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Abstract

Although diatoms have been utilized as a cellular factory to produce biopharmaceu-
ticals, recombinant proteins, and biofuels, only a few numbers of gene promoters are
available. Therefore, the development of novel endogenous promoters is essential for
the production of a range of bioactive substances. Here, we characterized the activi-
ties of endogenous promoters glyceraldehyde-3-phosphate dehydrogenase (GapC1) and
glutamine synthetase (GS) of Phaeodactylum tricornutum using green fluorescent pro-
tein (GFP) under different culture conditions. Compared with the widely used fucox-
anthin chlorophyll-binding protein A (fcpA) promoter, the GS promoter constitutively
drove the expression of GFP throughout all growth phases of P. tricornutum, regard-
less of culture conditions. Additionally, the GFP level driven by the GapC1 promoter
was the highest at the log phase, similar to the fcpA promoter, and increased light
and nitrogen-starvation conditions reduced GFP levels by inhibiting promoter activ-
ity. These results suggested that the GS promoter could be utilized as a strong endog-

enous promoter for the genetic engineering of P. tricornutum.
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1 | INTRODUCTION

Diatoms are unicellular, eukaryotic phytoplankton that thrives
since the Oligocene about 30 million years ago (Falkowski et al.,
2004). Diatoms live in both marine and freshwater environments
and account for about 20% of the total photosynthetic productiv-
ity (Bowler et al., 2008; Maheswari et al., 2010). They are currently
considered among the most productive and flexible microalgae, with
leading roles in the ocean food chain.

The entire genome of Phaeodactylum tricornutumis about 27.6 Mb
and contains 33 chromosomes harboring 12,177 predicted genes
(Rastogi et al., 2018). Previously, 130,000 expressed sequence tags
(ESTs) were determined from P. tricornutum cells grown in 16 differ-
ent conditions, including various nitrogen sources; different carbon
dioxide, silicate, and iron concentrations; different morphotypes and
lighting sources; and abiotic stress, including low temperature and
low salinity (Maheswari et al., 2005, 2010). Molecular tools have also
been developed for the genetic manipulation of P. tricornutum (Apt
et al., 1996; De Riso et al., 2009; Karas et al., 2015; Maheswari et al.,
2005; Nymark et al., 2016; Rastogi et al., 2018; Siaut et al., 2007).

Diatoms have been extensively studied for various biotechnolog-
ical purposes and can be utilized to produce biopharmaceuticals and
secondary metabolites (Hempel et al., 2011; Mathieu-Rivet et al.,
2014). A constitutive promoter driving high recombinant protein
yields is not only essential for developing a cost-efficient expres-
sion system but also necessary for metabolic engineering by gene
regulation. Heterologous promoters originating from various species
have been used to express recombinant proteins in P. tricornutum
(Gorman et al., 1982; Harada et al., 2005; Poulsen & Kroger, 2005;
Sanders et al.,, 1987; Tomaru et al., 2008, 2011, 2012). Additionally,
endogenous promoters for inducible nitrate reductase (Chu et al.,
2016; Hempel et al., 2011; Niu et al., 2012) and light-inducible fucox-
anthin chlorophyll of light-harvesting antennae complexes (fcp) en-
coding fcpA-E (Apt et al., 1996; De Riso et al., 2009; Joshi-Deo et al.,
2010; Siaut et al., 2007; Zaslavskaia et al., 2000) have been used
in P. tricornutum. Furthermore, the promoters of elongation factor 2,
pB-carbonic anhydrase 1, acyl-CoA: diacylglycerol acyltransferase 1, and
highly abundant secreted protein 1 (HASP1) from P. tricornutum were
fused with a reporter gene to evaluate reporter expression (Erdene-
Ochir et al., 2019; Harada et al., 2005; Ohno et al., 2012; Shemesh
etal., 2016). These studies focused on evaluating strong constitutive
promoters capable of expressing large quantities of protein inside
or secreted from P. tricornutum. The highest level of protein amount
is required during the stationary phase of cell culture to maximize
productivity.

