNER a challenging
task. The previous BioNER methods were mainly developed
for English texts. In recent years, with the Chinese medical
information system gained in popularity, BioNER in Chi-
nese clinical texts has also received extensive attention.
Due to the lack of Chinese word boundaries and complexity
of the form of Chinese, BioNER in Chinese texts is more dif-
ficult than that in English texts [9].

As an emergent infectious disease, Coronavirus Disease
2019 (COVID-19) has been a pandemic around the world
with more than tens of millions of infected cases. The fact
of heavy clinical overload of COVID-19 for medical facilities
without effective treatments in most countries means that
well-designed clinical trials would be extremely difficult for
concurrent clinical settings. In this case, EMRs become one
of the most valuable data sources for clinical studies, which
place clinical BioNER as an urgent research task. However,
although various benchmark corpus and text mining studies
were performed on biomedical literatures, there are few
BioNER studies on COVID-19 EMRs. In existing clinical
studies of COVID-19, researchers extracted structured
patient information either manually or from databases [10,
11]. These methods are time-consuming and laborious,
while the structured information in databases lacks detailed
symptoms of patients. Studies have shown that accurate
symptom information is important for screening and analy-
sis of COVID-19 [12, 13]. Most COVID-19 patients not only
have respiratory symptoms such as fever, cough, and short-
ness of breath but also have digestive symptoms such as
anorexia and diarrhea [14, 15]. At present, due to the small
number of structured COVID-19 EMRs, these findings are
based on small datasets and need to be further studied by a
large sample. Therefore, it is urgent to find a method that
can automatically extract symptom phenotypes associated
with COVID-19 from a large scale of EMR data.

Traditionally, most BioNER methods are based on
coarse-grained datasets, so that when extracting clinical
information, there is no distinction between negated symp-
toms (NS) and presented symptoms (PS) [16, 17]. As a mat-
ter of fact, symptoms are subjective indications of disease,
and accurately extracting symptoms and their correspond-
ing duration is particularity important for clinical analysis
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[18]. Therefore, the main objective of this paper is to extract
NS and PS in Chinese EMRs, respectively. For example,
there is a sentence in EMRs: “The patient developed fever
and cough 9 days age, without chest tightness, chest pain
or other discomfort.” Among them, “fever” and “cough”
are PS, which means that the patient does indeed have these
symptoms, and “without chest tightness, chest pain or other
discomfort” is a chunk with NS, means the patient does not
suffer from both “chest tightness” and “chest pain.” If only
symptom-level BioNER was performed, “fever,” “cough,”
“chest tightness,” and “chest pain” would be extracted and
fed to subsequent clinical analysis with errors. Therefore,
the fine-grained BioNER is very important to obtain a profile
of patient with precise structured phenotypes in clinical text
data analysis. Moreover, some clinical studies of COVID-19
also verified our viewpoint [19-21]. Fang et al. have shown
that hypertension or diabetes would lead to deterioration
of COVID-19 [19]. Taken together, it is significant to avoid
identifying the symptoms and diseases which patients
denied, such as fever, diarrhea, diabetes, and hypertension,
as their medical histories.

In this paper, we developed Human-machine Coopera-
tive Phenotypic Spectrum Annotation System (http://www
.tcmai.org, HCPSAS), constructed a fine-grained Chinese
clinical corpus, and proposed phenotypic named entity
recognition method (Phenonizer) for Chinese clinical IE.
In our study, Chinese BioNER task was regarded as a
character-level sequence labelling task to avoid the error
caused by word segmentation, and contextual features
were utilized to help recognize clinical named entities.
More specifically, we obtained word representations of
Chinese characters containing global contextual informa-
tion and then fed them into the following BiLSTM layer
to capture local contextual features. Finally, the dependen-
cies of adjacent labels were captured by using the condi-
tional random field (CRF) to determine the optimal label
sequences. Computational results on the COVID-19 data-
set show that Phenonizer significantly outperforms charac-
ter embedding-based methods and hardly increases
training time. In addition, we found that fine-grained
dataset improved the performance of our method, and
models trained on the fine-grained dataset are able to
avoid confusing NS and PS. Finally, Phenonizer has excel-
lent generalization ability to extract clinical information
from Chinese EMRs quickly and accurately in the event
of new disease outbreak.

The main contributions of our work can be summarized
as follows:

(i) We developed a system named HCPSAS that greatly
reduces the workload of annotators in the way of
human-machine collaborative annotation

(ii) Through HCPSAS, we constructed a fine-grained
corpus that distinguishes NS from PS, and models
trained by this corpus can avoid the error caused
by symptom confusion to clinical analysis. Our
fine-grained datasets can improve the performance
of our model
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(iii) We proposed a recurrent neural network with bidi-
rectional transformers for Chinese BioNER. It is the
first time that deep learning has been used to extract
symptoms and their corresponding duration from
COVID-19 EMRs. Experimental results on the
COVID-19 dataset demonstrate that Phenonizer
achieves a highly competitive performance
compared with Word2Vec-based methods

2. Related Work

Due to the practical significance of BioNER, a lot of solution
approaches had been proposed. These approaches are
divided into four categories: rule-based, dictionary-based,
machine learning, and deep learning.

