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ABSTRACT
Objectives: This study was performed to investigate 

the protective effects of taurine (2-aminoethanesulfonic 
acid, TAU) on oxidative stress in the isolated mouse tes-
ticular mitochondria, mitochondrial membrane potential 
(MMP), viability and motility of the exposed sperms to the 
BPA.

Methods: We treated epididymal spermatozoa ob-
tained from mice and isolated mouse testicular mitochon-
dria with BPA (0.8 mmol/mL) and various doses of TAU 
(5, 10, 30 and 50 µmol/L). We used the MTT assay and 
Rhodamine 123 uptake to assess sperm viability and MMP. 
We assessed the oxidative stress through measuring ROS 
(reactive oxygen species), MDA (malondialdehyde), GSH 
(glutathione), and SOD (super-oxide dismutase) levels in 
the testicular mitochondrial tissue.

Results: BPA significantly elevated ROS, MDA and 
MMP levels, and markedly reduced SOD and GSH levels in 
the isolated mitochondria. BPA also considerably impaired 
spermatozoa viability and motility. Pretreatment with 30 
and 50 µmol/L of TAU could considerably suppressed mi-
tochondrial oxidative stress, enhanced MMP, and improved 
sperm motility and viability.

Conclusion: TAU may attenuate the BPA-induced mi-
tochondrial toxicity and impaired sperm motility via de-
creasing oxidative stress.
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INTRODUCTION
Bisphenol A (BPA), a polycarbonate plastic and a 

constituent of epoxy and polystyrene resins, is used in 
coatings of beverages, food cans, and baby bottles, and 
it is used in thermal containers, dental sealants, and 
medical devices (Vandenberg et al., 2007; Mikołajew-
ska et al., 2015; Anjum et al., 2011). The migration 
of BPA into the environment depends on pH and tem-
perature (Scippo, 2011; Braun et al., 2011). BPA enters 
the body via dermal contact, inhalation and ingestion 
(Siracusa et al., 2018). The human exposure to BPA de-
pends on the BPA levels in the environment, biological 
systems, and food intake. There can be BPA in semen, 
urine, plasma, breast milk and amniotic fluid (Engel et 
al., 2014; Ye et al., 2006; Ikezuki et al., 2002).

BPA has toxic impacts on various tissues, including 
the male reproductive system (Ullah et al., 2018; An-
jum et al., 2011). BPA can reduce testicular and epidid-
ymal weights in rodents (Chitra et al., 2003) and impair 
sperm quality (Li et al., 2016). In addition, BPA induces 

mitochondrial dysfunction by reducing ATP, diminishing 
the mass of mitochondria, and disrupting membrane 
potential (Kaur et al., 2014; Lin et al., 2013). Mitochon-
drial dysfunction can affect sperm motility and sperm 
production (Chattopadhyay et al., 2010). Moreover, BPA 
suppresses antioxidant activity and enhances ROS pro-
duction in rat testicles (Chitra et al., 2003).

Taurine (TAU), is a free amino acid, present in sever-
al mammalian tissues such as the reproductive system 
(De Luca et al., 2015; Park et al., 2002). It has sev-
eral physiological functions, including energy storage, 
membrane stabilization, xenobiotic conjugation, and 
antioxidation (Huxtable, 1992). There is TAU in seminal 
fluid, vascular endothelial cells, germinal cells, Leydig 
cells and in the covering epithelium of efferent ducts 
(Holmes et al., 1992; Hinton, 1990). TAU may act as an 
antioxidant, membrane-stabilizing and motility factors 
of the sperm (Yang et al., 2015). The current research 
investigated TAU impacts on BPA-induced mitochondrial 
oxidative stress and impaired sperm motility in mice.

MATERIALS AND METHODS
Experimental design
We collected sperm samples and isolated testicu-

lar mitochondria from forty-two adult NMRI mice (8-10 
weeks). The Ethics Committee on Animal Research con-
firmed this study (No: ABHC.REC.1397.079).

