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Introduction
Pediatric asthma continues to be a significant public health issue 
with approximately 8.4% of children in the United States living 

with the disease.1,2 Asthma also remains one of the most fre-
quent causes of pediatric hospitalization,3,4 and costs the United 
States over $50 billion in health expenditures and lost produc-
tivity annually.3,5–7

Children with asthma are disproportionately impacted by en-
vironmental agents.8 The effects of these exposures on pediatric 
asthma morbidity has been well-studied, particularly in urban 
settings.9,10 However, the contribution of environmental agents 
in rural and agricultural settings remains largely unexplored. As 
the sources and composition of these environmental pollutants 
vary between urban and rural settings,6,11 associations widely 
described in the literature (predominantly urban) are unlikely to 
be generalizable to rural areas. Agricultural communities may 
have fewer urban ambient air pollution sources (e.g., motor ve-
hicle traffic and industrial emissions), but have substantially more 
unique local sources like pollen and similar aeroallergens, and 
emissions from industrial-scale agricultural operations including 
windblown dust, animal agricultural emissions and pesticide 
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Background: Environmental contributions to pediatric asthma morbidity have been studied extensively in urban settings; expo-
sures characteristic of agricultural and rural communities have received less attention despite a comparable burden of morbidity.
Methods: We obtained repeated urine samples (n = 139) from 16 school-age children with asthma in the Yakima Valley of Washington 
State between July and October 2012. Biomarkers of organophosphate (OP) pesticide exposure (dialkyl phosphates [DAPs]) and 
asthma exacerbation (leukotriene E4 [LTE4]) were analyzed in samples. Corresponding 24-hour average particulate matter <2.5 
μg (PM2.5) and maximum 8-hour ozone concentration data for the study period were available from local monitoring stations. We 
evaluated the independent and multi-pollutant associations between LTE4 and exposure to ambient air pollutants and DAPs using 
generalized estimating equations. For multi-domain and multi-pollutant models, we created categorized pollution combination levels 
and estimated the relative health impact of exposure to pollutant mixtures.
Results: In single-pollutant models, an interquartile range increase in exposures to DAPs was associated with increase in LTE4 levels 
(β: 4.1 [0.6–7.6] pg/mg). PM2.5 and ozone were also associated with increase in LTE4, though confidence intervals contained the null 
value. Increase in LTE4 levels was consistently associated with increase in median-dichotomized multi-pollutant combination expo-
sures; the highest effect estimates were observed with joint highest (vs. the lowest) category of the three-pollutant exposure (PM2.5, 
ozone, and OP; β: 53.5, 95% confidence interval = 24.2, 82.8 pg/mg).
Conclusion: Concurrent short-term exposure to criteria air pollutants and OPs in an agricultural community was associated with an 
increase in a marker of asthma morbidity.
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What this study adds
The effects of ambient air pollution on pediatric asthma mor-
bidity have been well-documented in epidemiological studies in 
urban communities. There has been less focus on health effects 
of the unique ambient exposures in rural and agricultural set-
tings, especially in the context of simultaneous exposure to 
multiple diverse environmental agents. This study examined the 
impact of multiple environmental exposures characteristic of 
agricultural communities (ambient air pollutants and organo-
phosphate pesticides) on pediatric asthma morbidity. We found 
that simultaneous short-term exposure to air pollutants and or-
ganophosphate pesticides was consistently associated with an 
increase in a biomarker of asthma morbidity.
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drift from large crop-growing operations,12,13 all of which have 
been suggested to contribute to respiratory disease.14,15

Although environmental health research has traditionally focused 
on estimating the effects of single-pollutant exposures, children are 
invariably exposed to and affected by a mixture of exposures unique 
to their environment.16–18 Moreover, assessing the health impacts of 
environmental exposures in the context of the “one atmosphere” 
approach requires a more robust characterization of exposures to 
local sources of environmental pollution beyond single-pollutant 
risk or total exposure within specific pollutant groups.19–21

Exposure to agricultural pesticides, particularly organophos-
phate (OP) insecticides, has been linked to adverse respiratory 
outcomes in agricultural settings,22 and children are especially 
susceptible to the effects of pesticide exposure.23,24 However, ap-
propriate characterization of this association in terms of pediatric 
asthma morbidity is limited.25 Further, the respiratory health effects 
of pesticides in the context of other local air pollutants are not 
well understood. A multi-domain approach that considers the joint 
effect of multiple classes of environmental agents (specifically, am-
bient air pollutants and agricultural pesticides) may provide a more 
concrete representation of association between multi-pollutant ex-
posure to environmental pollutants and respiratory morbidity.

