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Sarcomas are a heterogeneous group of rare mesenchymal tu-
mors. The migration of immune cells into these tumors and
the prognostic impact of tumor-specific factors determining
their interaction with these tumors remain poorly under-
stood. The current risk stratification system is insufficient
to provide a precise survival prediction and treatment
response. Thus, valid prognostic models are needed to guide
treatment. This study analyzed the gene expression and
outcome of 980 sarcoma patients from seven public datasets.
The abundance of immune cells and the response to immuno-
therapy was calculated. Immune-related genes (IRGs) were
screened through a weighted gene co-expression network
analysis (WGCNA). A least absolute shrinkage and selection
operator (LASSO) Cox regression was used to establish a
powerful IRG signature predicting prognosis. The identified
IRG signature incorporated 14 genes and identified high-
risk patients in sarcoma cohorts. The 14-IRG signature was
identified as an independent risk factor for overall and dis-
ease-free survival. Moreover, the IRG signature acted as a po-
tential indicator for immunotherapy. The nomogram based
on the risk score was built to provide a more accurate survival
prediction. The decision tree with IRG risk score discrimi-
nated risk subgroups powerfully. This proposed IRG signa-
ture is a robust biomarker to predict outcomes and treatment
responses in sarcoma patients.

INTRODUCTION
Sarcomas arise from the skeleton and the soft tissue subdividing in
various histologic subtypes and have an increasing incidence of 7.7
cases/100,000 individuals per year.1,2 In the European Union, about
27,908 new cases per year are registered.3,4 The therapeutic
approaches differ between the subgroups, but surgery offers the
only chance of cure.5,6 However, in large series, recurrence rates
are as high as up to 45%, which underlines the importance of a pre-
cise diagnostic and therapeutic workup.7,8 In this respect, the
anatomic heterogeneity complicates the standardization of
diagnosis and therapy. Currently the main prognostic criteria for
sarcomas are tumor grade, size, histological subtype, and resection
margin status,9 which makes it challenging to precisely assess the
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individual prognosis. Consequently, it is imperative to develop
robust biomarkers to predict the prognosis and the therapeutic
response of sarcoma patients.

Increasing evidence suggests that tumor-infiltrating immune cells
determine the clinical outcome of immunotherapy in different sar-
coma subtypes.10–13 Immunosurveillance is mediated in part by two
major groups of T cells (CD4+, CD8+), which play a pivotal role in
tumor formation, tumor progression, and therapy.14 Moreover, pre-
vious studies demonstrated that an abundance of specific T cell sub-
sets exerts favorable effects on the immune status of patients,
improving responses to anticancer treatment and, subsequently,
prognosis.15,16 However, although it is still not clear which genes
regulate the microenvironment of sarcomas and the abundance of
tumor-infiltrating lymphocytes (TILs), it is reasonable to assume
that immune-cell-related genes influence the prognosis of sarcoma
patients. In this regard, recently an accurate and unique method
called Immune Cell Abundance Identifier (ImmuCellAI) has been
implemented. ImmuCellAI allows us to calculate the abundance
of 24 tumor-related immune cell types from gene expression
data,17 which enables analyzing the association between the abun-
dance of immune cells, the underlying genes, and the prognosis of
cancer patients. Moreover, ImmuCellAI seems to facilitate an accu-
rate prediction of the response to immunotherapy in cancer
patients.17

Thus, the present study aimed to develop a prognostically relevant
immune-cell-related gene signature based on sarcoma-related data
from The Cancer Genome Atlas (TCGA-SARC) and validate this
signature in six independent sarcoma cohorts. In addition, we
aimed to analyze the association between immunological features
and the gene signature to predict the response to immunotherapy
in the sarcoma cohorts. Finally, based on the gene signature and
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Figure 1. Flow chart of the study design

(A) Identification of the immune cell subtypes with prog-

nostic relevance. (B) The approaches used to establish an

immune-related gene signature for prognosis. (C) The

prognostic value of the gene signature was investigated in

different cohorts. (D) This application of personalized

medicine might be used in daily routine. WGCNA,

weighted gene co-expression network analysis; tROC,

time-dependent receiver operating characteristic.
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clinicopathological data, we sought to establish a novel nomogram
and decision tree to improve risk stratification in daily clinical
practice.

