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ABSTRACT

Identifying differential features between conditions
is a popular approach to understanding molecular
features and their mechanisms underlying a
biological process of particular interest. Although
many tests for identifying differential expression
of gene or gene sets have been proposed, there
was limited success in developing methods for
differential interactions of genes between conditions
because of its computational complexity. We
present a method for Evaluation of Dependency
DifferentialitY (EDDY), which is a statistical test for
differential dependencies of a set of genes between
two conditions. Unlike previous methods focused on
differential expression of individual genes or correl-
ation changes of individual gene-gene interactions,
EDDY compares two conditions by evaluating the
probability distributions of dependency networks
from genes. The method has been evaluated and
compared with other methods through simulation
studies, and application to glioblastoma multiforme
data resulted in informative cancer and glioblastoma
multiforme subtype-related findings. The comparison
with Gene Set Enrichment Analysis, a differential
expression-based method, revealed that EDDY
identifies the gene sets that are complementary to
those identified by Gene Set Enrichment Analysis.
EDDY also showed much lower false positives than
Gene Set Co-expression Analysis, a method based
on correlation changes of individual gene-gene inter-
actions, thus providing more informative results.
The Java implementation of the algorithm is
freely available to noncommercial users. Download
from: http://biocomputing.tgen.org/software/EDDY.

INTRODUCTION

Since the emergence of high-throughput genomic profiling
techniques, numerous statistical methods gained high
popularity in biomedical studies to assess diverse
features in biological samples. One of such statistical
approaches is identifying variables with differential
patterns between different conditions, where genomic
entities (such as genes or proteins) are often modeled as
target variables. Such methods can vary based on the
definition of differentiality or what a target feature of
comparison is, but the general idea is comparing
probability distributions of a target feature across given
conditions.

The simplest case of identifying differentiality is
differential expression of a single gene, where each gene
is independently tested for differential expression. There
have been many studies with this approach of independent
tests for individual genes. For comprehensive reviews of
single gene test approaches see (1). The main drawback of
single-gene test approaches is that they focus on individual
genes instead of a set of genes, while a set of interacting
genes constitutes a functional module in many biological
systems. For this reason, a more beneficial approach is
testing differentiality for a set of genes between conditions.

Considering that a joint probability distribution of a set
of variables can provide more comprehensive view of
underlying process, an ideal method to test differentiality
of a set of genes between conditions is comparing the joint
probability distributions of their activity levels. However,
this ideal approach is not practical in many real situations
owing to the complexity of the model to represent the joint
probability distribution and the lack of available data to
infer such complex models with sufficient reliability. For
this reason, most of the methods to test the differentiality
of a set of genes rely on heuristic approaches by focusing
on specific features in the set of genes rather than
considering the complete joint probability distributions.
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Several methods have been proposed to test the
differentiality of a gene set between conditions by consider-
ing differential expressions of genes in the gene set (2-4).
Their methods take a common approach of computing dif-
ferential expressions of genes in the target gene set and
summarizing them into a single statistic that represents
the differentiality of the gene set between conditions.
Gene Set Enrichment Analysis (GSEA) (2) is a popular
method of testing gene sets, where it computes the degree
to which the expression of a gene set is specifically
correlated to a target condition. GSEA has been success-
fully applied in recent studies, but it is designed to capture
only the gene sets with consistent differential expressions
(either over- or under-expression) under a target condition.
Each gene in a biological pathway does not necessarily
show differential expressions of one direction; therefore,
there is a need for methods to evaluate relationships
between genes in computing the statistics of differentiality.

The idea of network-driven activities of biological
functions has gained more interests, as more evidence is
found that biological systems can show highly diverse
activity patterns because genes can interact differentially
across specific molecular contexts (5). The simplest
approach to evaluate such differential interactions is
building separate networks for different conditions and
comparing them (6-9). With the need for more statistical
power to discriminate differential interactions, several
studies  proposed  statistical ~methods to  test
the differentiality of individual interactions. Lai et al. (10)
used an expected conditional F-statistic to test the
differentiality of a gene-gene co-expression bet-
ween conditions. The differential correlation approaches
(11-13) used difference in correlation coefficients between
a pair of variables across two conditions to identify
differential interactions. Besides these methods for
individual differential interactions, there have been recent
studies to identify differential subnetworks across condi-
tions. The general idea of such approach is using already
known genetic interactions as a ground truth network and
overlaying observed genomic data (e.g. messenger RNA
expressions) of different conditions to statistically
evaluate regions with differential genetic activities. Guo
et al. (14) used an edge-based scoring measure to identify
condition-responsive protein—protein interaction
subnetwork. Hwang and Park (15) used a multivariate
analysis of variance scoring method to find differentially
expressed subnetworks. Kim er al. (16) represented
networks with activity weight matrices, and nonnegative
matrix factorization was used to find principal subnet-
works. The COSINE method (17) computes a score from
both of gene expressions and available gene interactions to
find condition-specific subnetworks. Besides these methods
using already known interactions, a few methods without
using known interactions have been also proposed. The
differential dependency network method (18,19) infers a
local dependency model to represent the topology around
each gene for each condition. A permutation test is used to
compute the significance of local topology change between
conditions. Ouyang et al. (20) modeled interactions coming
into a gene with ordinary differential equations, and the
difference in slopes of the models was compared across
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conditions to compute the difference in the magnitudes of
local genetic relationships. These methods were designed to
identify  individual  differential  interactions  or
condition-specific subnetworks, but they were not
designed to test gene sets for dependency variance across
conditions. Choi and Kendziorski (21) proposed Gene Set
Co-expression Analysis (GSCA), which computes a
Euclidean distance between gene interaction correlation
vectors from two different conditions as a discrepancy
measure. GSCA was designed to test gene sets for
interaction differentiality, but it can be too sensitive to
minor correlation changes and can give biased results
with respect to the size of gene sets.