We obtained the spermatozoa from the epididymis, 
as per previously described (Su et al., 2019), and cat-
egorized into the following groups (Figure 1). In each 
group, we used 5× 106sperm/ml (Harris et al., 2007).

1.	 Control: received only media
2.	 BPA: exposed to 0.8 mmol/ L BPA for 2 hours
3.	 TAU: exposed to 50 µmol/ L TAU for 4 hours
4.	 BPA+TAU5: pretreated with 5 µmol/ L of TAU for 

2 hours before BPA treatment (2 hours).
5.	 BPA+TAU10: pretreated with 10 µmol/ L of TAU 

for 2 hours before BPA treatment (2 hours).
6.	 BPA+TAU30: pretreated with 30 µmol/ L of TAU 

for 2 hours before BPA treatment (2 hours).
7.	 BPA+TAU50: pretreated with 50 µmol/ L of TAU 

for 2 hours before BPA treatment (2 hours).

We kept all samples at 37ºC in an incubator during 
the experiment. The untreated sperms (control groups) 
began to die after 4 hours. Hence, 4 hours were used 
to treat the sperms with TAU and BPA. BPA (Sigma) 
was dissolved in 0.1% dimethyl sulfoxide (DMSO, Sig-
ma) and then diluted in media (ham's F10, Invitrogen). 
The BPA dose was chosen according to the IC50 val-
ue (Table 1). To determine the IC50 of BPA, the sperm 
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Figure 1. Schematic illustration of experimental design

Table 1. The IC50 (µM) of BPA on the spermatozoa

Concentrations 1 hour 2 hours

100 (µmol L-1) 98.7±4.35 95.4±6.23

200 (µmol L-1) 91.9±5.11 85.6±4.31

400 (µmol L-1) 76.2±5.65 66.1±4.37

800 (µmol L-1) 64.1±4.75 49.5±3.98

1000 (µmol L-1) 55.2±3.63 38.3±3.55

Values are expressed as mean ± SD (n=6).

viability was determined using an MTT assay. We dis-
solved the TAU in distilled water and stored at 4ºC until 
use.

Mitochondria isolation
The mice testicles were removed under deep anes-

thesia and minced in a cold isolating medium which con-
tained EDTA (0.1 mmol, Sigma), EGTA (0.2 mmol, Sig-
ma), sucrose (250 mmol, Sigma), HEPES-KOH (5 mmol, 
Sigma) and 0.1% fat free BSA (bovine serum albumin, 
Invitrogen). The minced blood-free testicles were ho-
mogenized and centrifuged at 3000·g for 7 minutes (at 
4ºC). The supernatant was centrifuged at 10,000·g for 
7 minutes. The obtained pellet (mitochondrial fraction) 
was suspended and pelleted twice at 10,000·g for 10 
minutes. After washing, the protein content was deter-
mined using the Bradford assay reagent (Bio-RAD). We 

divided the isolated mitochondria into 7 groups, similar 
to the sperm groups, and the mitochondrial fractions 
(0.5 mg protein/mL) were exposed to the similar con-
centration and duration time of BPA and TAU.

MTT assay
The isolated mitochondria or sperms were placed in 

a 96 well plate and treated with BPA or TAU. Ten µL of 
MTT (Sigma, USA) at concentration of 5 mg/mL me-
dia was poured into each well and incubated at 37ºC 
for one hour. When the media was removed, 100 µL 
of DMSO was poured into the wells. Finally, the absor-
bance at 570 nm was determined using a micro-plate 
reader.

