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Abstract

Accurate estimation of duration of surgery (DOS) can lead to cost-effective utilization of sur-

gical staff and operating rooms and decrease patients’ waiting time. In this study, we present

a supervised DOS nonlinear regression prediction model whose accuracy outperforms ear-

lier results. In addition, unlike previous studies, we identify the features that influence DOS

prediction. Further, in difference from others, we study the causal relationship between the

feature set and DOS. The feature sets used in prior studies included a subset of the features

presented in this study. This study aimed to derive influential effectors of duration of surgery

via optimized prediction and causality analysis. We implemented an array of machine learn-

ing algorithms and trained them on datasets comprising surgery-related data, to derive DOS

prediction models. The datasets we acquired contain patient, surgical staff, and surgery fea-

tures. The datasets comprised 23,293 surgery records of eight surgery types performed

over a 10-year period in a public hospital. We have introduced new, unstudied features and

combined them with features adopted from previous studies to generate a comprehensive

feature set. We utilized feature importance methods to identify the influential features, and

causal inference methods to identify the causal features. Our model demonstrates superior

performance in comparison to DOS prediction models in the art. The performance of our

DOS model in terms of the mean absolute error (MAE) was 14.9 minutes. The algorithm that

derived the model with the best performance was the gradient boosted trees (GBT). We

identified the 10 most influential features and the 10 most causal features. In addition, we

showed that 40% of the influential features have a significant (p-value = 0.05) causal rela-

tionship with DOS. We developed a DOS prediction model whose accuracy is higher than

that of prior models. This improvement is achieved via the introduction of a novel feature set

on which the model was trained. Utilizing our prediction model, hospitals can improve the

efficiency of surgery schedules, and by exploiting the identified causal relationship, can influ-

ence the DOS. Further, the feature importance methods we used can help explain the mod-

el’s predictions.
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Introduction

High utilization of resources such as equipment, staff, and facilities in healthcare organizations

generates efficient patient flow and cuts costs [1–3]. The high cost of surgeries and operating

rooms (ORs) have made them key elements for hospital administrators looking to streamline

expenses [4]. OR underutilization results in negative consequences such as staff idle time,

increased patient waiting times for surgeries, and more. On the other hand, OR overutilization

might overload the staff, increase patient waiting time and dissatisfaction, generate disorder,

increase the probability of human error, and more [3–5].

Each surgery comprises a number of procedures with a surgical staff to support it. This

includes the surgeon, an anesthesiologist, nurses, and other staff members. Surgeries, roughly

speaking, are either emergency or elective. The duration of surgery (DOS) is defined as the

period of time during which the patient is in the OR.

DOS is the chief variable affecting surgery scheduling and OR management. Current prac-

tices in many hospitals suggest that physicians who are hospital staff members schedule the

surgeries. As shown in the art, however, physicians tend to predict DOS inaccurately, thus

causing sub-optimal scheduling [6]. In other hospitals, each surgery is allocated a default DOS.

This default time is the computed mean duration of the specific procedures of that surgery

type [2, 7, 8]. Given the suboptimality of DOS prediction and its negative effect on OR man-

agement, multiple studies developed machine learning (ML) DOS prediction models, aiming

to optimize OR utilization. Those studies, however, did not examine causality and did not pro-

vide systematic explanations for the predictions derived by their models. In this research, we

address these lacunae.

ML techniques are widely used in health informatics studies [9–11]. With the increase in

surgery documentation in electronic health records (EHRs), ML has become very relevant for

DOS prediction. Given the large size of surgery datasets and the abundance of factors that

could influence DOS, ML facilitates data analysis beyond conservative factors and practices.

As DOS values are continuous, ML regression models are highly appropriate for their predic-

tion. With this in mind, we have developed a DOS regression prediction model.

Explaining predictions produced by ML models, beyond the performance metrics, is a nec-

essary element of ML research in healthcare [12]. Understanding the importance of each fea-

ture to the model’s predictions sheds light on the model’s behavior. Such understanding allows

domain experts, i.e., physicians and surgeons, to validate the model’s predictions and gives

them a tool for optimizing surgery management. Methods for explaining individual predic-

tions by the features used are known in the art. Other methods that explain the cumulative

influence of features on the model’s prediction are also known. For an individual prediction,

the output of such methods is the contribution of each feature to the prediction value. To cal-

culate the cumulative feature importance, most methods average or sum the contribution of

each feature across all records [13]. In our research, we utilize these methods to study the

cumulative effects of features. We compute feature importance using algorithms such as Shap-

ley Additive exPlanations (SHAP) [14, 15].