RESULTS
Flow chart of the study design

First, the abundance scores of 24 immune cell types and the infiltra-
tion scores were downloaded from the ImmuCellAI database and
transformed into a Z score using the scale method in R project.
The univariate Cox proportional regression analysis was used to
identify the protective immune cell types that promote a better
prognosis in TCGA-SARC patients (Figure 1A). Then, a weighted
gene co-expression network analysis (WGCNA) was performed to
Molecula
select the gene module most relevant to these
protective immune cell subtypes. In total, 573
genes were extracted from the “MEred mod-
ule” and further analyzed by univariate Cox
regression and LASSO Cox regression
analyses. As a result, 14 immune-related prog-
nostic genes were identified and developed into
a multiple gene signature with the correspond-
ing coefficients (Figure 1B). Subsequently, the
prognostic value of this immune-related gene
(IRG) signature was investigated in the
TCGA-SARC cohort and six independent vali-
dation cohorts. Moreover, the immunologic
features and the response to immunotherapy
were also explored in high- and low-risk
groups based on the signature risk score (Fig-
ure 1C). In order to apply the gene signature
to clinical practice, the nomogram and decision
tree combined clinical information, and IRG
risk scores were established to determine the
survival outcome and risk levels for sarcoma
patients (Figure 1D).

Prognostic relevance of T cell subtypes and

NK cells

The univariate Cox regression analysis
demonstrated that the abundance scores of
eleven immune cells and the infiltration score
were significantly associated with overall sur-
vival (OS) in the training set. Nine of these
scores, including natural killer (NK), CD4+ T, T follicular helper
(Tfh), central memory T (Tcm), T helper type 1 (Th1), natural
killer T (NKT), CD8+ T, cytotoxic T cell (Tc), and the infiltration
score, correlated positively with survival rates (Figure 2A). The 256
patients of the TCGA-SARC cohort were divided into high-score
and low-score groups based on the optimal immune-score-cut-
off value, and the high-score group exhibited a better prognosis
than the low-score group (Figures 2B–2J).

Construction of the IRG signature for OS

AWGCNAwas performed to identify the most significant gene mod-
ules related to the nine protective immune scores. When b = 5 (a soft
threshold), the scale-free R2 was 0.85, generating a scale-free co-
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Figure 2. Immune cells were identified as the

primary protective factors for survival

(A) Univariate Cox regression analysis showed that 7

T cell types, NK cells, and the infiltration score were

protective factors among the scores of various immune

cell subsets. (B–H) Kaplan–Meier analysis indicated that

patients with higher scores of NK (B), CD4+ T (C), Tfh

(D), Tcm (E), Th1 (F), NKT (G), CD8+ T (I), and Tc (J)

cells and infiltration score (H) had better OS (p <

0.05). NK, natural killer cells; Tfh, follicular helper

T cells; Tcm, central memory T cells; Th1, T helper

type 1 cells; NKT, natural killer T cells; Tc, cytotoxic

T cells.
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expression network (Figures S1A and S1B), and a total of 14 non-gray
modules were obtained (black, blue, brown, cyan, green, green-yel-
low, magenta, pink, purple, red, salmon, tan, turquoise, and yellow)
(Figures S1C and 3A). Among these 14 gene co-expression modules,
the red module (“MEred module”) had the most significant correla-
tion with all nine protective immune scores (Figure 3B). Subse-
quently, all genes from the red module were further analyzed by a
univariate Cox regression, and thereby 220 prognosis-related genes
116 Molecular Therapy: Oncolytics Vol. 24 March 2022
were identified. Most of these genes exerted a
protective effect, and only two genes were nega-
tively correlated (Figure 4A).

A LASSO Cox regression analysis was applied to
identify the most robust prognostic genes and
the corresponding coefficients (Figures S2A,
S2B, and 4B). This analysis revealed 14 prognos-
tically relevant genes (NT5DC2, REC8, GBP2,
APOL2, CMA1, TAPBPL, TNFSF15, DHX58,
ZNFX1, SLC25A20, FCER1A, CRIP1, TNF,
TRIM21). Thus, the risk score formula of the
IRG signature reads as follows: NT5DC2 �
0.11572 + REC8 � 0.037668 + GBP2 �
(�0.00153) + APOL2 � (�0.01601) +
CMA1 � (�0.0341) + TAPBPL �
(�0.04386) + TNFSF15 � (�0.05468) +
DHX58 � (�0.06778) + ZNFX1 �
(�0.08096) + SLC25A20 � (�0.10396) +
FCER1A � (�0.10488) + CRIP1 �
(�0.11699) + TNF � (�0.11901) +
TRIM21 � (�0.17847). The patients of the
training set were then divided into a high- and
low-risk groups according to the optimal cut-
off value generated from the IRG risk score for-
mula. The high-risk group had a highly signifi-
cant decreased OS compared with the low-risk
group (p < 0.0001, hazard ratio [HR] = 8.98,
95% CI: 5.06–15.94; Figure 4C). Moreover, the
areas under the curve (AUCs) of the IRG
signature for 1-, 3-, and 5-year OS were 0.75,
0.8, and 0.75, respectively (Figure 4D). In
addition, the disease-free survival (DFS) of high-risk patients was
also highly significantly shorter than that of low-risk patients
(p < 0.0001, HR = 2.9, 95% CI: 1.78–4.73; Figure 4E). The AUCs of
1-, 3-, and 5-year DFS were 0.64, 0.72, and 0.68, respectively
(Figure 4F).