2.1. Rule-Based and Dictionary-Based Methods. Early BioNER
systems usually rely on heuristic handcrafted rules by experts,
including contextual information, grammatical constraints,
synonym association, and keyword matching [22, 23].
Dictionary-based approaches employ expert-approved vocab-
ularies to recognize entities. They are widely used because of
their simplicity and performance. Most of the existing entities
can be correctly identified by dictionary matching [24, 25].
However, these approaches rely heavily on manual rule bases
and dictionaries. As datasets get updated, it takes a lot of man-
power to maintain the rules and dictionaries, which is not an
easy way. In particular, there are a large number of synonyms
and ambiguous boundaries in Chinese, which bring challenges
to these approaches.

2.2. Machine Learning-Based Methods. Machine learning-
based methods usually consider BioNER as a sequence label-
ling task whose goal is to find the best label sequence for a
given input sentence [26]. Typical methods include hidden
Markov models (HMM) [27], CRF [28], and support vector
machines (SVM) [29].

CRF is an undirected statistical graph model whose spe-
cial case is a linear chain corresponding to a conditionally
trained finite state machine. It is widely used in computer
vision, shallow layer analysis, and BioNER. Its mathematical
model can be described as follows: x represents the random
variable on the data sequence to be labelled, and y represents
the random tag on the corresponding tag sequence. In an
undirected graph, G=(V,E), a node v €V corresponding
to random variable y, in V. (y,x) is a conditional random
field in which every random variable y, is subject to Markov
properties  (p(y, | %, v, w#v)=p(y, | %y, w—v)). The
conditional probability p(y | x) is a probability of a particular
label sequence y for a given observation sequence x and can
be defined as the normalized product of potential functions.
The transfer characteristic function of potential function is

€xp (Z (Vi Y1> % 1) Zﬂksk(J’vx’i)) (1)
%

where t;(y;_,,;, %, 1) is the transfer feature function of the
observation sequence, namely, the labels of position i and i

— 1 in the tag sequence. s.(y;, x, ) is the label of position i
and the state characteristic function of the observation
sequence; A; and y are the hyperparameters. A set of real
values of the observed values g(x, i) can be defined as a char-
acteristic function to describe some characteristics of the
empirical distribution of training data. When current state
(in the case of a state function) or previous state and current
state (in the case of a transition function) have specific
values, the value of the eigenfunction will be 1. The state
function s(y,_,,y;,x, i) and the transfer function t(y, ;,y; x
,i) can be expressed by f;(y;1,y,x1); Fi(y,x) can be
defined as

Zf; yl l’yl"x’ : (2)
i=1

By the function F(y, x), the probability of observing the
tag sequence y on the sequence x can be expressed as

7 P (Z Fy(y,x ) (3)

The main advantage of CRF is its conditional feature,
which relaxes the assumption of independence required by
HMM. In addition, CRF is a sequence labelling and segmen-
tation model for discriminating training. It combines past
and future observation of arbitrary overlap and aggregation.
The CRF method benefits from effective training and decod-
ing parameter estimation based on dynamic programming
to ensure the existence of a global optimal solution. Never-
theless, machine learning approaches rely on predefined
features and require high cost to find the best set of features.

pylxA)=

2.3. Deep Learning-Based Methods. Deep learning-based
methods achieve state-of-the-art performance over tradi-
tional machine learning methods in the BioNER task [7,
30]. Long short-term memory (LSTM) [31] and gated recur-
rent units (GRU) [32], which are recurrent neural networks
(RNNss) with gated recurrent cells, can capture long depen-
dencies in sentences. On top of these, a CRF layer is added
to ensure that output label sequences are regular.

BiLSTM is a classic sequence labelling model that effec-
tively utilizes both past information (through forward state)
and future information (through backward state). For
BiLSTM, given a sentence, the model predicts the label cor-
responding to each input character in the sentence. First, the
sentence is represented by an embedding layer as a sequence
of vector X =(x,%,,---,x,), where n is the length of
sequence. Then, taking the embedded information as input
to BiLSTM layer, the forward LSTM calculates forward rep-

4
resentation h,, while the other reverse LSTM calculates the

P
backward representation h, of same sequence. The two
different networks use different parameters; the hidden

representation h, = [h_t) ; E] of the character is obtained by
linking its left and right context representations. Moreover,
the tanh layer on top of BILSTM is used to predict



confidence score of each character’s possible label as the
network output score, wherein the weight matrix W, is the
model parameter to be learned in training.

e, =tanh (W h,). (4)

For Chinese named entity recognition, Zhang and
Yang [33] investigate a lattice-structured LSTM model
which can effectively use Chinese word information.
Recently, Devlin et al. [34] proposed a pretrained bidirec-
tional transformer and excelled in many NLP tasks.
However, this method is based on enormous computation
data and computing power.