Respiratory health effects for children with asthma in rural 
agricultural communities may be affected by multiple sources, 
including biogenic (e.g., dust, pollen) and anthropogenic pollut-
ants. We focus specifically on (1) ozone and particulate matter 
<2.5 µm in diameter (PM2.5), pollutant concentrations regulated 
by federal law, and among ambient criteria pollutants, are re-
sponsible for a majority of human health damages,26 and (2) 
OP pesticides, a group of widely used insecticides with potential 
health hazards, and also subject to federal standards.

We adopted a conceptually simple method to evaluate in-
dependent and joint effects of exposure to air pollution (PM2.5 
and ozone) and OP pesticide (using well-established metabolite 
biomarkers) on a biomarker of pulmonary inflammation and 
asthma exacerbation.

Methods

Study population

The Aggravating Factors of Asthma in a Rural Environment (AFARE) 
project was conducted in the Yakima Valley of Washington State. This 
region is characterized by a high density of large-scale agricultural 
operations including production of fruit crops and vegetables. Details 
about recruitment and baseline health evaluations have been reported 
previously.38 Briefly, the AFARE study collected longitudinal data to 
explore and identify ambient environmental factors associated with 
pediatric asthma exacerbations in an agricultural community. The 
children were between 6 and 16 years of age at baseline and had 
no serious illnesses other than asthma. For this analysis, we used the 
repeated measures made on a subset of children for which urine spec-
imens were collected in the AFARE cohort (n = 16), at 6-day inter-
vals over a 4 months period (July 2012–October 2012). All study 
procedures were approved by the Institutional Review Boards of the 
University of Washington and the Colorado State University.

Asthma morbidity assessment

Urinary leukotriene E4 monitoring

We used urinary leukotriene E4 (LTE4) to assess asthma mor-
bidity (pulmonary inflammation) in this study. LTE4 is a vali-
dated marker of systemic cysteinyl leukotriene activity, and an 
indirect marker of lung cysteinyl leukotriene activity, a lipid 
mediator known to play a central pathophysiological role in 
asthma.27,28 Cysteinyl leukotrienes are eicosanoids produced by 
a variety of cells associated with inflammation. Measurement of 
LTE4 represents a noninvasive method to assess acute pulmo-
nary inflammation among children with asthma.

LTE4 was measured from spot urine samples, scheduled to 
be collected study participants every 6 days during the study 
period. Samples were subsequently stored at −20°C before 
analysis. Quantitative analysis of urine samples for LTE4 was 
performed in the University of Washington–Department of 
Environmental and Occupational Health Studies Functional 
Genomics Laboratory using the Cayman Human LTE4 EIA Kit 
(Cayman, Ann Arbor, Michigan) according to the manufactur-
er’s instructions. Creatinine concentration was also measured 
for each sample to account for urine dilution; this analysis was 
conducted by the Department of Laboratory Medicine at the 
University of Washington. Creatinine-adjusted concentrations 
were used for all final model analyses.

Environmental pollutants and meteorological data

Organophosphate pesticide monitoring

Spot urine samples were analyzed for OP pesticide metabolites 
at the same time LTE4 was assessed. Six urinary dialkyl phos-
phate (DAP) metabolites that result from the degradation of 
different OPs were measured in participants’ urine; dimethyl 
phosphate, dimethyl thiophosphate, dimethyl dithiophosphate, 
diethyl phosphate, diethyl thiophosphate, and diethyl dithio-
phosphate. Metabolite reporting limits were based on the limit 
of detection (LOD) for each DAP compound, and masses below 
the LOD were approximated as LOD/√2. Creatinine concentra-
tion was measured similarly to account for urine dilution.

We used summative measures of DAPs rather than measures 
of individual analytes, to provide a better indicator of total OP 
exposure,29 and to account for circumstances where individual 
OP pesticides devolve to more than one DAP metabolite.30 
Summed urine DAP concentrations (total dimethyl alkylphos-
phate, total diethyl alkylphosphate, and total DAP pesticides 
[EDAP]) were estimated by summing molar concentrations 
(DAP concentration divided by their molecular weights) of 
metabolites. Creatinine-adjusted EDAP was used for final sin-
gle-pollutant and multi-pollutant model analyses.