To confirm whether the IRG signature was an independent prog-
nostic factor, multivariate Cox regression analyses were performed



Figure 3. The construction of co-expression

modules and module-trait relationships of

sarcomas

(A) Visualizing the gene network using a heatmap plot. (B)

Correlation of module eigengenes with all the protective

immune cell scores. Each unit contains the corresponding

correlation coefficient and p value.
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in the patients (150 patients for OS and 133 patients for DFS) of the
TCGA-SARC cohort with complete clinicopathological information.
The multivariate Cox regression analysis showed that age, metastasis,
and IRG signature risk score were significantly associated with OS
(Figure 5A). Additionally, age, metastasis, resection margin status,
and IRG signature risk score were proved to be independent risk fac-
tors for DFS (Figure 5B).

Validation of the IRG signature in six independent sarcoma

cohorts

To determine the robustness of the identified 14 IRG signatures, vali-
dation survival analyses were performed in six independent sarcoma
cohorts. The patients of these six validation groups were divided into
Molecula
high- and low-risk groups according to the
generated risk score formula, and thereby
the Kaplan–Meier survival analyses proved the
prognostic relevance of the IRG signature in
all six independent validation groups.

The OS of the high-risk groups was significantly
worse compared with the low-risk groups of the
validation cohorts I–III (TARGET-Osteosar-
coma: HR = 1.86, 95% CI: 0.58–5.96, p =
0.021; GEO: GSE17674: HR = 21.18, 95% CI:
3.71–120.87, p < 0.0001; GEO: GSE119041:
HR = 7.92, 95% CI: 1.37–45.87, p = 0.0042; Fig-
ures 6A, 6C, and 6E, respectively). The receiver-
operating characteristic (ROC) curve analysis of
the IRG signature showed a beneficial 1-, 3-, and
5-year AUC in each cohort (TARGET-Osteo-
sarcoma: AUCs of 1-, 3-, and 5-year OS were
0.59, 0.61, and 0.55, respectively; GEO:
GSE17674: AUCs of 1-, 3-, and 5-year OS
were 0.81, 0.68, and 0.73, respectively; GEO:
GSE119041: AUCs of 1-, 3-, and 5-year OS
were 0.61, 0.77, and 0.77, respectively; Figures
6B, 6D, and 6F, respectively).

Moreover, the prognostic potential of the IRG
signature for DFS was also validated. In the vali-
dation cohorts IV–VI, DFS in the high-risk group
patients was significantly worse compared with
those in the low-risk group (GEO: GSE71118:
HR = 1.2, 95% CI: 0.83–1.76, p = 0.0071; GEO:
GSE30929: HR = 7.44, 95% CI: 2.49–22.21, p <
0.0001; GEO:GSE40025: HR= 3.32, 95%CI: 1.81–6.12, p < 0.0001; Fig-
ures 7A, 7C, and 7E, respectively). Likewise, thepredicative accuracy for
DFS yielded a valuable 1-, 3-, and 5-year AUC in the three independent
validation cohorts (GEO: GSE71118: AUCs of 1-, 3-, and 5-year DFSs
were 0.55, 0.54, and 0.57, respectively; GEO: GSE30929: AUCs of 1-, 3-,
and 5-year DFS were 0.7, 0.72, and 0.66, respectively; GEO: GSE40025:
AUCs of 1-, 3-, and 5-year DFSs were 0.68, 0.7, and 0.75, respectively;
Figures 7B, 7D, and 7F, respectively).

The IRG signature serves as a potential indicator for immune

characteristics and immunotherapy response

Since the 14-gene signature was closely related to immune cell
abundance scores, the difference of immunological features and
r Therapy: Oncolytics Vol. 24 March 2022 117
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Figure 4. Establishment of the immune-related gene

signature

(A) A total of 220 prognosis-related candidates were

identified among 573 genes extracted from the red

module (“MEred”). (B) Gene symbols and the corre-

sponding LASSO coefficients of the IRG signature. (C)