Here, we searched for a novel candidate promoter of genes en-
coding proteins strongly expressed during the stationary phase. We
identified glyceraldehyde-3-phosphate dehydrogenase (GapC1) and
glutamine synthetase (GS) promoters for constitutive expression of
recombinant protein in P. tricornutum and constructed a green flu-
orescent protein (GFP)-reporter system using a truncated version
of their promoter regions. Following transformation of P. tricor-
nutum with these constructs, we tested them for their ability to

constitutively express downstream gene products under different

culture conditions.

2 | MATERIALS AND METHODS

2.1 | Cell culture

P. tricornutum Bohlin UTEX 646 strain was purchased from the
UTEX Culture Collection of Algae (The University of Texas, Austin,
TX, USA). P. tricornutum was cultivated in F/2 media (Guillard et al.,
1975), at 20°C with shaking at 200 rpm and with or without nitro-
gen under constant lighting from white fluorescent lamps (1600 or
3000 lux).

2.2 | Protein identification

Using cell culture at stationary phase, SDS-PAGE, in-gel digestion,
and LC-MS/MS analysis were performed, and proteins were iden-
tified by database searches as previously described (Erdene-Ochir
etal., 2016, 2019).

2.3 | |Insilico analysis of potential regulatory
elements in GapC1 and GS promoters

The 5’ upstream regions of GapC1 (NCBI ID: XP_002182291; Uniprot
accession number: B7G5Q1) and GS (NCBI ID: XP_002182898;
Uniprot accession number: B7G6Q6) were extracted from
EnsemblProtists (Kersey et al., 2014) using the Biomart tool (Smedley
et al., 2015) and analyzed for cis-acting elements by PlantCARE
(Lescot et al., 2002). Sequence-based single-site analysis (SSA) and
transcription factor-binding site (TFBS) cluster analysis (TCA) using
oPOSSUM (v.3.0) (Kwon et al., 2012) were performed to identify
consensus TFBSs in GapC1l and GS promoters. These were also
checked using the Melina Il web tool (Okumura et al., 2007).

2.4 | Rapid amplification of complementary DNA
ends (RACE)

Total RNA was isolated using RNAiso Plus reagent (Takara Bio, Shiga,
Japan) according to the manufacturer's instructions. Total RNA (1 ug)
was subjected to 5’ and 3’ RACE, performed as previously described
(Pinto & Lindblad, 2010) with minor modifications. The primers used
in RACE are listed in Table Al.

2.5 | Construction of plasmid vectors

The CIP1 promoter (Kadono et al., 2015) and fragments of the GS
(501 and 996 bp) (Erdene-Ochir et al., 2016) and GapC1 (500 and
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1086 bp) promoters were amplified by PCR from genomic DNA
and cloned into the pPha-T1 vector using Ndel and EcoRI sites
(Zaslavskaia et al., 2000). The primers are listed in Table Al. The
GFP-encoding gene was amplified by PCR from the pEGFP-C2
vector and cloned into the pPha-T1 vector using EcoRl and BamHI
sites.

2.6 | Transformation of P. tricornutum

Particle bombardment-mediated transformation and PCR-based
transformant selection were performed as previously described
(Erdene-Ochir et al., 2019). Primers used in genomic DNA PCR are
listed in Table Al.

2.7 | Total RNA isolation and real-time
PCR analysis

Eight or four milliliters of cell culture grown for 6 or 11 days in cul-
ture Condition 1 were centrifuged at 1200 g for 15 min at 4°C. Total
RNA isolation and RT-PCR analysis were performed as previously
described (Erdene-Ochir et al., 2019).

2.8 | GFP fluorescence measurement

Fluorescence was measured as previously described (Erdene-Ochir
et al., 2016, 2019). The autofluorescence value of the fcpApro con-
struct was removed from the GFP fluorescence value obtained with
the CIP1, GapC1, and GS constructs. Using a recombinant E. coli GFP
protein (ab119740; Abcam, Cambridge, UK), a GFP standard curve
was generated. Measurements were conducted using biological

triplicates.