Ambient PM2.5 and ozone measurements

We obtained daily measurements of ambient concentrations of 
PM2.5 from the local US Environmental Protection Agency (EPA) 
central site air monitor in Toppenish, Washington. Ozone data 
were obtained from the US EPA Air Quality System Data Mart as 
an 8-hour daily maximum in parts per billion. Because the ozone 
monitors (n = 8) are sparsely distributed in Central Washington, 
we used data from all available monitoring sites that had com-
plete pollution data during the study period and averaged mea-
surements from the three closest monitors within 100 miles of 
participant homes. We explored the effect of PM2.5 and ozone 
measured on multiple lag days; to correspond with the limited ex-
posure window for OP exposure, final analyses were performed 
with weekly (7-day) average PM2.5 levels (as we did not have con-
secutive daily pollutant measurements), and lag-1 ozone levels.

Meteorology

To capture meteorological conditions for the week before LTE4 
measurements, we used data downloaded from the county-
weather package in R which provides data from NOAA’s Global 
Historical Climatology Network on 24-hour average, maximum 
and dew-point temperature, precipitation, and wind speed.

Statistical analysis

We evaluated associations of a marker of asthma exacerbation 
(LTE4) with exposure to ambient pollution (weekly average 
for PM2.5 and day-prior 8-hour maximum for ozone), and OP 
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pesticides (DAP) using generalized estimating equations (GEEs) 
with an exchangeable correlation matrix. In all our models, the 
mean outcome was modeled to be linear in response to the pri-
mary exposure of interest.

We presented the results in single-pollutant models as effect 
sizes per interquartile range (IQR) increases in exposure to 
make the associations comparable between the pollutants. For 
multi-pollutant models, we created categorized pollution combi-
nation levels and estimated the relative health impact of exposure 
to pollutant mixtures. This method assumes that there are similar 
functional characteristics (categorical effects) for individual com-
ponents of joint exposures. Levels of individual exposure met-
rics (OP, PM2.5, and ozone) were split into dichotomous indicator 
categories (high and low) based on the median values observed in 
the cohort. Then we aggregated the high and low pollutant levels 
to form two-pollutant and three-pollutant exposure mixture cat-
egories as shown in Table 1. For a two-pollutant mixture (“OP 
+ ozone,” “OP + PM2.5,” “PM2.5 + ozone”), there would be three 
categories of pollutant mixture reflecting high exposure (both 
pollutants at high exposure levels), moderate exposure (one pol-
lutant at high exposure level), and low (both pollutants at low ex-
posure levels); and for the three-pollutant mixture (“OP + ozone 
+ PM2.5”), there would be four categories of pollutant mixture 
reflecting high exposure (all pollutants at high exposure levels), 
moderate exposure (two pollutants at high exposure level), mild 
exposure (only one pollutant at high exposure levels), and low ex-
posure (no pollutants at high exposure levels). Mixture exposure 
categories were then included as independent variables in GEE 
models, using the homogeneous “low” categories as the reference 
category, and controlling for confounders.

Covariates included in all models as potential confounders 
were selected a priori based on existing evidence of relationships 
between the covariate and both respiratory health and exposure 
to air pollution: temperature, wind speed, precipitation and rel-
ative humidity (averaged over the week before LTE4 measure-
ments), week and month of the year as two possible markers of 
temporal trends (known high-risk periods for increased exac-
erbation include the return to school in the fall and respiratory 
virus season31,32), and subject-specific characteristics potentially 
associated with asthma and asthma exacerbation: sex, age, use 
of inhaled corticosteroids at baseline, a measure of severity at 
baseline (exhaled nitric oxide levels), and the number of individ-
uals in household.

In sensitivity analyses, we repeated the multi-pollutant anal-
ysis after restriction to exposure days below the US EPA National 
Ambient Air Quality Standards for ozone and PM2.5. Further, to 
investigate whether the health impact of joint multi-pollutant 
categories was sensitive to the choice of thresholds, we assessed 
multiple combinations for cutpoint choices at the 25th, 50th, 
and 75th percentile thresholds: we varied the cutpoints that dis-
tinguish between high and low exposure, and then reran models 
with adjusted joint multi-pollutant exposure categories created 
from these new cutpoints.