Kaplan–Meier curve revealed that patients with higher IRG

risk scores exhibited worse OS. (D) The time-dependent

ROC curves of the prognostic signature for OS in the

training cohort. IRG, immune-related gene; LASSO,

least absolute shrinkage and selection operator; ROC,

receiver operating characteristic. (E) Kaplan–Meier

analysis indicated that patients with higher IRG risk

scores showed shorter DFS. (F) The time-dependent

ROC curves of the prognostic signature for DFS in the

training cohort.
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immunotherapy responses in high- and low-risk groups were investi-
gated further. For this purpose, the ESTIMATE (estimation of stromal
and immune cells inmalignant tumor tissues using expression data) al-
gorithm was applied to assess tumor purity and the ratio of infiltrating
stromal/immune cells in tumor tissues based on gene expression pro-
files. The correlation analysis revealed that the risk score of the IRG
signaturewas significantly negatively correlated with the immune score
(R =�0.48, p < 0.0001), the stromal score (R=�0.22, p = 0.00054), and
the ESTIMATE score (R = �0.42, p < 0.0001) (Figures 8A–8C).

Next, the single sample gene set enrichment analysis (ssGSEA) scores
were used to assess the immunogenic activity in the sarcoma samples
118 Molecular Therapy: Oncolytics Vol. 24 March 2022
based on the 29 gene sets representing diverse
immune cell types, functions, and pathways.
The low-risk group showed a higher immune
cell infiltration level compared with the high-
risk group (Figure 6D). More importantly, there
was a significant negative correlation between
the IRG risk score and the expression levels of
most immune checkpoint genes (ICGs) (Fig-
ure 8E). Furthermore, the immunotherapy
response ratio between high- and low-risk
groups was calculated by the “ImmuCellAI”
online tool (http://bioinfo.life.hust.edu.cn/
ImmuCellAI#!/). As shown in Figure 8F,
63.4% of patients in the low-risk group were
sensitive to immunotherapy, which is signifi-
cantly more patients compared with those in
the high-risk group (p < 0.0001).

Nomogram and decision tree based on the

IRG signature

In order to better apply the newly generated IRG
signature to clinical practice, a nomogram for
predicting OS was developed (Figure 9A). For
this analysis, 150 patients of the TCGA-SARC
cohort with complete clinicopathological infor-
mation were used, and the risk score was incorporated additionally.
The nomogram included various clinicopathological information
(age, metastasis, tumor size, resection margin) and the risk score
derived from the IRG signature. The integrated nomogram showed
a high predictive accuracy for OS with a calculated 1-year AUC of
0.72 (95% CI: 0.58–0.87), a 3-year AUC of 0.83 (95% CI: 0.74–
0.91), and a 5-year AUC of 0.86 (95% CI: 0.77–0.95), respectively
(Figure 9B). The calibration plots of observed and predicted probabil-
ities of 3- and 5-year OS presented a good consistency (Figure S3A).
Moreover, the decision curve analysis (DCA) showed that the net
benefit of the nomogram was superior to a model built with tradi-
tional clinicopathological information (Figure S3B).

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/


Figure 5. Independent prognostic factors for OS and DFS in the TCGA-

SARC cohort

(A and B) Multivariate Cox regression analysis of the relationship between clinico-

pathological features (including the risk score) and OS (A)/DFS (B) of patients in the

TCGA-SARC dataset.
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To further optimize the risk stratification for sarcoma patients, a
recursive partitioning analysis was done, and a decision tree for OS
was established. Finally, the IRG signature risk score along with age
and distant metastasis remained in the decision tree, and three
different risk subgroups were identified (Figure 9C). The Kaplan–
Meier analysis proved the prognostic relevance of the established de-
cision tree and showed a significant difference in OS among the three
subgroups (overall: p < 0.0001; high risk versus intermediate risk: p =
0.0002, HR = 2.777, 95% CI: 1.44–5.34; intermediate risk versus low
risk: p = 0.0006, HR = 4.181, 95% CI: 2.07–8.45; high risk versus low
risk: p < 0.0001, HR = 10.77, 95% CI: 4.71–24.64; Figure 9D). In order
to compare with the risk stratification based on the traditional clini-
copathological information alone, the second decision tree was
developed, which contains three decision nodes of metastasis, age,
and tumor size (Figure S4A). The survival analysis also demonstrated
a significant difference in OS among the three risk subgroups gener-
ated by the second decision tree (overall: p < 0.0001; high risk versus
intermediate risk: p = 0.0002, HR = 3.346, 95% CI: 1.19–9.40; inter-
mediate risk versus low risk: p < 0.0001, HR = 5.191, 95% CI: 2.83–
9.52; high risk versus low risk: p < 0.0001, HR = 12.85, 95% CI:
3.05–54.14; Figure S4B).