3. Materials and Methods

An overall workflow for our study is given in Figure 1. For
clinical phenotypic symptom extraction, three methods in
total based on character level were implemented and evalu-
ated. Datasets have been processed into BIOES format.
Character embeddings (GloVeyy;> GloVeydicar W2V
and W2V, .4ica) Were trained by GloVe and Word2Vec
(W2V) using data from Chinese Wikipedia and Henan
Province Hospital of TCM. In addition, BERT-base ;e
is a pretrained model, which is officially provided by Google
and trained based on Chinese encyclopedia. After that,
BiLSTM was used to encode the local contextual features
of each word, and CRF was employed to obtain the optimal
label sequences.

3.1. Datasets. Our study is driven by EMRs written in Chi-
nese. There are four datasets from Chinese Wikipedia,
Henan Province Hospital of TCM, and Hubei Province Hos-
pital of TCM. Among them, the Wikipedia data is
unannotated, and the others are annotated with fine-
grained rules by annotators through HCPSAS. All patient
identifiers related to privacy issues had been removed before
annotation. Figure 2 shows an example of annotated sen-
tence in the COVID-19 dataset. A detailed description of
each dataset is given below.

(1) The Chinese Wikipedia corpus: the first dataset is
collected from Chinese Wikipedia, which has not
been annotated. There are 3,745,841 sentences of
337,063,331 words with a vocabulary size of 14,261
(see Table 1). The data was trained by GloVe and
Word2Vec for GloVey;,; and W2V,

(2) Chinese EMRs from Henan Province Hospital of
TCM (TCM-HN): we collected EMRs from the
respiratory department of Henan Province Hospital
of TCM, which were mainly related to chronic lung
disease (e.g., chronic obstructive pulmonary disease
and asthma). It consists of the history of present ill-
ness of 41,703 patients and contains 155,566
sentences of 14,009,494 words with a vocabulary size
of 3,008. On the one hand, the data was used for
GloVe and W2V training to form word representa-
tions in the medical field; on the other hand, the data
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was used as a benchmark dataset for subsequent
model training

(3) Chinese EMRs of COVID-19: the COVID-19 dataset
contains the chief complaint, history of present ill-
ness, current manifestations, and past history of
5,654 COVID-19 patients (including both confirmed
and suspected inpatient cases) from 10 hospitals
(e.g., Hubei Provincial Hospital of Traditional Chi-
nese Medicine) in Hubei Province, China, whose
amount is about 12% of TCM-HN’s. Table 2 lists
the annotated entities in datasets, consisting mainly
of NS and PS. We used COVID-19 data for training
and evaluation of subsequent models, and all evalua-
tions are based on entity-level exact matches

(4) Chinese EMRs from Hubei Province Hospital of
TCM (TCM-HB): TCM-HB dataset is composed of
EMRs of fatty liver from Hubei Province Hospital
of TCM, including the admission and discharge
information of patients. The dataset also contains a
large number of phenotypic entities such as NS and
PS (Table 2), which is used to verify the generaliza-
tion ability of deep learning-based methods on het-
erogenous data

3.2. Human-Machine Cooperative Phenotypic Spectrum
Annotation System. In order to quickly and accurately anno-
tate row corpora, we developed HCPSAS. In this system,
phenotypic entities in EMRs will be extracted in the way of
human-machine collaborative annotation (Figure 3). Before
original EMRs are manually annotated, it will go through
the steps of machine annotation, which is driven by an iter-
ative dictionary and rule base with preliminary seed records,
to form preannotation texts. There are three parts in the
machine annotation, which are dictionary-based entity
matching, rule-based regular expression matching, and Phe-
nonizer model recognition, respectively. The two former
methods try to ensure the accuracy of automatic extraction
in the annotating process. The latter extracts entities
through the semantics in the sentences and supplements
the results of the two former methods. Machine annotation
is aimed at extracting most of the entities in the unannotated
texts and greatly reducing the workload of manual annota-
tion. Afterwards, clinical staff manually annotate and review
preannotated texts to obtain structured EMRs and clinical
corpus in a short time.

3.3. Architecture of Phenonizer. In this paper, we proposed a
BioNER framework Phenonizer for Chinese EMRs with
deep neural network (Figure 4). The model is composed of
three parts, BERT, BiLSTM, and CRF. The character embed-
dings from BERT are regarded as the input of BILSTM layer,
and a CRF layer is added to the end of BiLSTM for decoding.
In this section, the Phenonizer’s architecture is described in
detail following the order from inputs to outputs, layer by
layer.