Model diagnostics were also performed to explore the possi-
bility of influential subjects using the “leave one out” method. 
These analyses did not indicate the presence of significant im-
pact of a single observation on model fit or estimates. We used 
the quasi-information criterion as an estimator of the relative 
quality (model fit) of statistical models.

Analyses were performed using SAS version 9.4 (SAS Institute, 
Inc., Cary, North Carolina) for GEE and mixed model analyses, 
and R version 3.3.0 (R Foundation for Statistical Computing, 
Vienna, Austria) for exploratory and descriptive analyses.

Results
Overall, the mean age of the 16 children included in this anal-
ysis was 12 years, and 56.3% were male (Table  2). Nearly 
all (93.8%) of the children self-identified as Hispanic/Latinx, 
56.3% were from low-income families, and 87.5% relied on 
public health insurance/aid. Approximately 69% of the children 
were taking corticosteroid medication at the time of enrollment, 
and 12 children (75.0%) were identified to be skin prick posi-
tive to at least one aeroallergen. Based on a clinical examination 
performed at baseline, more than half of the subjects (56.3%) 
were classified as overweight (body mass index-for-age above 
the 85th percentile).

Compliance with the collection of urine samples varied: the 
total number of samples per subject ranged from 1 to 12 (me-
dian: 10.5). A total of 139 observations were obtained from 

Table 1

Summary of mixture categories used for multi-pollutant analysis

Pollutant  
levels

Exposure  
category

OP Ozone PM2.5 3-category 4-category

High High  2 High  
Low High  1 Moderate  
High Low   
Low Low  0 Low  
High  High 2 High  
Low  High 1 Moderate  
High  Low  
Low  Low 0 Low  
 High High 2 High  
 Low High 1 Moderate  
 High Low  
 Low Low 0 Low  
Low Low Low  0 Low
Low Low High  1 Mild
Low High Low  
High Low Low  
Low High High  2 Moderate
High Low High  
High High Low  
High High High  3 High

Table 2

Characteristics of children in AFARE sub-cohort

Variable Level %

Sex Male 56.3
Birth country United States 68.8

Other 31.3
Ethnicity Hispanic/Latino 93.8

Non-Hispanic 6.3
Income ≤$15k/year 53.3

$15k–<30k/year 26.7
>30k/year 20.0

Residence In town 81.3
Rural/Farm 18.8

Total no. household 
members

<5 31.3
≥5 68.8

Insurance Public insurance or aid 87.5
Private insurance/self 12.5

Skin prick test positive 
(atopy)

Yes 75.0

Inhaled corticosteroid use Yes 68.8
Age Mean 11.9

Median 11.0
Minimum 9.0
Maximum 17.0

BMI for age (85th 
Percentile)

Above 56.3
Below 43.7

Baseline fraction exhaled 
nitric oxide level (ppb)

Mean 22.1
Median 12.0
Minimum 6.0
Maximum 120.0

BMI indicate body mass index.
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the 16 children over the study period. One observation was 
excluded because of incomplete data, resulting in 138 observa-
tions for analyses.

Individual-level creatinine-adjusted urinary LTE4 over the 
study period are illustrated in Figure  1. The median level of 
LTE4 among participants was 84.8 pg/mg creatinine (geometric 
mean: 84.8 pg/mg) over the study period.

Twenty-four hour weekly average PM2.5 concentrations had a 
median (IQR) of 8.7 (8.2) µg/m3 over the study period with the 
highest values occurring in late September (Figure 2A). There 
were multiple weekly periods with average PM2.5 exposure levels 
above the EPA 24-hour ambient air quality standards (35.0 µg/
m3), likely coinciding with a wildfire in Washington state during 
this period.33 The other predominant sources of PM2.5 emissions 
in the region include fossil fuel combustion, waste disposal and 
agricultural crop and livestock-related dust.34 The median (IQR) 
maximum 8-hour ozone value for individuals over the study pe-
riod was 43.0 (10.0) ppb (Figure 2B). There were also multiple 
days with observations above EPA 8-hour daily maximum am-
bient air quality standard (70.0 ppb). The median (IQR) total 
OP metabolite (EDAP) level was 142.9 (197.3) nmol/g creati-
nine (Figure 2C). Spearman correlations of ambient air pollut-
ants showed very weak positive correlations between EDAP and 

both ozone and PM2.5 (both ρ < 0.1). The correlation between 
ozone and PM2.5 was positive and slightly stronger (ρ = 0.2).