2.9 | Western blot analysis

Cell lysis and protein quantification were performed as described
previously (Erdene-Ochir et al., 2019). Total soluble protein (7 pg)
was resolved on 12% Tris-glycine SDS-PAGE and transferred to
PVDF membrane, which was incubated with anti-GFP goat antibody
(Abcam, Cambridge, UK) and anti-goat HRP-conjugated bovine an-
tibody (Santa Cruz Biotechnology, Dallas, TX, USA). Western blot
signals were detected using SuperSignal West Femto substrate
(Thermo Fisher Scientific, Waltham, MA, USA).

2.10 | Subcellularlocalization of GFP

GFP images at mid-log and stationary phases were obtained using
a Leica confocal microscope (Leica Biosystems, Wetzlar, Germany)
(Erdene-Ochir et al., 2019; Tanaka et al., 2005).
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2.11 | Statistical analysis

Data are expressed as mean + SD. Statistical analysis was conducted
using Student's t-test and one-way analysis of variance, followed by
Duncan test for multiple comparisons. A p < 0.05 was regarded as
statistically significant.

3 | RESULTS

3.1 | Proteomics-based identification of the most
abundant proteins at the stationary phase

A previous study used LC-MS/MS analysis to identify a total of 1,836
proteins abundant during the stationary phase (Erdene-Ochir et al.,
2016). The most abundant of these proteins was fcp binding pro-
tein E (FcpE), identified by database searching with a 23% sequence
coverage (Apt et al., 1996). The second most abundant protein
(PHATRDRAFT_22357) was annotated via homology as GS, involved
in nitrogen assimilation (Erdene-Ochir et al., 2016). The third most
abundant protein (PHATRDRAFT_22122) was GapC1 (Erdene-Ochir
etal., 2016); therefore, we selected GS and GapC1 for further analy-
sis. LC-MS/MS sequence coverage and the spectra for GapC1 are
shown in Figure Al.

3.2 | |Insilico analysis of potential promoters

Using PlantCARE, the GapC1 and GS promoter regions were ana-
lyzed for cis-acting regulatory elements (Lescot et al., 2002). All the
light-responsive elements shown in Figures A2 and A3 were iden-
tified by PlantCARE. We evaluated the SSA and TCA using oPOS-
SUM (Kwon et al., 2012) and default parameters, with a threshold
of >95% and Z-score >4 used as a threshold for SSA (Figures A2
and A3). The identified transcription factors were cross-checked
against previous results (Rayko et al., 2010). Consensus sequences
in the GapC1 and GS promoters analyzed using Melina Il (Okumura
et al., 2007) identified two conserved motifs (CACACACA and
GACACACG).

3.3 | RACE

GapC1 and GS are located on chromosomes 15 and 17 of P. tri-
cornutum, respectively (Fabris et al.,, 2012). The transcription
start site (TSS) for GS was identified by 5" RACE along with an
initiator-like sequence (Kadono et al., 2015) in the GS promoter
(Figure A3). Additionally, we identified the untranslated 5’ and 3’
regions (UTRs) of GS as 214 bp and 144 bp from the start and
stop codons, respectively (Figure A4a). The 3’ UTR of GapC1 was
279 bp from the stop codon; however, we were unable to deter-
mine the GapC1 TSS, although the predicted TSS is 61 bp (Grillo
et al., 2010).
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3.4 | Isolation of endogenous promoters of
GapC1 and GS

The pPha-T1 vector containing a fcpA promoter-driven zeocin-
resistance gene (Zaslavskaia et al., 2000) was used for all plasmid
constructions as a backbone (Figure A4b). The promoters widely
used for the genetic manipulations of P. tricornutum are ~500 bp (Apt
et al., 1996; Kadono et al., 2015). Using the predicted 61-bp long 5’
UTR for GapC1, we cloned 500- and 1086-bp 5’ UTRs as potential
GapC1 promoter regions (Grillo et al., 2010). GS 5’ UTRs of 501 bp
and 996 bp were extracted using the Biomart tool from Ensembl
Protists (Kinsella et al., 2011). The fcpA (442 bp) and CIP1 (502 bp)
promoters were used to drive reporter-protein expression as endog-
enous and heterologous constitutive promoters, respectively (Apt
et al., 1996; Kadono et al., 2015). The fcpA promoter activity was the
highest at the log phase, whereas the CIP1 promoter activity was
the highest at the stationary phase. As a mock construct, the pPha-
T1 vector carrying the fcpA promoter but without the gfp gene was
used (Figure A4b).