3.4. Character Embeddings from BERT. Text is a high-level
abstract entity generated in human cognition. In the field
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Figure 1: A workflow for clinical phenotypic symptom extraction in Chinese EMRs. We trained character embeddings with GloVe and
W2V as baseline models. The data of TCM-HN and COVID-19 were annotated as gold standard corpus. All evaluation results were

generated on test sets.

Date Presented symptom

I N I

Negated symptom

?

Ek 9 RATH KM GAK, BMIE, MAERE, A BRI % .

English translation: The patient developed fever and cough 9 days ago, without chest tightness,
chest pain or other discomfort, and was admitted to the hospital with “COVID-19”.

FIGURE 2: An example of annotated sentence from the COVID-19 dataset.

TABLE 1: Basic information for each dataset.

Datasets Domain  Annotated  No. of texts ~ No. of sentences  No. of entities ~ No. of words ~ No. of vocabularies
Wikipediacy,; ...  General False — 3,745,841 — 337,063,331 14,261
TCM-HN Clinical True 29,636 155,566 318,337 14,009,494 3,008
COVID-19 Clinical True 6,105 29,663 201,567 1,726,665 2,248
TCM-HB Clinical True 18,555 105,075 247,291 6,394,902 2,778

of NLP, it needs to be converted into data types that can be
understood and processed by neural network. Learning
word representations from a large amount of unannotated
text has long been a fundamental and important task in
NLP field. While previous methods (e.g., Word2Vec [35]
and GloVe [36]) focused on learning word representations
independently, recent works have focused on learning word
representations from context [37]. For instance, ELMo [38]
uses a bidirectional language model, while OpenAI GPT
[39] embeds contextual information into word embeddings
by a transformer. BERT is a language representation model
which uses bidirectional transformers to capture contextual
information in text and overcomes the problem that previ-
ous language models cannot see future words [34].

BERT learns the characteristics of words from a large
number of corpora through unsupervised learning. It has
different structures. BERT-base ;.. Which we used in
experiment, is a multilayer bidirectional transformer with
the number of layers L = 12, the hidden layer parameter H
=768, and the number of self-attention heads A = 12. Dif-
ferent from ELMo, the pretraining task of BERT is not an

N-gram language model prediction task, but a masked lan-
guage model (MLM) and next sentence prediction (NSP)
task. For MLM, similar to cloze task, the model randomly
screened 15% of tokens for each input sequence and
screened predictive tokens. For NSP, the input sequence
splits sentence pairs with [SEQ], and only 50% of the
sentence pairs are positive samples.

In this paper, we used contextual word representations
obtained by BERT as input to our network. At same time,
we trained character embeddings by GloVe and W2V and
compare it with BERT to demonstrate the power of contex-
tual word representations. For character embedding, we
trained GloVey., W2V GloVey edicar @a0d W2V dical
using Chinese Wikipedia and TCM-HN datasets. We experi-
mented with them separately and compared the results,
hoping to expound that training embeddings with special-
ized biomedical corpora can achieve effective improvement
in the BioNER domain.

3.5. BiLSTM Layer Using Character Embeddings. LSTM is
the most commonly used model for sequential annotation



TaABLE 2: The number of various entities in benchmark datasets.

Entity TCM-HN  COVID-19 TCM-HB
Presented symptom 753,541 60,364 170,047
Negated symptom 469,142 31,092 126,359
Disease 55,857 — 55,783
Tongue and pulse 2,621 1,497 —
Body parts 1,042 — —
Operation 959 — 8,540
Date — 18,653 —
Duration of symptoms — 9,042 23,276
Past history — 5,796 —
Inducement — 3,524 —
Drug — 3,376 23,191
Frequency — — 16,127
Principle — — 11,993

tasks, which is a variant of RNNs. RNNs can continuously
operate the information to ensure that the information per-
sists, thereby solving the problem of information forgetting
[31, 40]. However, in the case of long sequences, RNNs can-
not handle long-term dependencies well. Therefore, LSTM
came into being to address this issue. LSTM and RNNs are
almost identical, except that the hidden layer updates are
replaced by purpose-built memory cells to exploit long-
term dependencies in sentences. In state ¢, the LSTM net-
work takes e,, C,_,, and h, as inputs and calculates its output
by the following formula, where o and tanh are sigmoid and
hyperbolic tangent activation functions, respectively. i, f,,
and o, represent input gate, forget gate, and output fate,
respectively, and C, is the storage area of LSTM unit. W}, j

€ {f,i,C, o} are the trainable parameters of the model.

fi=0(Wy-[h_ye] + by (5)
iy=0(W;elh,_,e] +b;,

C,=tanh (W¢elh,_,e] + be,
C,=f,*Cp +i,xC,
0,=0(Wyelh,_,¢e]+b,,

h=o, = tanh (C,). (10

The BiLSTM was employed on embedding sequence e,
, €y, > e,; ¢ denotes character embedding of ¢; by BERT,

where ¢; is a character in text sequence ¢, ¢,, --+, ¢,,. BILSTM
was applied to obtain —, —, -, — and «—, ——, -+,
hl hZ hn hl hZ

«— in the left-to-right and right-to-left directions, respec-

n

tively. The hidden representation of each character is
defined by

= " |. (11)
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Next, a CRF layer was used on hy, h,, -
labelling.