In addition, we observed no evidence of patterns in pollutant 
concentrations by residence (in-town vs. rural/farm), although 
<20% of participants resided in or next to farms (eFigure 1; 
http://links.lww.com/EE/A38). However, concentrations of the 
exposure (PM2.5, ozone and OP) and outcome (LTE4) measures 
exhibited a fair amount of temporal variability over the study 
period.

The associations of pollutants with LTE4 using single-pol-
lutant (as continuous pollutant exposures), two-pollutant (two 
of OP, PM2.5, and ozone), and three-pollutant models (all three 
pollutant exposures) are presented in Figure 3. In single-pollut-
ant models, an IQR increase in OP levels was associated with a 
LTE4 increase of 4.1 pg/mg creatinine (95% confidence interval 
[CI] = 0.6, 7.6). We also observed elevated associations between 
LTE4 levels and ozone (β = 5.8; 95% CI = −3.3, 14.8) and PM2.5 
(β = 2.1; 95% CI = −9.2, 13.4), although CIs included the null 
value.

All the models with median-dichotomized multi-pollutant 
combination exposures showed associations with increase in 
LTE4 levels (Figure 3). We observed the highest change in LTE4 
effect estimate for the highest (vs. the lowest) category of the 

Figure 1. Creatinine-adjusted urinary LTE4 levels for study participants over the study period. Vertical lines represent the beginning of a new month. Observed 
LTE4 series for one participant (15) is highlighted.

Figure 2. Air pollutant and pesticide exposure levels for study participants over the study period. Numbers in plot area indicate participant IDs. Horizontal line 
represents US National Ambient Air Quality Standard. A, Creatinine-adjusted urinary log OP (DAP, OP) levels. B, Maximum 8-hour ambient ozone levels. C, 
24-hour average ambient PM2.5 concentrations.

http://links.lww.com/EE/A38
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three-pollutant exposure (β = 63.6; 95% CI = 32.4, 94.7); mild 
and moderate exposure categories resulted in approximately 
27.5 (95% CI = 3.6, 51.5) and 62.5 (95% CI = 18.1, 107.0) 
pg/mg creatinine increases in LTE4, respectively, compared with 
the lowest exposure category. Despite the significant overlap 
between estimates and CIs, we also observed a form of tiered 
dose-response pattern across the categories of exposure se-
verity. In addition, effect estimates were similar for models that 
excluded observation points (n = 9) above the EPA standards for 
ozone and PM2.5 (Figure 3B).

In subanalyses of multi-pollutant models, we examined in-
dividual pollutant contribution to two-pollutant mixture cate-
gories. Within the limitations of overlapping CIs, we observed 
that for two-pollutant models, either moderate PM2.5 or OP, 
and high PM2.5 and OP were associated with increased LTE4 
compared to the reference homogeneous low mixture category 
(Figure 4). In contrast, for two-pollutant mixtures with ozone, 
only the highest mixture categories containing ozone (compared 
with the reference homogeneous low mixture category) resulted 
in increased LTE4 effect estimate.

The results from the sensitivity analysis using combinations 
of the 25th, 50th and 75th percentiles as thresholds are shown 
in eTables 1 and 2; http://links.lww.com/EE/A38. We observed 
that the associations between high, moderate, mild, and low ex-
posure groups generally persisted in these models. However, the 
magnitude of effect estimates (and 95% CI) varied with the dif-
fering cutpoints. For example, combination c4 which developed 
exposure categories based on the 25th percentile for PM2.5 (5.3 
μg/m3), 50th percentile for ozone (40.0 ppb), and 25th percen-
tile for OP (92.0 ng/mg creatinine), resulted in an estimated 17, 
39, and 52 μg/mg creatinine increase in LTE4 levels among the 
mild, moderate, and highest levels of joint exposures, respec-
tively (compared with the lowest category).

Finally, we observed minimal differences between model fit/
performance relative to selected cutpoints, based on the qua-
si-information criterion values (eTable 2; http://links.lww.com/
EE/A38). The best fit models for the multi-pollutant association 
with LTE4 tended to involve lower cutpoints (at 25%) for ozone 
and OPs, and the higher cutpoints for PM2.5 (at 75%).