3.5 | P.tricornutum transformation and
transformant selection

All constructs were transformed into stationary phase cells. After
4 weeks, we observed 459 zeocin-resistant colonies following se-
lection of transformants on f/2 agar including 100 pg/ml zeocin.
Transformation of the GS-501pro:GFP construct resulted in 175
zeocin-resistant colonies, whereas other constructs showed rela-
tively low numbers of resistant colonies. All zeocin-resistant colo-
nies were moved to liquid f/2 medium including 100 pg/ml zeocin,
followed by selection by PCR analysis (Figure A4c); 72% of the
zeocin-resistant colonies contained the appropriate promoter and

gfp. These colonies were then selected by GFP fluorescence, with

42% of the colonies expressing the GFP reporter. Based on these
findings, we selected three colonies for each construct for further

analysis.

3.6 | Assessment of culture conditions

Multiple factors, including temperature, lighting intensity, nutrition
source, and aeration, influence cell growth. To determine the most fa-
vorable conditions for promoter function, the selected colonies were
cultivated under different culture conditions. First, the selected colo-
nies were grown in /2 liquid medium including 50% artificial seawater,
100 pg/ml zeocin, and mixed antibiotics at 20°C and 200 rpm under
continuous aeration and constant lighting (1600 lux), until the station-
ary phase (Condition 1). The cells were seeded at 10° cells/ml on day
0 and cultivated to ~107 cells/ml on day 10, with cell density and GFP
expression checked daily. The cell-growth curve revealed days 6 and
11 as mid-log and stationary phases, respectively (Figure 1a). The pres-
ence of the transgene did not affect the growth rate of P. tricornutum
cells in all cases. Cell autofluorescence driven by the blank construct
fcpApro was subtracted from GFP fluorescence in the target cells to
assess promoter-specific fluorescence intensity. The fcpApro: GFP,
GapC1-500pro:GFP, and GapC1-1086pro:GFP constructs showed peak
GFP-expression levels at the log phase; thereafter, it decreased until
the stationary phase (day 11) (Figure 1c). The reporter-protein levels
relative to GapC1-500pro:GFP and GapC1-1086pro:GFP expression
were similar to that of fcpApro:GFP (Figure 1b, c). Interestingly, GS-
501pro:GFP and GS-996pro:GFP promoter-driven constructs indicated
constitutive GFP expression in proportion to cell number from the early
log to the stationary phase, with GFP expression in GS-501pro:GFP and
GS-996pro:GFP constructs >fourfold and >sixfold higher, respectively,
than that of fcpApro:GFP construct during the stationary phase (day
11) (Figure 1b, d). These results obtained from immunoblotting and

fluorescence measurements were consistent with the levels of GFP

S
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FIGURE 1 Growth curves of all transgenic lines and GFP expression level in Condition 1. (a) Growth curves of P. tricornutum cultures. All
transgenic lines were cultivated for 19 days. (b) GFP protein levels in cell lysates on days 6 and 11 and determined by immunoblot. Levels of
GFP fluorescence in cell lysates of (c) GapC1pro:GFP and (d) GSpro:GFP transgenic lines were measured by a fluorometer
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mRNAs at the mid-log (day 6) and stationary (day 11) phases of cultiva-
tion under Condition 1, showing that GFP expression was driven by
GapC1 and GS promoters (Figure A5). However, we did not observe the
expected result from the CIP1pro:GFP construct (Kadono et al., 2015)
under these culture conditions, and GFP expression by CIP1pro: GFP
was lower than that by other promoters (Figure 1d). Western blot re-
sults agreed with all observed patterns of GFP fluorescence (Figure 1b).