-, h,, for sequence

3.6. Last Layer Based on CRF. To predict labels, BERT fed
hidden representation into a classification layer, which is a
simple and effective strategy when labels are independent
[34]. However, entities usually consist of several words,
meaning that labels do have correlations with their neigh-
bors. For example, in CoNLL-2003 annotation [41], I-ORG
(inside of the ORG) cannot follow B-PER (beginning of
the PER) or O (outside of entities). Therefore, CRF was pro-
posed to avoid false choices by adding some constraints.

For a sentence with n words, define #; as the hidden rep-
resentation of the iy, token in the sentence, h = {hj, h,, -+,
h,} is the vector sequence of sentence, while y = {y,,y,, -
,¥,} is the label sequence of h, and Y () is the set of all pos-
sible label sequences. Loss function was defined as

@SRealseq

Loss=—log ——
8 5t et te

=- (SRealseq —log (@Sl +eSt. -+@SN)>

N-1

N
i=1 i=1
(12)

During the training process, the parameters were
updated to keep decreasing the loss iteratively. There are
total N possible sequences in Y(h), and S; represents the
score of sequence i. S; is the sum of emission score and tran-

sition score. h;, corresponds to the score of the iy, token
being labelled y,, which is obtained from BiLSTM. T denotes
the matrix of transition scores in which £, represents the
score from tag p to q. Therefore, the sequence with the
largest score is going to be given by

y* =argmaxs(h, y), yeY (h). (13)

In the CREF layer, the Viterbi algorithm was used to solve
the optimization problem and get the result efficiently.

3.7. Symptom Extraction in Different Granularity. The
extraction of NS and PS is the focus of this paper. So far,
most of existing researches pay attention to coarse-grained
symptoms. In this section, we constructed datasets that dis-
tinguish between NS and PS and those that do not, aimed at
the problem that general methods only identify symptom-
level entities, thus misleading clinical analysis. The two
datasets as the Nonnegation (NonNeg) and With-negation
(WithNeg) datasets, where the NonNeg dataset is the
symptom-level dataset and the WithNeg dataset is the one
that differentiates NS and PS. We trained models separately
on these two datasets with the same parameters. First, we
compared the symptom extraction results of two models
on their respective datasets to explore whether the perfor-
mance of the model in symptom extraction improved after
distinguishing datasets. Secondly, we evaluated symptom-
level models on the WithNeg dataset. At evaluation, we
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FIGURE 3: An overview of HCPSAS (http://www.tcmai.org). Our annotation system adopts human-machine collaborative annotation, in
which the machine annotation includes dictionary-based entity matching, rule-based regular expression matching, and Phenonizer model
recognition, and the manual annotation includes word-level annotation and document-level annotation. The iterative dictionary and rule
base include standard dictionary and rule base, both of which are derived from annotation. The EMR corpus is regarded as datasets for
our methods, and the structured EMRs are used for clinical analysis tasks such as patient subgroup and symptom cluster.
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FIGURE 4: The overall framework of Phenonizer. Because of BERT, the special symbol [CLS] needs to be added before every sentence for
classification output. E; represents the input embedding, which is the sum of token embedding, segmentation embedding, and position

embedding. e; represents the contextual representation of token X and will be used as the input of BiLSTM. h; are decoded by the CRF
layer to get the optimal annotation sequences.

treated all recognized symptoms as PS (as did general Precision = TP (14)

BioNER methods). Thus, when testing, degraded models recsion = o Ep°

should identify the chunks containing NS in the WithNeg

dataset as PS. Recall TP (15)
T TP

3.8. Evaluation Metrics. To evaluate the performance of
BioNER methods, we selected precision, recall, and FI- Fl-score = i
score as experiment metrics: precision + recall

2 s precision * recall
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True Positive (TP) is the number of entities which are
identified correctly. False Positive (FP) represents the num-
ber of chunks identified as entities mistakenly. False
Negative (FN) represents the number of entities that are
not recognized by models. Precision is the fraction of rele-
vant entities among the retrieved entities, while recall
represents the percentage of relevant entities that are
retrieved by models. Fl-score is the harmonic mean of
precision and recall.

4. Results and Discussion

In this section, we showed the experiments results with dif-
ferent methods independently. First, we reduced the manual
labelling effort by 80% through HCPSAS. Secondly, we com-
pared Phenonizer with different baseline models and dem-
onstrated the strong phenotypic entity extraction ability of
Phenonizer. In addition, we demonstrated that fine-grained
datasets can improve phenotypic entity tasks and distinguish
between NS and PS through different granularity datasets.
Finally, we evaluated the performance of each method on
different datasets and performed ablation experiments to
demonstrate the stability of Phenonizer.