A causal relationship, unlike correlation, describes the relationship between two variables,

suggesting that one has caused the other to occur [16–18]. Causal inference addresses the

problem of identifying cause and effect relationships in data [17] and has a central role in the

healthcare [19]. The determination that a connection between a feature and the target variable

is causal indicates that intervention may be beneficial [20]. For example, one can intervene by

changing the composition of the surgical staff, thus decreasing the DOS.

Earlier studies developed regression ML models to predict DOS values. Most studies used

linear regression algorithms for the development of the prediction models [21–24]. Some
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recent studies, e.g., that by Jiao et al. (2020), employed ML algorithms, e.g., multilayer percep-

tron. The feature set used in those studies for model development included patient features

and procedure features but did not incorporate surgical staff features as we do [23]. Addition-

ally, their patient and procedure features comprised only a subset of those examined by our

study. Further, these studies did not explain the DOS model’s predictions. Studies whose fea-

ture set is similar to ours [25, 26] developed ML models to predict length of physician appoint-

ment and length of stay in the emergency department, however, they have not analyzed DOS,

nor have they generated explanations for their predictions.

Unlike previous studies, our focus is on the importance of features and the effect of that

importance on the model and the predicted DOS. We study a broad range of patient features

(age, gender, BMI, etc.), surgical staff features (experience, age, etc.), and surgical features. In

addition, we use explanatory algorithms to analyze our model’s predictions and causal infer-

ence algorithms to study the effect of our features on DOS. Our models provide a prediction

for both the elective and the emergency surgery classes. To develop our models, we cooperated

with the main surgical department of one of the largest Israeli public hospitals, the Tel Aviv

Sourasky Medical Center (TASM).

In addressing the challenges described above, the contribution of this study is four-fold. (1)

We develop DOS prediction models whose performance levels are higher than those of exist-

ing DOS prediction models. (2) We introduce a feature set that includes novel features studied

here for the first time as well as features examined by previous studies. (3) We identify the

most influential features affecting DOS prediction. (4) We study the causal relationship

between features and DOS via causal inference algorithms.

This study has several OR management implications. Using our prediction model, OR

management teams can improve the performance of surgery scheduling in terms of patient

waiting time and surgery team idle time. Using the identified causal relationships, OR manage-

ment teams can control and adjust DOS values. Further, the explanatory methods elucidate

the model’s predictions.

The paper proceeds as follows. The Introduction section presents the state-of-the-art, the

motivation for this study, and its objectives. The Methodology section focuses on the research

methodology applied according to IJMEDI checklist [27], including dataset acquisition, pre-

processing, causality analysis, and feature extraction and selection. The Results section pres-

ents the empirical evaluation of our research model and discusses the results. It further

compares our models to models in earlier studies. In the Discussion section, we discuss the

main findings and point at future directions of our research. Finally, in the Conclusion section,

we summarize the insights that were obtained in our study.

Methodology

Our methodology comprises six stages, as follows: 1) collecting and preprocessing a dataset; 2)

finding the causal relationship between features and DOS; 3) developing a DOS supervised

regression model, referred to as DOSM; 4) evaluating DOSM’s performance; 5) calculating fea-

ture importance; and 6) comparing influential and causal features. Fig 1 presents a flowchart

of the methodology.

Stage 1: Data collection and preprocessing

Our surgery dataset (SD) was obtained from the Tel Aviv Sourasky Medical Center’s (TASM)

(a public hospital) surgery department. The data were approved by the TASM institutional

review board (IRB), approval number 0332-21-TLV. This study involves data about human

participants but the IRB exempted this study from participant consent. The data were fully
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anonymized and then used for this study. The data included 23,293 retrospective surgical rec-

ords, focusing on the eight most common surgeries in this department between 2010 and

2020. The dataset included surgical features, patient features, and surgical staff features. We

examined the features that previous studies used for their DOS models and, from among

Fig 1. Methodology flowchart.

https://doi.org/10.1371/journal.pone.0273831.g001
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them, we adopted those that are independent of the surgery type. We moreover used addi-

tional features that were suggested by domain experts, i.e., experienced surgeons [3, 8, 21, 23].

The full list of features is shown in Table 1. The table shows feature names, indication of

whether a feature is novel (by a V in the Novel column), the value range of each feature, and

values’ statistics. For numeric features, statistics include maximum, minimum, mean, and

STD values. For nominal features, it includes the distribution.