Light intensity is a key factor for microalgal growth, as they are
eukaryotic phytoplankton capable of fixing carbon and nitrogen
while producing oxygen through photosynthesis (Saade & Bowler,
2009). Therefore, we changed the lighting intensity to 3000 lux and
incubated cells at 20°C with continuous aeration and constant light-
ing until the stationary phase (Condition 2). Cells were seeded at 10°
cells/mL on day 0 and cultivated to ~10” cells/ml on day 8, with cell-
growth curves showing that days 4 and 8 represented the mid-log
phase and stationary phases, respectively (Figure 2a). GFP expres-
sion, driven by fcpApro:GFP, was twofold lower than that by the same
promoter under 1600 lux at log phase, whereas GFP expression by
CIP1pro:GFP gradually increased from the early log to the stationary
phase and was higher than that by the same promoter in Condition
1 (Figure 2b). Interestingly, GFP expression driven by GS-501pro:GFP
and GS-996pro:GFP increased from the early log to the stationary
phase, which was not tested in the previous study (Erdene-Ochir
et al., 2016). Additionally, GFP expression in the GapC1pro:GFP con-
struct was twofold higher than that of fcpApro:GFP at the log phase
but twofold lower than that by the same promoter in Condition 1
(Figure 2b). Western blot results agreed with all observed patterns
of GFP fluorescence (Figure 2c).

Most industrial applications of P. tricornutum are related to the
development of oil-producing cell lines under starvation conditions,

(a) 108
ﬂ -~ fcpApro 4
= = CIPIpro:GFP13
4 a4 —
= 107 /g»g: = —— -+ fcpApro:GFP2
o A
S 7 - GapC1-500pro:GFP59
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E -8 GS-996pro:GFP 60

105 T

5 10 15
Days

CIPIpro:GFP  fepApro:GFP  GapCl-500pro:GFPGapCl-1086pro:GFP  GS-501pro:GFP

[ Open Access)

such as nitrogen-free medium. Considering this, a promoter capa-
ble of driving strong constitutive expression of a protein of interest
under nitrogen-free conditions will be important for engineering
cells for oil production. Therefore, cells were seeded at 10° cells/
ml in nitrogen-free f/2 medium and cultivated at 20°C with con-
tinuous aeration and constant lighting at 3000 lux (Condition 3).
During 8-day cultivation, cells showed decreased growth relative to
that under previous culture conditions (Figure Aéa), and GFP levels
in the fcpA pro:GFP, GapC1-500 pro:GFP, and GapC1-1086 pro:GFP
constructs were <20 ng/ml (Figure Aéb), with the CIP1pro:GFP con-
struct showing higher GFP expression than fcpApro:GFP, GapC1-500
pro:GFP, and GapC1-1086 pro:GFP. Although GFP expression by
GS-501pro:GFP and GS-996pro:GFP was lower than that by the
same promoter under Conditions 1 and 2, GFP levels were higher
than other constructs, which was not tested in the previous study
(Erdene-Ochir et al., 2016).

3.7 | GFP localization

Images of GFP localization at the mid-log (day 6) and stationary (day
11) phases of cultivation under Condition 1 (Figures 3 and A7) showed
that GFP signals in fcpApro:GFP, CIP1pro:GFP, GapC1-500pro:GFP,
GapC1-1086pro:GFP, GS-501pro:GFP, and GS-996pro:GFP constructs
accumulated in the cytoplasm and were directly proportional to the
strength of the promoters at each growth phase (Figure 3a, b). GFP
fluorescence in the GapC1pro:GFP transgenic line was the highest
at the log phase but almost disappeared at the stationary phase. In
contrast, GFP fluorescence in the GSpro:GFP transgenic line largely
increased from the log to the stationary phase. These results agreed
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Day 8 GEE) ~men o e -ee e

FIGURE 2 Growth curves of all transgenic lines and GFP expression levels in Condition 2. (a) Growth curves of P. tricornutum cultures. All
transgenic lines were cultivated for 12 days. (b) Levels of GFP fluorescence in cell lysates of GapC1pro:GFP and GSpro:GFP transgenic lines
were measured by a fluorometer. (c) GFP protein levels in cell lysates on days 6 and 11 were determined by immunoblot
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independent transgenic lines for each
construct. Scale bars = 10 um

CIPIpro:GFP1

GS-996pro:GFP 21

with all observed patterns of GFP fluorescence and Western blot

results.