4.1. Human-Machine Cooperative Annotation. The three
benchmark datasets used in this article were all built using
HCPSAS, and the results are shown in Table 3. The number
of samples of datasets ranged from 6,000 to 30,000, and the
entities annotated reached the order of hundreds of thou-
sands, but 80% of entities were annotated by machine, which
achieved the original intention of human-machine
collaboration in data tagging.

4.2. Phenonizer for COVID-19 EMRs. We trained Phenoni-
zer models and baselines with the COVID-19 dataset, which
was divided into training set and test set in a ratio of 3:1.
Among them, one-fifth of the training set serves as develop-
ment set [42]. For character embedding training, we set
window size and the dimension of word embeddings to 5
and 300. In the process, we used a learning rate of 0.0001
and set hidden layer size and batch size to 128 and 8. The
training for three models requires 100 epochs to accomplish
and less than 10 hours at most.

The performance of different models was shown
(Table 4). Comparing character embedding in general and
medical domain, we found that the character embeddings
obtained by training GloVe and W2V with data from bio-
medical field can improve the performance by about 0.001.
However, it can be found that BERT’s contextual representa-
tion ability makes Phenonizer better in results than W2V,
dicar trained by biomedical field data. Compared with
W2V i Which is also trained in Chinese encyclopedia
data, Phenonizer improved 0.0098, 0.0346, and 0.0226 in
precision, recall, and Fl-score, respectively. Therefore, the
contextual information contained in BERT can promote
the performance of phenotypic entity recognition with F1-
score generally reaching over 0.8.

4.3. Comparison between Normal and Degraded Models. The
model parameters in this part are the same as those in the
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TaBLE 3: The annotation results of each dataset and the proportion
of machine annotations.

No. of

No. of entities Machine
No. of No. of entities annotation
Datasets . annotated .
texts entities annotated by proportion
0
manually machine (%)
TCM-HN 29,636 318,337 51,925 266,412 83.69
COVID-19 6,105 201,567 39,796 161,771 80.25
TCM-HB 18,555 247,291 52,797 194,494 78.65

previous experiment. By comparing the results of symptom
extraction between normal and degraded models (Tables 4
and 5), it was found that the performance of symptom
extraction in degraded models without NS-PS differentiation
was about 0.005 lower than that of normal models, indicat-
ing that the fine-grained dataset could bring performance
improvement to models.

On the other hand, we tested degraded models on the
WithNeg dataset and evaluated their ability in symptom
extraction (Table 6). As we envisioned, the recall of degraded
models remained almost unchanged, but precision dropped
significantly. The recall in results is above 0.9, indicating that
most PS had been correctly recognized by degraded models.
Precision dropped to about 0.6. This is because degraded
models do not take into account the prefix or suffix of NS
leading to the identification of the chunks with NS as PS,
which is exactly what we do not want to see.

In the WithNeg dataset, there are 12,115 PS and 6,196
NS. At the same time, we also counted the proportion of
NS and PS in EMRs of other hospitals or other departments
(such as hepatology or surgery, no further elaboration here).
In fact, each EMR contains a lot of NS, if the granularity of
BioNER models’ recognition of symptoms only stays at the
symptom level, which is meaningless for clinical analysis.

5. Case Study

To show the performance of our model, we take a specific
clinical sentence to demonstrate the annotation results on
both presented symptoms and negated symptoms of Pheno-
nizer. Table 7 shows a case study comparing normal and
degraded Phenonizer. In the example, Phenonizer
(degraded) identified “fever,” “cough,” “chest tightness,”
and “chest pain” as symptoms, which is valid on its own,
but it will deliver false information for subsequent data anal-
ysis if no postprocess was conducted because the patient
actually did not suffer from chest tightness and chest pain.
In contrast, Phenonizer (normal) identified “fever” and
“cough” as PS and “without chest tightness, chest pain or
other discomfort” as NS, which would help obtain the exact
symptom phenotypes for patients.

Note that both Phenonizer (normal) and Phenonizer
(degraded) used the same source of character embeddings
(BERT-basecy,;,.c.) and parameters. However, Phenonizer
(degraded) was trained by a symptom-level NonNeg dataset,
which is degraded from the WithNeg dataset.
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TaBLE 4: Comparison of different models for COVID-19 EMRs.