Discussion
Geographical and population-based differences in the preva-
lence of asthma morbidity necessitate more refined assessment 
of the environmental exposures experienced by different popu-
lations. Our results provide insight into the effects of important 
criteria ambient pollutants on the respiratory health of children 
with asthma in a rural agricultural community, all in the context 
of contemporaneous exposure to OP pesticides.

To the best of our knowledge, no other study has considered 
environmental exposure to OP pesticides and criteria pollutant 
in joint health effects models; our study represents the first lon-
gitudinal, repeated measures study of joint assessment of com-
munity-level OP exposures, ambient air pollution and a marker 
of pulmonary inflammation among children in a largely agricul-
tural setting.

Our findings highlight, within the limitations of this study, 
several important implications. First, single-pollutant models 
suggest independent positive associations between urinary LTE4 
and short-term exposure to PM2.5, ozone, and OP pesticides, 
though only associations with exposure to OPs had a 95% CI 
that excluded null value. These findings, along with many pre-
vious studies using single-pollutant approaches, provide per-
tinent information about the potential role of the individual 
exposures, which is required to demonstrate relevance for the 
combination of these pollutants in multi-pollutant models.35,36

Next, the multi-pollutant models suggest increases in LTE4 
was consistently associated with joint exposures combinations 
of PM2.5, ozone, and OPs. Our observation of ordered trends 
across categories of severity in two-pollutant and three-pollut-
ant models may indicate increased risk of adverse health effects 
with increasing total mixture levels, though our small sample 
size resulted in significant overlap among the categories. We 
also observed a unique pattern of these trends with specific joint 
exposures; relative to the lowest categories, joint adverse asso-
ciations with LTE4 levels observed for all higher levels of PM2.5 
and OPs, but only mixture categories with the highest levels of 
ozone showed increased/positive changes in LTE4, compared 
with the low mixture categories. This indicates that the relation-
ship between ozone and LTE4 (and by extension inflammation) 

Figure 3. Estimated effects (β change and 95% CIs) of pollutants on creatinine-adjusted LTE4 levels (in pg/mg creatinine). A, Single-pollutant and multi-pollutant 
models using the median cutoff for categorization. B, Multi-pollutant models using median cutoff for categorization, excluding observations below EPA cutoff 
values. All models were adjusted for sex, age, use of inhaled corticosteroids at baseline, number of individuals in household, temperature, wind speed, precip-
itation, and relative humidity. PM2.5 indicates 24-hour-average exposure to particulate matter <2.5 µm in diameter; ozone, 8-hour maximum concentration of 
ozone; OP, urinary measure of metabolite of OP exposure, total DAP.

http://links.lww.com/EE/A38
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in mixtures is unlikely to be a simple linear one, with the worst 
effects seen at comparatively higher exposure levels, although 
underlying interaction mechanisms remain unclear.

Finally, the observed associations between exposure mix-
ture categories were present at concentrations below NAAQS 
standards for PM2.5 and ozone. Although these regulatory stan-
dards are predicated on single-pollutant research,16 our results 
reiterate the shortcomings (especially among susceptible indi-
viduals) of the standards,37 and signify a possible pathway to 
proffering standards based on multi-pollutant approaches.

The deleterious relationship between ozone, PM2.5, and pedi-
atric asthma morbidity have been thoroughly studied and estab-
lished by multiple observational and experimental studies.

Single-pollutant studies have found independent associations 
between short-term ozone and PM2.5 exposure, and asthma-re-
lated symptoms, hospital visits and clinical measures of exac-
erbation. For example, Lewis et al37 found that ambient PM2.5, 
PM10, 8-hour, and 1-hour peak ozone concentrations were asso-
ciated with increased odds of respiratory symptoms in a set of 
children with asthma in Detroit. Similarly, Loftus et al38 showed 
that PM2.5 pollution in this AFARE agricultural setting resulted 
in increased asthma symptoms and decreased lung function.

Conversely, the impact of OPs on pediatric asthma mor-
bidity has rarely been explored. In a previous study among 
children in the AFARE study, the authors showed that urinary 
pesticide metabolite levels (indicating short-term OP exposure) 
were significantly higher among the children in the AFARE co-
hort compared with children of similar age participating in the 
National Health and Nutrition Examination Survey, indicating 
additional exposure burden (most likely ambient and proxim-
ity-based) encountered in populations with significant agricul-
tural activity.39 They also pointed out that this OP exposure 
was associated with increased urinary LTE4 levels. Two other 
studies exploring urinary DAP metabolites among children from 
the Center for the Health Assessment of Mothers and Children 
of Salinas (CHAMACOS) birth cohort found a significant as-
sociation between early-life exposure to OPs and respiratory 
symptoms, and lung function in childhood.40,41 Although these 
symptoms and signs were consistent with pediatric asthma mor-
bidity; their sample cohort was not focused on children with 
asthma. Moreso, postnatal short-term exposures to OPs were 
not explored.