DISCUSSION
Sarcomas are a heterogeneous malignant disease of mesenchymal
origin, which account for approximately 1% of malignant tumors in
adults and 15% of all children malignancies.18 The survival rates of
each sarcoma subtype differ due to disease heterogeneity. However,
establishing appropriate prognostic biomarkers is critical for preci-
sion medicine and risk stratification. In this respect, recent studies
demonstrated that distinct immune gene signatures are prognosti-
cally relevant in cancer patients.19–22 However, the IRGs selected in
most studies are derived from the ImmuPort database or from
ssGSEA. In the present study, the 14-IRG signature for sarcoma pa-
tients is based on ImmucellAI and WGCNA, which provides a novel
and innovative method to identify prognostic biomarkers. Moreover,
the newly presented IRG signature proved to act as a powerful and ac-
curate prognostic parameter in seven different sarcoma cohorts.
Furthermore, the risk score derived from the IRG signature was
significantly correlated with the immune microenvironment and
the response to immune checkpoint therapy. In order to quantify
the risk assessment of each patient, a nomogram and a decision
tree integrating the IRG signature risk score were established. Both
proved to serve as valuable and robust predictive tools for the survival
outcomes of sarcoma patients.

In the present study, a significant prognostic correlation between a
high IRG signature score and shorter OS and DFS in seven different
sarcoma cohorts was demonstrated. This is the most comprehensive
study including the biggest collective of sarcoma patients analyzing
seven public sarcoma datasets with almost 1,000 patients. In the devel-
oped 14-IRG signature, the expression level of twelve genes (TRIM21,
TNF, CRIP1, FCER1A, SLC25A20, ZNFX1, DHX58, TNFSF15,
TAPBPL, CMA1, APOL2, and GBP2) were negatively correlated
with OS. TRIM21 (tripartite motif-containing protein 21) seems to
be the most powerful gene since it had the most negative coefficient
value. TRIM21 is involved in innate immunity and cancer progression.
Previous studies found that the overexpression of TRIM21 inhibits
tumor migration and invasion in breast cancer cell lines. Correspond-
ingly, high TRIM21 expression rates were associated with
increased survival rates of breast cancer patients.23,24 However, Zeng
et al. reported that TRIM21positively regulated osteosarcoma cell pro-
liferation and autophagy.25 Only two genes (NT5DC2 and REC8) act
as oncogenes in the IRG signature. NT5DC2 (50-nucleotidase domain-
containing 2) is themost significant risk genewith a high coefficient. It
has been shown to be involved in tumor development and progression
in various types of carcinomas, such as colorectal cancer, lung cancer,
hepatocellular carcinoma, and glioma.26–29 Nonetheless, only little is
known about the exact function of NT5DC2 in sarcomas. In this
respect, the present study firstly reported the potential prognostic
value of NT5DC2 in sarcoma patients. Additionally, recent findings
further support the present study. Hu et al. demonstrated that the
overexpression of NT5DC2 promotes leiomyosarcoma progression
and proliferation both in vitro and in vivo.30 Therefore, NT5DC2
Molecular Therapy: Oncolytics Vol. 24 March 2022 119
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Figure 6. Validation of the OS-related prognostic

relevance of the IRG signature with three external

datasets

(A) Kaplan–Meier analysis of OS in the TARGET-

Osteosarcoma cohort (validation cohort I). (B) The AUC

of the risk score predicting the 1-, 3-, and 5-year OS in

the TARGET-Osteosarcoma cohort. (C) Kaplan–Meier

analysis of OS in the GEO: GSE17674 cohort (validation

cohort II). (D) The AUC of the risk score predicting the 1-

, 3-, and 5-year OS in the GEO: GSE17674 cohort. (E)

Kaplan–Meier analysis of OS in the GEO: GSE119041

cohort (validation cohort III). (F) The AUC of the risk

score predicting the 1-, 3-, and 5-year OS in the GEO:

GSE119041 cohort.
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may be a novel biomarker and therapeutic target for sarcomas, but
further studies are needed to verify its biological function and prog-
nostic value.

Notably, the risk score of the IRG signature demonstrated a signif-
icant predictive capacity for survival outcomes in the training set
and in all validation cohorts. A multivariate regression analysis
showed that the IRG signature risk score was an independent
risk factor for both OS and DFS. Moreover, the AUC of the IRG
120 Molecular Therapy: Oncolytics Vol. 24 March 2022
risk score for 3-year OS was 0.8, which is out-
performing previously published genetic risk
scores.31 These findings indicate that the 14-
gene signature may play a critical role in the
development and progression of sarcomas
and may serve as a prognostic tool. In contrast
to previous studies,32–34 the novel IRG signa-
ture proved to be suitable for different sar-
coma subtypes. The present results suggest
that although sarcoma subtypes are partially
heterogeneous, these entities share a common
genetic background. Therefore, it is necessary
to design further experimental research to
investigate the biological function of the iden-
tified 14 genes in different sarcoma subtypes.