Determining MDA content, ROS level and an-
ti-oxidant enzyme activity

After treatment, we poured the isolated mitochon-
dria samples (1 mL) into the micro-tubes. We removed 
the media and added 10 µmol of DCFH-DA (Sigma) and 
100 µl of Hank's buffered salt solution (Invitrogen) at 
37ºC for 30 minutes. We measured ROS levels using a 
spectro-fluorometer (LS50B, USA, Ex: 490 nm, Em: 570 
nm). After treatment, we identified the protein contents 
of the isolated mitochondria using a BCA protein assay 
kit (Pierce Biotechnology Inc. IL). After centrifuging, we 
evaluated the malondialdehyde (MDA) content, and the 
level of GSH (glutathione) and superoxide dismutase 
(SOD) according to the kit's instruction (ZellBio Com-
pany).
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Mitochondrial membrane potential (MMP) eval-
uation

After treatment, we exposed the fractions of mito-
chondria (0.5 mg protein/mL) to ten µmol of Rhodamine 
123 for 15 minutes. We measured the fluorescence us-
ing a spectrophotometer (LS50B, USA; excitation: 490 
nm; emission: 535 nm).

Sperm motility
We assessed sperm motility according to the WHO 

guidelines (Su et al., 2019), using ten µL of sperm 
suspension poured into a semen analysis chamber. We 
evaluated five microscopic fields to estimate sperm 
motility on at least 200 spermatozoa for each sample, 
assessing the percentage of sperm motility using the 
following motion patterns: fast progressive (A), slow 
progressive (B) no progressive C) and immotile sperms 
(D).

Statistical Analysis
We analyzed the data using the SPSS (version 21.0, 

employing one-way analysis of variance, post-hoc test, 
and Bonferroni correction. In addition, the p-value 
<0.05 was considered significant.

RESULTS
Viability
As reported in Figure 2, following BPA exposure, vi-

ability percentage significantly reduced in the isolated 
testicular mitochondria and spermatozoa (p<0.01). 

Figure 2. Viability percentage of the isolated mitochondria and 
sperms. The mean ± standard deviations are shown (n=6).* 
p<0.05, ** p<0.01, # p<0.05, ## p<0.01; * and # symbols 
show comparison to the control and BPA groups, respectively.

The viability percentage significantly increased in the 
TAU-exposed mitochondria (p<0.05). TAU at the dos-
es of 30 and 50 µmol/L reversed the viability of the 
BPA-exposed sperms and the testicular mitochondria. 
DMSO did not significantly affect sperm viability and 
motility (Table 2).

ROS measurement
In the BPA group, the ROS generation was consider-

ably elevated in the testicular mitochondria (p<0.01). 
ROS generation was significantly reduced in the TAU 
treated samples in comparison with the control. TAU 
dose-dependently attenuated ROS production by BPA 
in the testicular mitochondria (Figure 3). DMSO had no 
significant impact on ROS formation in comparison with 
the control (Table 2).

MDA, SOD and GSH levels
Following BPA exposure, MDA levels were significant-

ly increased in the isolated testicular mitochondria com-
pared to the control (p<0.01). MDA levels were slightly 
reduced in the TAU-treated mitochondria in comparison 
with the control. At the doses of 10, 30 and 50 µmol/L, 
TAU attenuated BPA increased MDA levels in the testicu-
lar mitochondria. SOD and GSH levels were considerably 
elevated in the BPA-exposed mitochondria (p<0.01). 
Following TAU treatment, SOD levels were slightly in-
creased while GSH levels were significantly elevated, 
compared to the control. In a dose-dependent fashion, 
TAU attenuated BPA- reduced antioxidant activity in the 
testicular mitochondria (Figure 4). DMSO had no signif-
icant impact on MDA, SOD and GSH levels in the mito-
chondria (Table 2).

MMP Assay
As reported in Figure 5, TAU significantly increased 

MMP in the testicular mitochondria (p<0.05). Following 
BPA exposure, MMP was significantly reduced compared 
to the control (p<0.01). TAU at the doses of 10, 30 
and 50 µmol/ L effectively enhanced the MMP of the 
BPA-treated mitochondria. DMSO had no significant im-
pacts on the MMP in comparison to the control (Table 
2).