In the data preprocessing stage, we omitted records whose DOS value was missing. We also

excluded outliers, which comprised about 5% of the records. Missing surgical staff data were

manually completed by the surgery department’s staff. For handling missing data of other fea-

tures, we used the Sequence of Regression Models (SRM) technique for multiple inputting of

missing values [28]. Accordingly, the missing values of features were computed using the val-

ues of other features.

Stage 2: Causal inference

The causal effect of a feature on an outcome variable (in our case, DOS), e.g., in the context of

medicine, is called the treatment effect or heterogeneity treatment effect (HTE) [29]. The aver-

age treatment effect (ATE) of a feature (whose value range is binary) measures the difference

in the mean of the outcomes between data records with different values assigned to the feature.

Since our study is observational, the ATE values could not be computed accurately, as a feature

in a surgery record only has an observed value and cannot be assigned other values [29]. Con-

sequently, we had to estimate the ATE values to measure their causal effect on DOS. Several

ML algorithms are used to estimate the ATE value. For example, the ATE for a binary feature f
is calculated as follows:

ATEf ¼
1

n

Xn

i¼1
ðyf1ðiÞ � yf0ðiÞÞ ð1Þ

We use Eq (1) and its extensions to calculate the ATE. Here, yf1ðiÞ is the value of the outcome

in record number i when the value of feature f is 1. yf0ðiÞ is the value of the outcome in record

number i when the value of feature f is 0. In an observational study, yf1ðiÞ and yf0ðiÞ are esti-

mated using ML algorithms. Extensions of Eq (1) that we used for calculating the ATE value of

non-binary features are presented in [30].

Two main ML model types, propensity and heterogeneity models, are used for estimating

causal effects. The former models are used for estimating the propensity score, which is the

probability of a record to have a particular feature value given a set of observed other features,

i.e., covariates. Propensity scores are used to reduce confounding variables’ effects and the

implied bias. The latter models are used for estimating the heterogeneity of the treatment effect

[31].

To develop the heterogeneity model, we used forest-based algorithms, which estimate non-

linear HTE. The commonly used algorithms are orthogonal random forest (Estimator-

DROrthoForest), forest double ML estimator, i.e., causal forest (CausalForestDML), and forest

doubly robust estimator (ForestDRLearner) [32, 33]. For the development of the propensity

model, we used the commonly used algorithms LassoCV, RF, and GBT [34]. To optimize the

models’ hyperparameters, we used the grid search algorithm.

Stage 3: Model development

Recent studies have shown that RF, GBT, and deep neural networks (DNNs) are capable of

accurately predicting both binary and high-variance continuous variables in the healthcare

domain [10, 26, 35]. Therefore, to develop the model, we utilized tree-based and DNN–based
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Table 1. Description of features.

Feature Type Values/range and statistics Note Novel

Patient features

Gender Boolean Male(55%)/Female(45%)

Age Numeric Float (AVG: 47.4, STD: 19.5, MAX: 102, MIN: 18)

Country-of-origin Categorical ISR (60%), ITA (0.01%), ARG (0.07%). . .

Nationality Boolean ISR (60%)/No-ISR (40%)

Recent surgery types Categorical Chemosurgery of skin(2%), arthroscopy(4.5%), . . . #1 V

Number of recent surgeries Numeric Integer (AVG: 0.05, STD: 2.2, MAX: 9, MIN: 0) #2 V

Number of recent

hospitalizations

Numeric Integer (AVG: 3, STD: 4, MAX: 63, MIN: 0) #3 V

Number of children Numeric Integer (AVG: 1.56, STD: 1.72, MAX: 21, MIN: 0) V

Marital status Categorical Single(32%), married(50.8%), divorced(12%), widowed (5.2%)

Chronic diseases Categorical Intestinal infectious diseases (001–009)(0.001%), tuberculosis (010–018) (0.001%), . . .. #4

Number of chronic diseases Numeric Integer (AVG: 1.42, STD:3, MAX: 11, MIN: 0) V

Recent drugs prescribed Categorical Muscular pain(13%), vitamins (20%) . . . #5

Sleeping disorder Boolean Yes(28%)/no(72%) V

Alcohol use disorder Boolean Yes(3%)/no(97%) V

Narcotics use disorder Boolean Yes(1%)/no(99%) V

Smoker/Nonsmoker Boolean Yes(22%)/no(88%)