In this respect, adjuvant35–37 and neoadju-
vant38–40 systemic therapies reduce the risk of
metastatic spread significantly, subsequently
leading to prolonged OS. Nonetheless, the find-
ings of the individual trials are sometimes
inconclusive, and treatment regimens differ.
Recently, it has been demonstrated that a risk-
adjusted chemotherapy is associated with signif-
icantly increased survival rates.41 The risk
adjustment was done with a nomogram, which
was based only on clinicopathological parame-
ters like age, tumor size, and histology, particu-
larly disregarding the tumor biology.41,42

However, a histotype-tailored neoadjuvant

chemotherapy had no prognostic benefit in a multicenter trial.38

Thus, the identification of patients at risk is of utmost importance
to design further studies investigating multimodal therapy. The pre-
sent findings suggest that the introduced nomogram and the IRG
signature might be appropriate tools to stratify patients.

In an attempt to better apply the IRG signature in a clinical setting, a
nomogram and a novel decision tree were established. The results of
the AUC, calibration curve, and decision curve analysis (DCA)



Figure 7. Validation of the DFS-related prognostic

relevance of the IRG signature with three external

datasets

(A) Kaplan–Meier analysis of DFS in the GEO: GSE71118

cohort (validation cohort IV). (B) The AUC of the risk score

predicting the 1-, 3-, and 5-year OS in the GEO:

GSE71118 cohort. (C) Kaplan–Meier analysis of OS in

the GEO: GSE30929 cohort (validation cohort V). (D)

The AUC of the risk score predicting the 1-, 3-, and 5-

year DFS in the GEO: GSE30929 cohort (E) Kaplan–

Meier analysis of DFS in the GEO: GSE40025 cohort

(validation cohort VI). (F) The AUC of the risk score

predicting the 1-, 3-, and 5-year DFS in the GEO:

GSE40025 cohort.
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demonstrated that the nomogram including the IRG signature risk
score is a powerful and accurate predictive tool for sarcoma patients.
Two previously published studies also created similar predictive no-
mograms based on clinicopathological features or immunoscoring.
However, these studies evaluated the prognostic value in only two
different sarcoma cohorts and reached lower AUC values compared
with the present manuscript.43,44 Aside from the new IRG signature
risk score, the nomogram contains established prognostic factors
(age, metastasis, tumor size, and resection margin status).45 However,
due to missing data, the present nomogram did not include tumor
Molecula
grade, which has been identified as the most sig-
nificant independent prognostic factor so far.
Nonetheless, adding the IRG signature to the
nomogram improved its predictive value signif-
icantly. To further improve the performance of
predictive models, future studies need to add
the IRG signature to their nomograms.

The decision tree was established to optimize
risk stratification for OS in sarcoma patients.
Finally, the decision tree was built including
three components: metastasis acted as the
most important determinant; age (cut-off point:
67.5 years) and the IRG risk score were addi-
tional factors. During the trimming step of the
decision tree, it showed a strong relationship
between the IRG signature risk score and
high-risk sarcoma patients. The grouping re-
sults of the decision tree showed significant dif-
ferences in the survival curves among the three
different risk subgroups, demonstrating its
great performance in patient stratification.
Thus, using a simple clinical decision tree en-
ables clinicians to identify patients with poor
prognoses efficiently and accurately. Interest-
ingly, the risk stratification generated by the
IRG-risk-score-based decision tree model has
no significant benefit compared with the model
based on clinicopathological characteristics
alone. However, the decision tree based on the IRG risk score repre-
sents a better predictive model because it is not only easier to inter-
pret the threshold of the decision nodes from a medical point of view
but also the structure is simpler to avoid model overfitting.

In general, sarcomas are not highly immunogenic tumors. Nonetheless,
inprevious studies, immune checkpoint inhibitors (ICIs) exhibited anti-
tumor effects in 5%–40% of sarcoma patients.46–50 In the present study,
the IRG risk score was negatively correlated with the immune score
and the expression levels of ICGs.Apreviously published study revealed
r Therapy: Oncolytics Vol. 24 March 2022 121
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Figure 8. Immune microenvironment analysis and

immunotherapy response prediction

(A–C) The correlation analysis indicated that the immune

score (R = �0.48; p < 0.001) (A), the stromal score

(R = �0.22; p < 0.001) (B), and the ESTIMATE score (R =

�0.42; p < 0.001) (C) were significantly negatively corre-

latedwith the Z score of the IRG signature risk score. (D) 29

ssGSEA enrichment levels of the immune signatures in the

high- and low-risk groups. (E) The correlation analysis

bubble diagram showed that 46 immune checkpoint genes

were negatively correlated with the risk score. (F) The ratio

of immunotherapy response is significantly increased in the

low-risk group compared with the high-risk group.