4 | DISCUSSION

A strong constitutive promoter able to drive the expression of large
quantities of protein in a host organism is one of the most signifi-
cant genetic engineering tools for foreign protein expression and
metabolic engineering. To maximize the productivity of protein of
interest, the present study focused on identifying novel candidate
promoters driving strong protein expression during the stationary
phase of P. tricornutum. Thus, we identified GapC1 and GS among
1836 proteins (Figure A1) (Erdene-Ochir et al., 2016) and cloned
their promoters into transformation vectors to evaluate their effi-
cacy for overexpression of target proteins in the P. tricornutum host,
with the previously reported fcpA and CIP1 promoters used as posi-
tive controls.

The fcpApro:GFP construct showed increased GFP expres-
sion from the lag to log phase, followed by decreased expression
from the log to stationary phase, with similar levels to those of the

CIP1pro:GFP construct during the early stationary phase (Figure 1b,
c). In a previous study, CIP1 promoter resulted in threefold higher
levels of reporter-protein expression relative to that driven by the
fcpA promoter during the stationary phase (Kadono et al., 2015).
This observed difference in the CIP1 promoter activity could be due
to the different experimental conditions, especially light intensity;
therefore, we increased the light intensity to 3000 lux during cul-
tivation, which resulted in the reported 3:1 CIP1:fcpA ratio of GFP
expression, suggesting that the CIP1 promoter could be a light-
responsive (Figure 2b, c). Additionally, the GS promoter regions (501
and 996 bp) were able to drive downstream gene expression, result-
ing in up to fourfold higher reporter-protein expression relative to
that of the fcpA promoter during the stationary phase and under
different growth conditions (Figures 1, 2, and A6). Consequently, the
GS promoter drove strong constitutive expression of the reporter
protein, irrespective of the cell-growth phase. Moreover, these lev-
els were also higher than the GFP expression driven by the CIP1
promoter under optimal conditions (Figures 1, 2, and Aé). Although
GFP-expression levels driven by GS-501pro:GFP and GS-996pro:GFP
constructs differed according to culture condition, the expression
patterns were similar. Furthermore, GFP levels and patterns driven
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by the GapC1-500pro:GFP and GapC1-1086pro:GFP constructs were
similar to that of fcpApro:GFP (Figures 1, 2, and Aé). Because the fcpA
promoter is widely used for the genetic engineering of P. tricornu-
tum, these results suggest that both the GapC1 and the GS promot-
ers can be used to genetically engineer this strain. Further study is
needed to elucidate the functions of the GapC1 and GS promoters
for expressing specific targets, including antibodies and recombi-
nant proteins, as well as the use of the GS promoter for metabolic

engineering of P. tricornutum to promote increased oil production.
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APPENDIX 1

TABLE A1 Primers used in this study

Names Sequence (5'-3’) RE
GapC1-500_F CATATGGGAATTGAAGCAATCCATTTTGG Ndel
GapC1-1086_F CATATGTTTACTGTGTAAGTATGGGGAC Ndel
GapC1_R GAATTCGATGGAGTCAAAAAAGAAAGTAG EcoRI
GS-501_F CATATGATCACAGAAGCGGCAAAGTTCC Ndel
GS-996_F CATATGTGGTGCCGTTGATGCCGTGG Ndel
GS_R GAATTCGCTTGGAAGTTTGGGATGTGG EcoRlI
GFP_F GAATTCATGGTGAGCAAGGGCGAGGAG EcoRI
GFP_R GGATCCTTACTTGTACAGCTCGTCCATGC BamHI
dT-Long-P_R GGCCACGCGTACTAGTGAATTCT,,

short-P_R GGCCACGCGTACTAGTGAATTC

TSO_F GTCGCACGGTCCATCGCAGCAGTCACAG,

GSP-GS_R GATGGCCCAATCAAAGACAGCC

U-SENSE_F GTCGCACGGTCCATCGCAGC

nGSP-GS_R AGGTATTGGTCGGCAATCTTTCC

CIP1_F CATATGTACGTAGAATCCTACG Ndel
fcpA_F CATATGGGGCTGCAGGACGCAATGG Ndel

pPha-T1-Multi-B_.R  ACTCCCAACTGTTCGTGCACCATG

Abbreviation: RE, restriction enzyme.