Insurance type Categorical Macabi (HMO-10) (24.2%), Clalit (HMO-11)(50.7%)

BMI Numeric Float (AVG: 26.1, STD: 5.03, MAX: 75.6, MIN: 13.7)

Surgical staff features

Number of joint surgeries Numeric Integer (AVG: 50.3, STD: 14.01, MAX: 1029, MIN: 0) #6 V

Size of the surgical team Numeric Integer (AVG: 6, STD: 3.2, MAX: 15, MIN: 1) V

Number of nurses Numeric Integer (AVG: 2, STD: 1.9, MAX: 7, MIN: 0) V

Number of surgeons Numeric Integer (AVG: 2.4, STD: 1.78, MAX: 5, MIN: 1) V

Anesthetist gender Boolean Male (81%)/Female (19%) V

Anesthetist age Numeric Float (AVG: 42.8, STD: 6.6, MAX: 74, MIN: 30) V

Anesthetist country of origin Categorical ISR(42%), ITA. . . V

Anesthetist average surgery

duration

Numeric Float: Minutes (AVG: 92, STD: 36.7, MAX: 211, MIN: 20) V

Anesthetist experience Numeric Integer: Years (AVG: 3.7, STD:3.8, MAX: 34.1, MIN: 0)

Surgeon gender Boolean Male (77%)/Female (23%) V

Surgeon age Numeric Float (AVG: 40.9, STD: 6, MAX: 83, MIN: 26) V

Surgeon country of origin Categorical ISR(45%), ITA... V

Surgeon average surgery

duration

Numeric Float: Minutes (AVG: 92, STD: 36.7, MAX: 211, MIN: 20) V

Surgeon experience Numeric Integer: Years (AVG: 4.2, STD:4.5, MAX: 38.7, MIN: 0)

Surgery features

Time slot Categorical Early AM (7–9 am)(31%), AM (9 am to 12 pm)(15.6%), PM (12–5 pm)(30.6%), or Night (5 pm to

7 am)(22.8%)

Month Categorical Jan(9.4%), Feb(8.5%), Mar(8.8%), Apr(7.7%), May(8%). . .

Surgery room ID Categorical Room 1(4.2%), room 2(1.9%). . .

Surgery lead time Numeric Integer: Days

Season Categorical Fall (26.6%), winter(24.1%), spring(22.5), summer(26.8)

Surgery type Categorical Lumpectomy(13%), Perianal Abscess(6.33%), Pilonidal Sinus . . .

Is private operation Boolean Yes (11%)/no (89%) V

Urgency score Ordinal 1 –Not urgent (52%), 2 (29%), 3 –urgent (19%) V

(Continued)
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ML algorithms. Two tree-based algorithms were used, RF and GBT. One DNN-based algo-

rithm was used–MLP.

For training and testing our model, we split the SD: 70% for training and 30% for testing.

Given that the SD contained data from eight surgery types, we measured the performance met-

rics for the whole training set and for each of its sub-sets, partitioned by surgery type. As noted

above, to optimize the model’s hyperparameters, we used the grid search algorithm. Grid

search combines all possible hyperparameters to be optimized with predefined value ranges

[36]. The algorithm’s output is the model’s hyperparameters whose performance levels are the

highest.

Stage 4: Model validation

To evaluate our model’s performance, we used the regression metrics Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The

metrics are computed as follow:

MAE ¼
1

n

Xn

i¼1
jyi � tij ð2Þ

MAPE ¼
1

n

Xn

i¼1

yi � ti
yi

�
�
�
�

�
�
�
� ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðyi � tiÞ
2

n

s

ð4Þ

Where yi is the predicted DOS value of record i, ti is the true value of DOS, and n is the number

of records. To evaluate the grid search output, we used K-fold cross-validation, a commonly

used method to fully and effectively utilize data [37].

Table 1. (Continued)

Feature Type Values/range and statistics Note Novel

Top 3 procedures performed List of

categorical

Codes from ICD-9 V

Surgery unit Categorical Unit1(37%), unit 2(9%), . . .