ssGSEA, single sample gene set enrichment analysis.
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that the expression of PD-L1 was associated with more PD-1-positive
TILs in soft-tissue sarcomas (STSs).51 Additionally, the increased TIL
counts due to neoadjuvant therapy were beneficial and seemed to pro-
long DFS of STS patients.52 The findings of the present study indicate
that low-risk sarcomas with an increased immune cell infiltration
have a higher immunogenicity and longer survival time. Furthermore,
the prediction model for a response to immunotherapy indicates that
low-risk sarcomas are more sensitive to immunotherapy. Taken
together, these results underpin that the newly introduced IRG signa-
turemay serve as a biomarker to predict responses to ICIs. Nonetheless,
this has to be shown in prospective trials. Thus, the IRG signature pro-
vides an additional opportunity to identify patients with sarcomas
eligible for ICI therapy, which has to be addressed in future studies.

Although this study established a powerful IRG signature, a corre-
sponding nomogram, and a decision tree for sarcoma patients, there
122 Molecular Therapy: Oncolytics Vol. 24 March 2022
are limitations as well. Firstly, owing to the rar-
ity of sarcomas, a profound investigation of each
sarcoma subtype is difficult. Thus, the present
study includes all available subtypes of sarcomas
introducing heterogeneity. Nonetheless, the
IRG risk signature proved to exert a prognostic
benefit in every subtype. Thus, further multi-
center studies are highly demanded to analyze
the risk signature in larger cohorts in a clinical
setting. Secondly, the established nomogram
and the decision tree were based on one training
cohort (TCGA-SARC) and have not been tested
in other validation cohorts due to incomplete
clinical data. Furthermore, the ratio of immuno-
therapy responses was estimated in silico, which
requires more reliable cohort studies in real-
world. Nonetheless, this theoretical approach
has been successfully validated in several solid
tumor cohorts, such as melanoma, lung cancer,
bladder cancer, and gastric cancer.17

In conclusion, using a WGCNA and a Lasso
cox regression based on the abundance score
of immune cells in sarcomas, a novel 14-IRG signature has been
identified to be prognostically relevant. This signature serves as a
robust and independent prognostic biomarker in various sarcoma
subtypes. In addition, the present study developed a nomogram
and a decision tree based on this IRG signature, which potentially
act as an accurate and practical predictive tool to identify high-
risk patients with low survival rates. Moreover, the IRG signature
also had a reliable ability to predict the response to immunotherapy
and may help to improve the efficacy of personalized immuno-
therapy in sarcoma patients.

MATERIALS AND METHODS
Data acquiring and preprocessing

Sarcoma-related clinical data and RNA sequencing (RNA-seq) data
from TCGA-SARC were obtained from the UCSC Xena browser
(https://xenabrowser.net/) and were used in the training set. Patients

https://xenabrowser.net/


Figure 9. Combination of the IRG signature risk

score and clinicopathological features improves

prognosis prediction and risk stratification

(A) A nomogram was established to predict 3- and 5-year

OS in individual sarcoma patients. (B) The AUC of the

nomogram to predict the 3- and 5-year OS in the TCGA-

SARC cohort. (C) A decision tree was constructed to

categorize patients into three different risk levels. (D)

Kaplan–Meier analysis of OS of the three different

subgroups.
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with missing information about survival time, survival status, and
clinicopathological characteristics were excluded. In total, 256 sar-
coma patients with complete survival data and gene expression pro-
files were included in the training set. The information about age, sex,
resection margin status, tumor size, and radiation therapy was com-
plete for 150 patients. These 150 patients were used for establishing
the nomogram and the decision tree analysis.

Six validation groups were established, and the data was down-
loaded from two databases. The clinical data and gene expression
files of 85 osteosarcoma patients derived from TARGET-
Osteosarcoma (https://ocg.cancer.gov/programs/target/projects/
osteosarcoma) were used as the first validation cohort. Moreover,
the clinical information and gene expression data of five additional
independent validation cohorts (GEO: GSE17674: 45 Ewing sar-
coma patients; GEO: GSE119041: 50 uterine sarcoma patients;
GEO: GSE71118: 291 various sarcoma patients; GEO: GSE30929:
140 liposarcoma patients; and GEO: GSE40025: 86 synovial sar-
coma patients) were downloaded from GEO (http://www.ncbi.
nlm.nih.gov/geo/). Among them, the TARGET-Osteosarcoma
GEO: GSE17674 and GSE119041 cohorts were used to verify the
OS, while GEO: GSE71118, GSE30929, and GSE40025 cohorts
were used to validate the DFS. All RNA-seq and microarray data
included in the present study were normalized and log2(X+1)-
transformed.
Molecula
Gene selection and signature establishment