Sperm motility
TAU slightly increased total sperm motility in com-

parison to the control. Following BPA exposure, total 
sperm motility (p<0.01) and fast progressive sperm 
percentages (p<0.05) were significantly reduced, 
while immotile sperm percentage was markedly in-
creased (p<0.01). TAU dose-dependently reversed the 
total sperm motility, fast progressive sperm percent-
ages, and the percentage of immotile sperms (Table 
3 and Figure 6). DMSO had no significant impacts on 
sperm motility when compared to the control (Table 
3).

DISCUSSION
Our study showed that TAU reversed the viability 

and motility of the BPA-exposed sperms in a dose-de-
pendent fashion. Previous reports showed that BPA 
caused a decrease in sperm quality in rodents and hu-
mans (Rahman et al., 2016; Wisniewski et al., 2015; 
Kotwicka et al., 2016). BPA impaired reproduction and 
sperm function in zebrafish (Chen et al., 2017). BPA de-
creased the viability of the mouse spermatocyte (Qian 
et al., 2015).

In this study, TAU dose-dependently improved viability, 
motility and progressive movement velocity of BPA-treated 
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Table 2. DMSO effects on isolated mitochondria and sperms

Parameters Control DMSO

Sperm viability of (%) 100±0.00 100.2±1.23

Mitochondria viability (%) 100±0.00 99.6±1.16

MMP (% of control) 100±0.00 100.05±0.94

ROS formation (% of control) 100±0.00 98.7±2.35

Mitochondria MDA (nmol/ mg protein) 18.2±5.65 17.9±3.36

Mitochondria GSH (pmol/ mg protein) 11.51±2.75 49.5±3.98

Mitochondria SOD (U/ mg protein) 10.28±2.65 9.92±2.16

Total sperm motility (%) 69.85±5.78 71.32±6.45

Values are expressed as mean ± SD (n=6).

Figure 3. DCF formation (ROS levels) in the spermatozoa 
and isolated mitochondria. The mean ± standard 
deviations are shown (n=6).* and # symbols show a 
comparison of the control and BPA groups, respectively.

Figure 4. MDA, SOD and GSH levels of mice spermatozoa. 
The mean ± standard deviations are shown (n=6). MDA, SOD 
and GSH levels of the isolated mitochondria. The mean ± 
standard deviations are shown (n=6).* and # symbols show 
a comparison of the control and BPA groups, respectively.

mouse sperms. In agreement with our results, Yang et al. 
(2017) reported that TAU effectively protects GC-2 (sper-
matocytes) cells from ionizing radiation. TAU dose-de-
pendently enhanced sperm quality in donkeys (Bottrel et 
al., 2018). Positive effects of TAU on boar semen quality 
have also been reported (Li et al., 2016; Kutluyer et al., 
2016). Conversely, BPA has no impact on fowl sperm mo-
tility (Barna et al., 1998), and it has no positive effects on 
the viability of short-term (4 hours) stored rabbit sper-
matozoa (Paál et al., 2017). The difference in treatment 
duration or species variety may represent the reasons for 
these contradictory results.

The mechanism of TAU action on sperm viability and 
motility was not elucidated in the current study. It is pos-
sible that TAU improves sperm viability via suppression 
of cell death signaling. Aly & Khafagy (2014) showed the 
anti-apoptotic effects of TAU against endosulfan in adult 
rat testicles. TAU inhibited apoptosis in Thiopurine-induced 
testicular damages in rats (Ramadan et al., 2018). Im-
proved sperm motility may be due to TAU impacts in mito-
chondrial mass or function.