Norton scale Numeric Integer: 5-20(AVG: 7, STD:8.2, MAX: 20, MIN: 5) #7 V

Charlson comorbidity score Numeric Integer: 1-5(AVG: 1.1, STD:1.86, MAX: 5, MIN 1:) #8 V

Duration Numeric Float: Minutes (AVG: 92, STD: 36.7, MAX: 211, MIN: 20) #9

#1 Examines how past surgeries in the 90 days preceding the current surgery affect the DOS of the current surgery; the time frame was determined by a domain expert
#2 The total number of surgeries in the 90 days prior to the current surgery
#3 Examines how past hospitalizations in the last 90 days affect DOS; the time frame was determined by a domain expert
#4 Examines the influence of a patient’s chronic disease categorized by The International Classification of Diseases Ninth Revision (ICD-9) with sub-chapters according

to the ICD code [41]
#5 Drugs prescribed during the 90 days prior to the surgery, categorized by pharmacological subgroup
#6 The number of joint surgeries of the surgeon and anesthesiologist
#7 Used to identify patients at risk for pressure ulcers; a lower value indicates higher risk for pressure ulcer development [42]
#8 The severity of comorbidity was categorized into three bins: mild 1–2, moderate 3–4, severe�5 [42]
#9 DOS

https://doi.org/10.1371/journal.pone.0273831.t001
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To compare the performance of our model to the performance of the DOS prediction mod-

els presented in previous studies, we applied a methodology presented in a state-of-the-art

study to our SD [3]. That study was selected for our comparison because the performance it

achieved is better than that achieved by other studies. Further, its model’s features do not

depend on a specific surgery type. One aim of this comparison was to examine whether the

introduction of the novel features in our study results in better model performance than the

performance of prior models. To this end, we re-implemented the model presented in [3]. The

comparison was performed on the same test and training sets. The performance metric used

for the comparison was MAE.

Stage 5: Influential feature identification

To identify the features that influence the DOS prediction, we employed feature importance

methods that do not depend on the algorithm type. First, we utilized Pearson correlation to

compute the correlation between the independent features and the dependent feature. Then,

we used SHAP to estimate the contribution of each feature to the model’s prediction [38, 39].

Stage 6: Comparison between influential and causal features

We compared the influential features and the causal features. To this end, we filtered out fea-

tures that had high correlation with the causal features so that the comparison would not be

based on highly correlated features. To filter, we initially split the feature set F into two subsets.

The first set–causal feature set (CF)–includes features whose absolute ATE value is greater

than 0 and are identified as significant causal features (using P = .05). The second subset–non-

causal feature set (NCF), NCF = F \ CF–includes the remaining features. The filtering process

was done by calculating the Pearson correlation between the causal features in CF and the

non-causal features in NCF and omitting NCF features that highly correlate with CF features

(i.e., the correlation value is greater than 0.49) [40]. The resultant filtered subset, whose mem-

ber features are NCF features that are not correlated to CF features, is the filtered non-causal

feature set (FNCF).

To calculate feature importance, we developed a DOS prediction model using the features

in CF and FNCF. We call this model DOSM-F, as it is similar to DOSM, but with filtered fea-

tures. For the comparison we used the influential features of DOSM-F and the causal features.

We aimed to identify features that influence DOS prediction and also have a causal relation-

ship with DOS. In addition, we examined whether a feature that has a positive causal effect on

DOS also has a positive effect on the DOS predicted value, and whether a feature that has a

negative causal effect on DOS also has a negative effect on the DOS predicted value.

The DOSM-F model was used to estimate the potential change in the DOS as a result of var-

iations in causal feature values (for example, potential changes in the surgical staff size). We

used DOSM-F because the features used for training that model were CF and FNCF. Training

using only these features allowed the CF values to have a bigger impact on the prediction value

of DOSM-F compared to the prediction value derived when using all features including the

features correlated with CF.

Results

Implementation

DOSM development and data analysis were done via Python scripts using the EconML [43],

scikit-learn, LightGBM, NumPy, SHAP, and scikit-feature packages.
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Data analysis

Table 2 summarizes the statistical metrics of DOS in minutes across the surgery types, without

our model being applied. Patients’ average age of is 47.5 years and the STD is 19.5.

Fig 2 presents the DOS distribution, which is a positively skewed distribution. The high

STD values across the surgery types indicate that the regression predicted values, i.e., the pre-

dicted DOS values, are spread over a broad range.

Table 2. Dataset statistics.