APPENDIX 2

B7G5Q1_PHATC (100%), 40,183.4 Da
(@

Description
Genomic DNA PCR
Genomic DNA PCR
Genomic DNA PCR
Genomic DNA PCR
Genomic DNA PCR
Genomic DNA PCR
pPha-T1-gfp PCR
pPha-T1-gfp PCR
Adapter for 3' RACE
3'-RACE and cloning

Template-switch
oligonucleotide

5-UTR of GS
5-UTR of GS
5-UTR of GS
Genomic DNA PCR
Genomic DNA PCR
Genomic DNA PCR

Glyceraldehyde-3-phosphate dehydrogenase OS=Phaeodactylum tricornutum (strain CCAP 1055/1) GN=GapC1 PE=3 SV=1

12 exclusive unique peptides, 17 exclusive unique spectra, 355 total spectra, 184/379 amino acids (49% coverage)

MKFSAATFAA
INAGSATPDY
LTKESAQSI I
EALMTTVHA
VVDLTAKLEK
AWYDNEYGY S

LVGSAAAYSS
MAYQYKYDT I
DGGAKKVIYS
TATQAVVDSS
STTYEEIGAV
GRVVDLMKHYV

SSFTGSALKS
HGKAKQTVE I
APAKDDSLTI
SRKDWRGGRA
IKAKSEGEMK
AAVDAKIKA

SASNDASMSM
DGDFLVLDGK
VMGVNQEAYD
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FIGURE A1 LC-MS/MS analysis of the GapC1 protein (a) Sequence coverage of the GapC1 protein according to LC-MS/MS analysis. The
yellow highlighted sequences represent peptide sequences found in the LC-MS/MS analysis (49% coverage). Green highlighted sequences
represent potential oxidation sites. (b) Mass spectra of the GapC1 protein
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FIGURE A2 Insilico analysis of cis-acting elements in GapC1 promoter. The upstream sequence of the GapC1 was analyzed by PlantCARE
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FIGURE A3 Insilico analysis of cis-acting elements in the GS promoter. The upstream sequence of the GS gene was analyzed by
PlantCARE
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FIGURE A5 Relative levels of GFP transcript in Condition 1. The
levels of GFP mRNA at the mid-log (day 6) and stationary (day 11)
phases of cultivation in GapC1pro:GFP and GSpro:GFP transgenic
lines. GFP expression levels were normalized to TBP expression.
Data are expressed as the mean + SD of three replicates

FIGURE A4 Identification of

the 5" UTRs of GS and GapC1 genes

and selection of transformants. (a)
Schematic representation of the GS and
GapC1 mRNA structures. (b) Vector
constructs used for the transformation of
P. tricornutum. Arrows indicate the primers
used for PCR analysis. (c) Transgenes

are amplified by PCR from transformant
genomic DNA. The numbers show three
independent transgenic lines generated
by each construct. Asterisks show
nonspecific PCR products. M, molecular
size marker
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FIGURE A6 Growth curves of all transgenic lines and levels of GFP expression in Condition 3. (a) Growth curves of P. tricornutum

cultures. All transgenic lines were cultivated for 8 days. (b) Levels of GFP fluorescence in cell lysates of GapC1pro:GFP and GSpro:GFP
transgenic lines were measured by a fluorometer
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FIGURE A7 Subcellular localization of GFP in transgenic lines. GFP fluorescence and chlorophyll fluorescence in transgenic lines at the

(a) mid-log and (b) stationary phases and visualized by confocal microscopy. The numbers on the images show two independent transgenic
lines generated by each construct. Scale bars = 10 um