The major research paradigm in environmental epidemi-
ology research is to examine single-pollutant effects on health 
outcomes. The limited number of multi-pollutant studies often 
focus on a combination of criteria air pollutants, using either 
an additive main effects approach (including copollutants as 
coexposures in regression models), the interaction approach (as 
described by Dominici et al16), or other semiparametric and par-
ametric approaches.42,43 Although the effect of multi-pollutant 
exposures have been linked to pediatric asthma morbidity,44–49 
the difference in mixture components and approaches to quan-
tify these pollutant mixtures limits direct comparability with 
our study results. Even less common are studies that explore 
noncriteria environmental pollutants, or multiple exposure 
domains. Research on multi-domain (in addition to multi-pol-
lutant) exposures are important when considering the health 
effect of cumulative chemical exposure in communities with a 
mix of pollutant sources;36 the individuals in such communities 
tend to be exposed to multiple diverse chemicals or environ-
mental risk factors simultaneously.20

The exact mechanisms by which these three pollutants cause 
respiratory morbidity, individually or as part of a mixture, are 
poorly understood. However, across epidemiological and toxi-
cological studies, airway inflammation and hyperresponsiveness 
are two mechanistic features consistently associated with all three 
pollutants.9,50 Cysteinyl leukotrienes are a measure of endogenous 
release of inflammatory mediators and are recognized as a key 
mediator of airway inflammation.27,51,52 Hence, LTE4, the stable 
end product of cysteine leukotriene metabolism can be considered 
as a logical marker of the endpoint of this inflammatory process.

Our approach to multi-pollutant analysis employed median 
dichotomization splits to generate exposure categories based on 
distributional properties of the single-pollutant exposure data 
in the cohort. This conceptually simple method builds on an 
unsupervised profile generation technique which transforms 
pollutant mixture concentrations into flexible variables that 
subsequently represent simple exposure profiles of the pollu-
tant combination. We are able to generate interpretable effect 
estimates with reasonable inferential properties including bet-
ter characterizations of the total environment, effect measure 
modification within the mixtures, and identify combinations of 
pollutants that may be the most harmful.

Other simplified methods for multi-pollutant analyses 
have been reported in the literature. For example, Hong  

Figure 4. Estimated effects (β change and 95% CIs) on creatinine-adjusted LTE4 levels (in pg/mg creatinine) from two-pollutant models indicating specific 
pollutant contribution to exposure mixture categories. Letter in parenthesis indicates pollutant with highest exposure level; PM2.5, particulate matter <2.5 µm in 
diameter; O3, ozone; OP, total DAP (OP). Horizontal lines indicate level of effect estimates of single pollutant in comparison to multi-pollutants.
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et al53 presented a combined index for combinations of pol-
lutant concentrations, calculated as the sum of mean scaled 
single-pollutant concentrations. Their index method is easy to 
interpret, but unsuitable for highly skewed data, and is unable 
to clearly delineate which mixture component or combination 
of pollutant levels is relatively more harmful. More recently, 
a study by Liu and Peng examined the cardiovascular health 
effects of three-pollutant mixtures (ozone, nitrogen dioxide, 
and fine particulate matter) in 85 United States counties, using 
a method called PollutANt CAtegory KnittEd (PANCAKE) to 
categorize pollutant levels.54 Their categories were based on 
thresholds of increasing magnitude, and PANCAKE created 
indicators for different mixture compositions. However, the 
PANCAKE method is more suited to ecological-level studies 
and requires large sample sizes to generate enough samples for 
exposure mixture categories.