Surgery type Mean DOS STD DOS Dataset size

Laparoscopic Cholecystectomy 117 38.9 5,648

Repair of Inguinal Hernia Laparoscopic 85.5 26.8 5,240

Laparoscopic Appendectomy 98 23.7 4,902

Lumpectomy 113.5 36 3,023

Perianal Abscess 38.3 11.9 1,475

Pilonidal Sinus 76.3 15 1,142

Anal Fistulotomy 47.3 13.7 943

Excision of Hemorrhoids 57.7 12.8 920

https://doi.org/10.1371/journal.pone.0273831.t002

Fig 2. DOS distribution.

https://doi.org/10.1371/journal.pone.0273831.g002
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Causal inference

Causal model development. The causal analysis models we used were trained on the SD.

The inputs to these models are a vector of the counterfactual features X, a vector of the out-

come feature Y (i.e., the model’s target feature), and a vector of a selected feature T–a candi-

date causal feature. The SD comprises n feature column vectors fi and one target feature Y, i.e.,

SD = {f1,. . ., fn, Y}. To extract X, Y and T from the SD, we select T = fi, X = SD\{fi, Y}; Y is the

DOS column of the SD. We iterated over i and calculated the ATE for all fi features. Thus, we

obtained the causal effect of all the features on DOS.

Hyperparameter optimization. The hyperparameter values we used to optimize the HTE

and propensity models are listed in Table 3. The LassoCV algorithm is an iterative algorithm

that finds the optimal parameters for a Lasso model using cross-validation; thus, this algorithm

does not appear in Table 3 [44]. The hyperparameter values used (see Table 3) are similar to

values commonly used in the art.

Causal feature identification. Table 4 presents the 10 features whose absolute ATE values

were the highest, in decreasing order. Six of the 10 most causal features are also among the 10

Table 3. Causal inference models’ hyperparameter values.

Model Algorithm Hyperparameter Values

Propensity

model

GBT Number of trees 50, 100, 150, 300, 600, 1200,

2400

Learning rate 0.001, 0.005, 0.01, 0.025, 0.05,

0.1, 0.2, 0.5

Maximum depth of a tree 10, 20, 40, 80, 160

Maximum tree leaves 3, 7, 31, 100, 500, 1000, 2000

Propensity

model

RF Minimum number of samples required to split a node 2, 5, 10, 20

Number of trees 50, 100, 150, 300,600, 1200,

2400

Minimum number of samples required at each leaf node 1, 2, 5, 10, 20, 40

Maximum depth of a tree 10, 20, 40, 80, 160

Maximum features in a tree unlimited, log2, sqrt

HTE model EstimatorDROrthoForest, CausalForestDML,

ForestDRLearner

Minimum weighted fraction of the sum total of weights 0.0001,0.001, 0.01, 0.1

Maximum depth of the tree 3, 6,10, 20, 40, 80

Minimum variation of the treatment vector that should be

contained within each leaf

0.0001,0.001, 0.01, 0.1

Maximum features in a tree unlimited, log2, sqrt

https://doi.org/10.1371/journal.pone.0273831.t003

Table 4. ATE values.

Feature ATE

1 Surgery type -15

2 Procedure 1 code -10

3 Surgeon–average surgery duration 8.8

4 Surgery urgency score 7

5 Patient–alcohol use disorder -6.7

6 Patient–recent drugs prescribe 6

7 Patient–number of chronic diseases -5.5

8 Surgery time slot -3.8

9 Patient–gender 2.9

10 Patient–country-of-origin 2.8

https://doi.org/10.1371/journal.pone.0273831.t004
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most correlated features by Pearson correlation (shown in Table 9). Half of the top 10 causal

features are among the novel features shown in Table 1.

Model development

Hyperparameter optimization. The hyperparameter values we used for optimizing our

DOS prediction models appear in Table 5. These values are similar to values commonly used

in the art [45–49].

Model training and performance. We trained the DOS models on the dataset using sev-

eral ML algorithms. The ML algorithms calculate the features’ influence differently; for this

reason, the models were trained on all of the features. The algorithms that generated the top

performing models–GBT being the best–are presented in Table 6. Overall, the MAE values in

the table suggest that the performance is similar across the three algorithms, with GBT per-

forming a bit better. Table 7 presents the per surgery type performance of the GBT model.

This was done by splitting the test set by surgery type. In addition, to evaluate the effectiveness

of our model against current practices, we calculated the MAE value of the manual method

currently used by the clinics’ staff for each surgery type. In the manual method, the mean of

the previous surgery by type is used to estimate the future DOS. The DOSM performance is

significantly better than that of the manual method (using P = .05) (see Table 7).