In this article, we propose a method for Evaluation of
Dependency DifferentialitY (EDDY), which is a statistical
test for the differential dependency relationship of a set of
genes between two given conditions. For each condition,
possible dependency network structures are enumerated
and their likelihoods are computed to represent a
probability distribution of dependency networks. The
difference between the probability distributions of de-
pendency networks is computed between conditions, and
its statistical significance is evaluated with random permu-
tations of condition labels on the samples. The proposed
method has been evaluated and compared with other
methods through simulation studies and was applied to
the gene expression data of glioblastoma multiforme
(GBM) from The Cancer Genome Atlas (TCGA) to
reveal the functional difference between the four
subtypes of GBM. Simulation experiments show the
validity of EDDY as well as its superior performance in
identifying gene sets with differential interactions. From
the application to the TCGA GBM data, the results show
that the proposed method can identify novel gene sets that
could not be found with GSEA, which is considered a
representative method of considering only differential
expressions, while providing many results specific to the
subtypes of GBM. When compared with GSCA, which is
an existing gene set test method that considers differential
interactions, EDDY gives less-biased results that can be
more informative.

MATERIALS AND METHODS
Outline of approach

The proposed method computes the discrepancy between
probability  distributions of dependency network
structures for a given set of genes, across given samples
of two different conditions, and evaluates its statistical
significance. We assume that a set of genes is given as
the target of a test, and the activity levels of the genes
are represented with a set of variables V (each variable
corresponds to each gene). For V, there are N (which is
a finite number) possible dependency network structures
g1, £,...,gy for the variables. If we consider a discrete
random variable G that can have g, g»,...,gnx as its
discrete values, the posterior probability distribution
P(G|D¢) for data D¢ of a given condition C can represent
the probability distribution of dependency network struc-
tures for V in the condition C. When two data sets, D¢,
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and D¢,, are given for two different conditions C; and Cs,
the divergence between the two corresponding probability
distributions P(G|D¢,) and P(G|D¢,) are computed as a
measure of difference between the conditions. This
approach is a generalization of comparing the best
networks from different conditions by considering many
possible dependency networks and their likelihoods. The
benefit of this generalization is more reliable measure of
discrepancy, especially when data are limited; thus, there
is a high chance of finding many local optima for the best
network. By considering many probable dependency
networks instead of one local optimal network, our
approach can represent the truer picture of dependencies
at the cost of additional computation. The statistical sig-
nificance of the divergence is computed using a permuta-
tion approach, by repeating the random shuffling of
condition labels C| and C, and computing the divergence
to evaluate the probability of obtaining the original or
larger divergence by random chance. This outline of the
method is illustrated in Figure 1.

Computing the posterior probability of each dependency
network structure

Evaluating the probability distribution of P(G|D¢) of a
discrete random variable G requires computing the poster-
ior probability Pr(g;/D¢) of each dependency network
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structure g; (1 <7< N) for the condition C. The exact
computation of the posterior probability of a model (g;)
given observation (D¢) is not straightforward. Thus, we
use an approach that uses only the likelihoods to compute
the posterior probability. With the Bayes’ theorem and
assumption of a uniform prior, the posterior probability
Pr(g;/D¢) can be computed as follows with only likeli-
hoods Pr(D¢l|g;) (see Supplementary Method S1 for
details):

Pr(gDe) = —noClE) (1)