Models

Precision

Recall

F1-score

BiLSTM-CRF

GloVeyyy;- BILSTM-CRF
GloVeyeqica-BILSTM-CRE
W2V i~ BILSTM-CRF
W2V edica-BILSTM-CRF

BERT-CRF

Phenonizer

0.8777 £0.0069
0.8694 + 0.0004
0.8776 £0.0038
0.8787 £0.0033
0.8876 £0.0019
0.8793 £0.0008
0.8885 £ 0.0046

0.8729 £0.0036
0.8649 + 0.0026
0.8724 £ 0.0055
0.8693 + 0.0028
0.8806 £ 0.0060
0.9019 £ 0.0024
0.9039 £ 0.0038

0.8753 £0.0018
0.8671 £0.0012
0.8750 £0.0011
0.8734 £ 0.0013
0.8837 £0.0027
0.8905 £ 0.0011
0.8960 £ 0.0009

TaBLE 5: Comparison of degraded models for COVID-19 EMRs.

Degraded models Precision Recall Fl-score
BiLSTM-CRF 0.8660 0.8515 0.8587
GloVeyy;;-BiLSTM-CRF 0.8620 0.8468 0.8544
GloVey g, -BILSTM-CRF  0.8691 0.8481  0.8585
W2V, - BILSTM-CRE 0.8605  0.8629  0.8617
W2V gica-BILSTM-CRF 0.8624 0.8701  0.8662
BERT-CRF 0.8664 0.8916 0.8788
Phenonizer 0.8767 0.8852 0.8809

In addition, we found that precision of Phenonizer for
drug was relatively low, at about 0.6. Therefore, we con-
ducted an in-depth analysis of the drug prediction results.
We found that Phenonizer predicted unlabelled entities in
the text. For example, in the example sentence “The patient
took nifedipine sustained-release tablets 20mgqd orally for a
long time to reduce blood pressure, blood pressure is
unknown; has a history of type 2 diabetes and has been using
insulin 30 aspartate injection for a long time,” Phenonizer
successfully identified “nifedipine” and “insulin” as drug
entity, but annotators omitted these two entities in the label-
ling process. Moreover, we found similar problems in past
history. Since our dataset is symptom-specific, the absence
of other entities is inevitable. The performance of Phenoni-
zer in symptom extraction is very excellent, but a few
mistakes were caused by complicated description of symp-
toms, such as “dissolving watery stools 5 to 6 times per
day,” which brings confusion to symptom extraction.

5.1. Generalization Performance. To estimate the generaliza-
tion performance of models with respect to different datasets
(homologous and heterologous data), we trained models
with the data of TCM-HN as the train set and development
set and COVID-19 and TCM-HB as the test set. As for data
setting, the data of TCM-HN was divided into a training set
and development set in a ratio of 3: 1, and then, all COVID-
19 and TCM-HB were taken as test sets. Since the data are
from different hospitals, the entity labels used for annotating
are slightly different. During the experiment, we selected the
same labels (PS, NS) in different datasets. Table 8 shows the
migration capability of Phenonizer on COVID-19 data; pre-
cision, recall, and Fl-score are 0.823, 0.8556 and 0.8389,
respectively. For the heterogenous dataset, the performance
of each model decreases a lot, but Phenonizer still maintains

the optimal result (see Table 9). In terms of generalization
performance, Phenonizer performs better than methods
based on GloVe and Word2Vec, whereupon our model has
a strong generalization ability to rapidly and accurately iden-
tify entities in Chinese EMRs for clinical analysis in the face
of new disease in the future.

6. Discussion

The basic strategy of Phenonizer is to obtain the contex-
tual representation of words by BERT and then encode
and decode the information in sentences by the combina-
tion of BiLSTM and CRF, so that the model can annotate
phenotypic entities in Chinese EMRs. Moreover, Phenoni-
zer is not limited to general coarse granularity (symptom-
level) but can identify and distinguish NS and PS and
extract the corresponding duration of PS. In sequence
structuration, PS and duration of symptoms will be
retained without NS. Therefore, our study is of great sig-
nificance for clinical analysis. Because BERT is modeled
based on the input of char features and in order to avoid
errors caused by word segmentation, we trained character
embeddings by GloVe and W2V without word
segmentation.

Despite the fact that our method was successfully applied
to clinical datasets, the comparison between embedding,;,;
and embedding,; 4., shows that pretraining using medical
data can improve the performance of model. However, due
to the limitation of computing power and data volume, we
can only use BERT-basey; ... provided by Google at pres-
ent. If we can train a Chinese BioBERT like Lee et al. [43],
it will bring improvement to our method.

In addition, as in all character-based approaches, our
method, while avoiding suffering from word segmentation
errors, has yet to explicitly leverage word and word sequence
information. It was shown that encoding a sequence of input
characters as well as all potential words that match a lexicon
outperforms both character-based and word-based methods
[33]. This suggests that combining our Phenonizer approach
with domain dictionary or knowledge graph may improve
performance.

Finally, a number of recent BioNER approaches based
on multitask learning have emerged, suggesting that the
strong performance can be achieved by only marginally add-
ing training time through multitask learning [44]. We would
expect in the future that integrating domain dictionaries and
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TaBLE 6: Comparison of symptom extraction performance for different models on the WithNeg dataset.