We have calculated the model’s uncertainty as follows. First, for each record in the test set,

we used the DOSM to predict a list of probabilities from each tree in the GBT. Then, for each

record, we calculated the STD from the list of probabilities. Finally, we calculated the mean of

the STDs. Following this flow, the derived uncertainty of the model was 4.1 minutes.

Table 5. Hyperparameter values.

Algorithm Hyperparameter Values

GBT Number of trees 50, 100, 150, 300, 600, 1200, 2400

Learning rate 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.5

Maximum depth of a tree 10, 20, 40, 80, 160

Maximum tree leaves 3, 7, 31, 100, 500, 1000, 2000

RF Minimum number of samples required to split a node 2, 5, 10, 20

Number of trees 50, 100, 150, 300,600, 1200, 2400

Minimum number of samples required at each leaf node 1, 2, 5, 10, 20, 40

Maximum depth of a tree 10, 20, 40, 80, 160

Maximum features in a tree auto, log2, sqrt

MLP Number of hidden layers 1, 2, 4, 8, 16

Number of nodes in each hidden layer 4, 8, 16, 32, 64

Number of epochs 50, 100, 200, 400, 800, 1600

Learning rate 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.5

Activation function Relu, Tanh

Solver SGD, ADAM

https://doi.org/10.1371/journal.pone.0273831.t005

Table 6. DOS models’ performance (in minutes).

Algorithm MAE RMSE MAPE

MLP 15 20.5 0.172

GBT 14.9 20.3 0.164

RF 15.9 21.7 0.181

https://doi.org/10.1371/journal.pone.0273831.t006

PLOS ONE Surgery duration: Optimized prediction and causality analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0273831 August 29, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0273831.t005
https://doi.org/10.1371/journal.pone.0273831.t006
https://doi.org/10.1371/journal.pone.0273831


Comparison to recent results

To compare our model’s performance and examine whether the novel features introduced in

our study derive a model that outperforms the state of the art, we developed two additional

models. The first one, Barket-FM-DOSM, is a DOS model using the features and the methods

used in Barket et al. (2019), but trained on our SD. The second one, Barket-F-DOSM, is a DOS

model taking only the features used in Barket et al. (2019), but using our methods and trained

on SD.

The results of the comparison are shown in Table 8. One can observe that the MAE value of

our model–DOSM–is lower than the MAE values derived for Barket-F-DOSM and Barket-

FM-DOSM, indicating that our model outperforms recent models, presented in Barket et al.

(2019). This comparison led to the conclusion that neither the ML algorithms nor the dataset

are the source of differences in the models performance. The major effector of such differences

is the set of features.

Feature importance

Feature importance was computed using the SHAP algorithm. SHAP computes importance

values for all features. To select the most influential features, we transformed the importance

values distribution into a normal distribution (via a log transformation). From that normal

distribution, we selected only the features whose values were one standard deviation from the

rightmost edge of the distribution. The features left were selected as the most influential ones.

Fig 3 illustrates the 8 most influential features on DOS prediction computed by SHAP, in a

decreasing order of importance. The higher the vertical location–the higher the feature’s

importance. Each point in Fig 3 is a SHAP value of a record per feature. The latter determines

its position on the y-axis and the former (the record), its position on the x-axis. The color rep-

resents the value of the feature from low to high; red indicates that the feature’s value is high.

Overlapping points are jittered in the y-axis direction. The horizontal location of a dot indi-

cates its feature’s value effect on DOS, i.e., the impact on the model’s output. Half of the 10

most influential features are among the novel features presented in Table 1 in Section 2.

Table 7. GBT model performance by surgery type in terms of MAE (in minutes).

Surgery type MAE MAE manual method

Laparoscopic Cholecystectomy 17.9 32.6

Repair of Inguinal Hernia Laparoscopic 14.8 21.4

Laparoscopic Appendectomy 14.5 19

Lumpectomy 19 30

Perianal Abscess 7.4 9.5

Pilonidal Sinus 10.4 12.2

Anal Fistulotomy 11 12

Excision of Hemorrhoids 8.5 10.5

https://doi.org/10.1371/journal.pone.0273831.t007

Table 8. Comparison between models by MAE value (in minutes).

Model MAE

DOSM 14.9

Barket-F-DOSM 16.4

Barket-FM-DOSM 18.8

https://doi.org/10.1371/journal.pone.0273831.t008

PLOS ONE Surgery duration: Optimized prediction and causality analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0273831 August 29, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0273831.t007
https://doi.org/10.1371/journal.pone.0273831.t008
https://doi.org/10.1371/journal.pone.0273831


In Table 9, the 8 features with the highest absolute Pearson correlation values vis-à-vis DOS

are presented in decreasing order of correlation values. Features whose correlation values are

smaller than 0.3, which are considered weak according to common practices [50], are not

presented.