The infiltration score of each sample and the
abundance score of 24 immune cell types
including 18 T cell subtypes (CD4+, CD8+,
CD4+ naive, CD8+ naive, Tcm, Tem, Tr1,
induced regulatory T [iTreg], natural regulatory
T [nTreg], Th1, Th2, Th17, Tfh, Tc, mucosal-
associated invariant T [MAIT], exhausted T
(Tex), gamma delta T (gd T), and NKT cells)
and six other immune cells (B cell, NK cells,
monocytes, macrophages, neutrophils, dendritic
cells [DCs]) of TCGA-SARC were downloaded
from the ImmuCellAI database. A univariate
Cox proportional hazard regression analysis
was performed to determine the prognostic
value of the infiltration score of the different im-
mune cells in the TCGA-SARC cohort using the R package “survival.”
Then, the gene co-expression network was constructed by the R pack-
age “WGCNA” using whole-transcriptome profiling data.53 The
threshold for the determination of weighted adjacency matrix was
fixed at a soft power of 5 and a scale-free R2 >0.85, respectively.

In a next step, the topological matrix was constructed by using the
topological overlap measure (TOM) in the R project. The mini-
mum module size was 80 genes. The featured genes of the modules
were calculated, and the similar modules were clustered and
merged according to the module dissection threshold. Finally,
module trait co-expression similarity and adjacency analyses
were performed in the identified gene modules. Thereby, the mod-
ule with the strongest correlation to the abundance score of the
prognosis-related immune cells was identified for further analysis.
With a threshold of the p value of univariate Cox regression <0.05,
220 candidate genes with prognostic values were extracted from
the “MEred module.” Next, the LASSO Cox regression analysis
was applied to select the most powerful prognostic genes of the
“MEred module” with R package “glmnet.” The penalty regulariza-
tion parameter l was fixed using a 10-fold cross-validation to pre-
vent an overfitting effect. The risk score of the IRG signature was
calculated as follows:

Risk score =
X

i

CoefficientðmRNAiÞ � ExpressionðmRNAiÞ;
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where i is the selected gene in the IRG signature. Patients were clas-
sified into high- and low-risk groups according to the optimal cut-
off value, which was determined by the surv_cutpoint function of
the R package “survminer.”
Analysis of immune function and response to immunotherapy

The scores of infiltrating stromal, immune cells, and tumor purity
were calculated using the “ESTIMATE” package in R.54 The ssGSEA
algorithm was applied to comprehensively evaluate the immunolog-
ical features and the infiltration of immune cells in the TCGA-
SARC cohort.55 The R packages (“GSVA,” “limma,” and “GSEA-
Base”) were employed to analyze the gene expression profiles of
sarcoma samples. Previously, 79 ICGs have been demonstrated to
reliably be related to the response to immunotherapy. In order to
analyze the response to immunotherapy, these 79 ICGs have been
used in the present analysis.56 The immunotherapy response predic-
tion was based on the transcriptional data via the accurate and reliable
online tool “ImmuCellAI.”17

Construction of the nomogram and the decision tree

A nomogram integrating clinical information and the immune-
related risk signature was established using the R package “rms” to
predict the survival probability for each patient.57 Calibration curves
of observed and predicted probabilities of 3- and 5-year OS were
plotted to determine the discrimination of the nomogram. The deci-
sion tree was developed for risk stratification via a recursive partition-
ing analysis (RPA) in the R package “rpart.”58

Bioinformatic and statistical analyses

R software v.4.0.0 (R Foundation for Statistical Computing, Vienna,
Austria) and GraphPad Prism 8.4 (GraphPad Software, San Diego,
CA, USA) were used to analyze data and plot figures. Univariate
and multivariate Cox regression analyses were performed by the cor-
responding R packages. The Kaplan–Meier method and log rank tests
were used to evaluate the difference of survival outcomes between
different risk groups with the R package “survminer” and “survival.”
The AUC derived from a time-dependent ROC (tROC) analysis was
used to quantify the predictive power with the R package “survival-
ROC.”59 The HR and 95% confidence interval (CI) were calculated
using log rank tests to confirm the risk score associated with survival
time. Student’s t tests or one-way ANOVAs were used for the com-
parison of continuous variables between groups. A p value < 0.05
(two-tailed) was considered to indicate statistical significance, and
high significance was indicated by a p value < 0.001.
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