It has been reported that TAU exists in the mitochon-
drial matrix and membranes of various cells (Jong et 
al., 2010; Alvarez & Storey, 1995; Hansen et al., 2010; 
Shetewy et al., 2016). Mitochondria has a TAU transporter 
in its plasma membrane to uptake TAU from culture media 
(Suzuki et al., 2002). Thus, adding TAU to culture media 
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Table 3. Velocity distribution of spermatozoa in different groups

Groups Fast progressive Slow progressive No progressive Immotile

Control 39.77±4.11 30.27±3.83 17.11±2.46 12.85±2.86

TAU 42.54±3.36 33.62±4.18 16.17±2.53 7.67±1.12*

BPA 25.77±2.27* 21.85±2.14* 22.58±3.25 29.17±2.67*

BPA-TAU2.5 31.97±3.15 19.25±2.19 24.95±2.71 25.67±3.12*

BPA-TAU5 32.53±4.2 21.62±3.11 22.92±3.33 22.93±2.88*

BPA-TAU10 36.15±4.5# 31.87±4.21 21.67±3.52 10.31±1.89

BPA-TAU20 41.26±5.1## 30.25±3.92 20.15±2.91 8.34±1.12##

The mean ± standard deviations are shown (n=6). * p<0.05, # p<0.05, ## p<0.01; * and # symbols show comparison to the 
control and BPA groups, respectively.

may enhance its concentration in the mitochondria and im-
prove mitochondrial function.

The disrupted sperm movement can also be due to high 
ROS levels (Barbonetti et al., 2016). According to our re-
sults, BPA enhanced ROS and MDA levels in the spermato-
zoa. In agreement with these findings, BPA enhanced ROS 
generation and MDA contents in the spermatozoa (Kaur et 
al., 2018; Yang et al., 2013; Yang et al., 2017; Rahman et 
al., 2019).

The present study has shown that TAU reversed ROS 
generation, MDA level, antioxidant factors, and MMP in 
the BPA-exposed mouse testicular mitochondria. There-
fore, TAU may protect mitochondria by reducing oxidative 
stress. Consistent with our results, TAU had protective im-
pacts on mitochondrial oxidative damage in various patho-
logical conditions. TAU improves the function of heart mi-
tochondria and prevents oxidative stress in diabetic rats 
(Gorbenko et al., 2016). TAU inhibits mitochondrial oxi-
dative damage induced by Tamoxifen in the mouse liver 
(Parvez et al., 2008).

The TAU-reversed oxidative stress induced by BPA was 
accompanied by increasing sperm motility and viability. In 
the study of Minamiyama et al. (2010), BPA-decreased sperm 
motility was reversed by co-administering n-acetylcysteine. 
Wisniewski et al. (2015) demonstrated that TAU elevated an-
ti-oxidation of the testis and enhance sperm quality.

According to our results, BPA diminished the MMP of the 
isolated mouse testicular mitochondria, and TAU dose-de-
pendently reversed this event. BPA decreased the MMP and 
increased cell death in human spermatozoa (Barbonetti et al., 
2016). MMP was positively correlated with total sperm num-
ber and progressive sperm motility (Zhang et al., 2016).

The BPA reduced MMP was accompanied by the induced 
mitochondrial oxidative stress and impaired sperm motility. 
BPA is reported to cause oxidative stress in the mitochondria 
obtained from testicles, leading to an elevation in lipid peroxi-
dation (del Hoyo et al., 2010). Lipid peroxidation, in turn, can 
disrupt spermatozoa functions (Catalá, 2009).

Lipid peroxidation in mitochondria can be reversed by TAU 
administration (Parvez et al., 2008). TAU could prevent man-
ganese-induced mitochondrial damages in isolated mice brain 
mitochondria (Ahmadi et al., 2018).

CONCLUSIONS
In summary, TAU dose-dependently decreased mito-

chondrial oxidative stress and improved MMP. In addition, 
TAU improved the viability and motility of mice sperm. TAU 
can ameliorate BPA‐induced mitochondrial toxicity and im-
paired sperm quality by suppressing oxidative stress.
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Figure 5. MMP measurement in the control and 
experimental groups. The mean ± standard deviations 
are shown (n=6).### p<0.001; * and # symbols show 
a comparison of the control and BPA groups, respectively.
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Figure 6. Total sperm motility in the different groups. 
The mean ± standard deviations are shown (n=6).* and 
# symbols show a comparison to the control and BPA 
groups, respectively.
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