There are several limitations in our study and analytic 
approach. First, using DAPs as a measure of ambient OP ex-
posure is limited by the lack of specificity with respect to the 
OP from which they were derived, and reliability may be af-
fected by human exposure to preformed DAPs in food or the 
environment.55,56 We believe that any related measurement 
error will most likely be nondifferential, with possible atten-
uation of effect estimates. Moreover, a substantial body of 
literature has demonstrated significant temporal and spatial 
associations between ambient pesticide application/use/mea-
surements and DAP levels.57–59 Our measures of ozone and 
PM2.5 were obtained from central monitors in proximity to 
children’s homes. Such residential exposure assessment fails 
to account for time-activity patterns. Further, we were lim-
ited in this particular study in identifying spatial variation of 
exposures to environmental agents. Again, any errors result-
ing from this would most likely be nondifferential, and likely 
may have masked any true exposure-outcome associations by 
biasing results toward the null and increasing the standard 
errors association with effect estimates. Future studies should 
focus on better characterization of spatial exposure patterns 
in an agricultural community.

Further, to arrive at biologic plausibility for the joint effects 
of exposures on our outcome, we assume similar pathophys-
iological pathways for all three component pollutants. It is 
possible that the effects seen are due to simultaneously present 
differing mechanisms of action. For example, each pollutant 
may lead to respiratory morbidity through one or more of: di-
rect insult on lung tissue receptors; indirectly through effects 
mediated by oxidative stress or inflammatory mechanisms; si-
multaneous direct and indirect mechanisms; or with the mech-
anism and effect of a specific pollutant acting as an adjuvant 
for another.9,60 Toxicological data that appropriately quantifies 
the pathophysiological activity for individual pollutants may be 
required. However, it is unlikely that differences in individual 
pollutant pathophysiologic mechanisms explains all of the 
observed effects.

Another possible source of exposure misclassification may be 
related to using dichotomized exposure cutpoints. To evaluate 
exposure cutpoint bias, we manually assessed the joint effects 
of pollutant exposures at multiple dichotomization splits. The 
observed results indicate a robustness of our chosen median cut-
points in this population.

Data constraints limited us to short-term lag exposure anal-
yses, and limited characterization of the influence of seasons 
with respect to this particular agricultural community. Finally, 
we had no symptomatic/clinical marker of asthma exacerbation. 
However, multiple studies have highlighted correlations between 
acute exacerbation events and LTE4: Green et al52 showed that 
urinary LTE4 levels among adults with asthma increased by 
over 30% during asthma exacerbations, compared with levels 
at follow-up; and a Rabinovitch et al61 study indicated clinically 
significant decreases in pulmonary function (percent predicted 

FEV1 by 4.7%) per IQR increase in LTE4 among children with 
asthma. We do recognize that combining measures, such as bio-
markers with clinical characteristics, most likely characterizes 
asthma exacerbation better than a single marker.62

Several issues need to be considered in interpreting our 
study results. Our choice of pollutants in single-pollutant or 
multi-pollutant models do not represent a full suite of possible 
pollutant exposures, even in this particular agricultural com-
munity. Moreover, those selected for our analyses are likely 
correlated with multiple other key pollutants and may only 
be acting as surrogates for unmeasured or poorly measured 
pollutants. We also acknowledge the possible contribution 
of indoor exposures that may act as allergens (such as mites 
and cockroaches, pets, gas stoves, and tobacco). However, the 
children in our study were enrolled in an asthma education 
program to address these common indoor factors before col-
lection of urine samples.

Finally, exposures to the ambient air pollutants and pes-
ticides were limited to a four-month block. Without patterns 
of variability across multiple time periods, we can only make 
cautious interpretations of the magnitude or significance of 
exposure-outcome associations. Again, more detailed studies 
that include time points from a larger number of seasons are 
required to provide a better characterization of temporal varia-
tions, and to validate our study methods.

The identification and mitigation of environmental triggers in 
a rural/agricultural setting is one effective component of com-
munity-based and clinic-based asthma management strategies, 
the success of which depends on the proper characterization of 
the relevant pollutant species beyond the commonly measured 
(and more urban) air pollutants. In this panel study, we explore 
the deleterious associations between a biomarker for pulmo-
nary inflammation, and exposure to agricultural OP pesticides 
and two important criteria air pollutants among children with 
asthma. Additionally, we extend a multi-pollutant statistical 
framework to examine the joint effect of this distinct combi-
nation of ambient exposures that underscore the experience of 
simultaneous exposures to environmental triggers in an agricul-
tural community.

More emphasis on region and population-specific analysis 
of pollutant mixtures and potential health effects is required, 
including development of tools and approaches for these epi-
demiologic analyses, with a focus on ultimately refining and 
enforcing more appropriate environmental standards.
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