From the above results, we observe that 3 out of 8 (37.5%) of the features selected are the

same for both methods, SHAP and Pearson correlation.

Comparison between feature importance and causal features

For the development of DOSM-F we used the same algorithms and hyperparameters used for

developing DOSM. The performance of DOSM-F was 15.4 minutes in terms of MAE. The 10

most influential features are presented in Fig 4.

Fig 5 presents the influential features’ causal relation to DOS by showing the ATE value of

the 10 most influential features ordered by their importance in the same order as in Fig 4. It

demonstrates that the order of the 10 most important features by influence and by causal value

Fig 3. SHAP—DOSM.

https://doi.org/10.1371/journal.pone.0273831.g003

Table 9. Pearson correlation values.

Feature Correlation

1 Patient–recent drugs prescribe 0.52

2 Patient–country-of-origin 0.5

3 Surgery type 0.48

4 Procedure 1 code 0.46

5 Procedure 3 code 0.44

6 Surgery room ID 0.4

7 Urgency score 0.36

8 Surgery Norton scale 0.31

https://doi.org/10.1371/journal.pone.0273831.t009
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is different. 40% of the important features have a significant (P = .05) causal relationship with

DOS. Our results reinforce the assertion made in the art that the features that influence predic-

tion are not necessarily causal features [51]. Figs 4 and 5 show that an influential feature that

has a positive effect on the predicted DOS value also has a positive causal effect on DOS and

vice-versa.

Fig 4. SHAP—DOSFM.

https://doi.org/10.1371/journal.pone.0273831.g004

Fig 5. The ATE value of the 10 most influential features by SHAP.

https://doi.org/10.1371/journal.pone.0273831.g005
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Discussion

Surgeries are one of hospitals’ largest expenditure sources. Hence, optimizing their flow to

reduce costs is an important objective. Improving resource utilization, minimizing surgery

lead time, and minimizing patient waiting time in the waiting room could help achieve this

goal. This study presented methods to facilitate such optimization.

We utilized ML techniques to develop supervised ML models that predict DOS from fea-

tures related to patients, physicians, and surgeries. For training the models, we built a dataset

of 23,293 records, collected and processed in collaboration with one of the biggest public hos-

pitals in Israel. Our dataset contained data on eight types of surgeries from the years 2010 to

2020. Our feature set combines novel features used for the first time here and features adopted

from previous studies.

The performance of our DOS model in terms of MAE was 14.9 minutes. The ML algorithm

that derived the model with the best performance was the GBT. We compared the perfor-

mance of our model to the performance of existing models by re-implementing the latter and

training them on our dataset. Our model outperformed earlier models.

The main goal of this study was to identify the features that were most influential in predict-

ing DOS and the features that have a causal relationship with DOS. To this end, we utilized fea-

ture importance methods to identify the influential features, and causal inference methods to

identify the causal features.

We demonstrated that five of the 10 most influential features on DOS prediction and five of

the 10 most causal features on DOS are among the novel features we introduced in this study.

In addition, we have shown that most of the influential features do not have a causal relation-

ship with DOS.

The results of this research have several implications. Firstly, using the DOS value predicted

by our model for surgery scheduling can decrease patient waiting time and minimize surgical

staff idle time. Additionally, using the identified causal relationship, OR management teams

can apply measures to affect DOS. This can be done, for example, using the DOSM-F model

and estimating the potential change in DOS as a result of variations in causal feature values.

Further, the explanatory methods we used can facilitate validation of the model’s prediction.

There are some limitations in our study. Our datasets contained data of eight surgery types.

Future research could study additional surgery types at different hospitals to broaden applica-

bility of our results. A future study can evaluate the performance of the prediction model when

combined with a scheduling system in a production environment. Further research is needed

to quantify the potential cost-saving and OR utilization when using the DOSM.

Conclusions

We used ML methods to develop a supervised regression model to predict DOS using various

novel features of patients, surgical staff, and surgeries. The model we developed outperformed

the current method used in hospitals and the DOS models developed in previous studies. Sev-

eral insights were obtained in our study, including identification of the most influential features

on DOS prediction and identification of the causal relationship between the features and DOS.
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