Models Precision Recall Fl-score

Normal Degraded Normal Degraded Normal Degraded
BiLSTM-CRF 0.9134 0.6111 0.9090 0.9133 0.9112 0.7322
GloVeyy;-BILSTM-CRF 0.9077 0.6076 0.9085 0.9124 0.9081 0.7294
GloVey.yn-BILSTM-CRF 0.9119 0.6120 0.9077 09127 0.9098 0.7327
W2Vyy;-BILSTM-CRF 0.9363 0.6133 0.9213 0.9287 0.9287 0.7387
W2V gica-BILSTM-CRF 0.9329 0.6144 0.9281 0.9321 0.9305 0.7406
BERT-CRF 0.9261 0.6211 0.9243 0.9254 0.9252 0.7433
Phenonizer 0.9405 0.6216 0.9387 0.9398 0.9396 0.7483

TasLE 7: Examples of symptom extraction results in both models.”.

Sentence (truncated) The patient developed fever and cough 9 days ago, without chest tightness, chest pain, or other discomfort
Phenonizer (normal) ... fever and cough ..., without chest tightness, chest pain, or other discomfort
Phenonizer (degraded) ... fever and cough ..., without chest tightness, chest pain ...

“Italic and bold texts represent PS and NS, respectively. Bold italic texts denote symptoms extracted by Phenonizer (degraded). In contrast, Phenonizer
(normal) considered the practical significance of symptoms in Chinese EMRs and refined symptoms into NS and PS.

TaBLE 8: The symptom extraction performance of models on isomorphic data (COVID-19).

Training dataset COVID-19 TCM-HN

Models Precision Recall Fl1-score Precision Recall Fl1-score
BiLSTM-CRF 0.9128 09127 0.9128 0.7739 0.7675 0.7707
GloVeyy;;-BiLSTM-CRF 0.9064 0.9116 0.9090 0.7626 0.7715 0.7670
GloVey,yico-BILSTM-CRE 0.9093 0.9144 09113 0.7683 0.7661 0.7672
W2Vy;1;-BILSTM-CRF 0.9145 0.9209 09177 0.7994 0.8380 0.8181
W2V, 4ica-BILSTM-CRF 0.9164 0.9201 09183 0.8104 0.8457 0.8275
BERT-CRF 0.9220 0.9231 0.9225 0.8056 0.8440 0.8243
BERT-BiLSTM 0.9170 0.9220 0.9195 0.8188 0.8516 0.8348
Phenonizer 0.9211 0.9264 0.9237 0.8230 0.8556 0.8389

TaBLE 9: The symptom extraction performance of models on heterogenous data (TCM-HB).

Training dataset TCM-HB TCM-HN

Models Precision Recall Fl1-score Precision Recall Fl1-score
BILSTM-CRF 0.7682 0.7865 0.7772 0.6512 0.5865 0.6171
GloVeyy;,-BiLSTM-CRF 0.7701 0.7870 0.7785 0.6510 0.6097 0.6297
GloVey.yo-BILSTM-CRF 0.7705 0.7957 0.7829 0.6575 0.6104 0.6331
W2V,;-BILSTM-CRF 0.7686 0.7964 0.7822 0.6436 0.6261 0.6347
W2V gica-BILSTM-CRF 0.7734 0.7996 0.7863 0.6623 0.6139 0.6372
BERT-CRF 0.7719 0.8179 0.7943 0.6566 0.6198 0.6377
BERT-BiLSTM 0.7688 0.8145 0.7910 0.6400 0.6406 0.6403

Phenonizer 0.7727 0.8189 0.7952 0.6438 0.6446 0.6442
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knowledge graphs into our approach with multitask learning
may enhance the semantic representation of model and
improve its performance.

7. Conclusions

Our study provides a clinical phenotype extraction tool for
Chinese EMRs. We developed HCPSAS, constructed a large
fine-grained annotated Chinese EMRs corpus, and imple-
mented a deep learning approach wusing character
embeddings. The method using BERT as features achieves
that best performance with Fl-score over 89% end to end,
significantly outperforming the baseline methods using
GloVe and Word2Vec. Furthermore, our datasets distin-
guish NS and PS and enable our model to identify the two
kinds of symptoms independently, so as to avoid NS being
identified as PS, which will adversely affect subsequent clin-
ical analysis. Moreover, it is verified that the ability of
symptom extraction of Phenonizer can be slightly improved
after distinguishing datasets. Finally, we evaluated the gener-
alization performance of our method, using TCM-HN data
and COVID-19 data for training and testing, and obtained
F1-score over 83%. In addition, Phenonizer maintains opti-
mal results on the heterogenous dataset (TCM-HB). The
results demonstrate the effectiveness of deep learning
methods in Chinese BioNER and the necessity of construct-
ing a fine-grained Chinese clinical corpus.
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