Z Pr(Dclgk)
=1

In this work, we use the Bayesian network model of
discrete random variables to compute network likeli-
hoods, which is widely used in the field of computational
biology due to its strong statistical foundation. The
Bayesian network model assumes directed acyclic graphs
(DAGs) for network structures, whereas real biological
networks can have cycles such as feedback loops.
However, it is not a limitation in this work, as we use
the Bayesian network model to represent dependency
relationships ~ between  genes rather than physical
interactions. With this consideration, the computation of
likelihood Pr(Dc|g;) is done using the Bayesian Dirichlet
equivalence uniform scoring method (22).
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Figure 1. The conceptual outline of EDDY. A target gene set and gene expression data of two conditions C1 and C2 are given as input. (STEP I-A) The
probability distribution of dependency network likelihood is computed for each condition. (STEP I-B) The divergence between C1 and C2 is computed
from the two probability distributions of dependency network likelihoods. (STEP II-A) Random data sets are built by shuffling sample condition labels.
(STEP II-B) For each random data set, a random divergence is computed. The collection of all random divergences constitutes the null distribution of
divergence. (STEP II-C) The P-value of the original divergence is evaluated in comparison with the computed null distribution of divergence.
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Even though we decided to use the Bayesian network
model assuming discrete random variables, the rest of our
formulations and algorithms are independent of model
choices. Thus, other network and random variable
models can be also used as long as the likelihood of a
network structure can be computed based on the model
of preference.

Approximate computation of probability distribution for
dependency network structures

The exact computation of the probability distribution
P(G|D¢) requires the enumeration of all possible N
dependency network structures, gi,...,gn, and subse-
quent computation of their posterior probabilities,
Pr(g;ID¢) (1 <i<N). Such exact computation is
possible for the case of small number of variables
(genes), but it becomes computationally intractable as
the number of variables increases. For example, the
possible number of DAGs for five variables is ~29 000,
but it becomes ~4.2 x 10'® for 10 variables. For this
reason, we take a heuristic approach to approximate the
probability distribution of P(G|D¢). In this approach, we
assume that the probabilities of M(<& N) dependency
structures are significantly high in either C; or C,, and
the rest of the dependency structures have similar low
probabilities in both of the conditions and, thus, can be
ignored, as they make little difference between the condi-
tions. To ensure fairness for both conditions, M/2 de-
pendency structures are chosen from the condition C,
and the other M/2 are chosen from the condition C,.

Selecting the top M/2 dependency network structures
with the highest probabilities from a condition also
requires computing the probabilities of all dependency
network structures, which makes our approximate
approach ineffective. To reduce such computational
complexity, we use a heuristic method that proposes
probable dependency structures by independently
evaluating each dependency between two variables. In
this method, x>-test is applied to test the independence
between every pair of two variables V; and V; (e V),
obtaining the resultant P-value p; (=pj). In case of
assuming continuous valued random variable models,
other proper statistical tests of independence for
continuous variables can be used instead. When a
probable dependency structure g is proposed for D¢, an
edge e between V; and V; is included with the following
probability Prpropose(; /1D c):

Prpropose(i;j|DC) = (1 _pij)A’ (2)

where A > 1. With this definition of edge inclusion
probability, an edge between two variables will be
included in the proposed structure with higher probability
when the dependency test between the two variables yields
a lower P-value. Either direction of the edge e; or ej; is
randomly chosen with the same probability of 0.5 as long
as it does not violate the acyclic property of DAG in g,.
To reduce computational complexity in evaluating
DAG structures, the maximum number of incoming
edges is limited to a predetermined K. A formal
description of this process is given in Supplementary
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Method S2 as an algorithm  StructurePropose.
This pairwise dependency-based method of structure
proposal has a limitation in identifying full multivariate
conditional dependency. However, the actual computation
of network structure likelihoods is done in consideration
of such combinatorial dependencies (with the Bayesian
Dirichlet equivalence uniform scoring method), and
sampling many network structures will further diminish
such limitation.

After using this method to collect up to M network
structures for the cases of large number of variables, the
probability distributions P(G|D¢,) and P(G|D¢,) are
computed by evaluating the likelihoods of network
structures (a formal description of this process is given
in  Supplementary Method S3 as an algorithm
ComputeDistribution).

Computing the divergence between conditions and its
statistical significance

Once the probability distributions of dependency network
structures P(G|D¢,) and P(G|D¢,) are computed, the di-
vergence between the conditions C| and C, is measured
using the Jensen—Shannon (JS) divergence (23), which is a
popular method of measuring the divergence between two
discrete probability distributions. Once the JS divergence
value, JS, is obtained, its statistical significance is
computed with a permutation approach. Condition
labels of C; and C, are randomly reassigned to the
samples of D¢, UDc, to build permuted sample sets D,
and Df,, and the same process is applied to compute a
new divergence JS'. If JS” is larger than or equal to JS for
t times out of 7 random permutations, the statistical

Algorithm 1 EDDY

Require: V, D¢,, D¢,
Ensure: JS, p
I {P(G|D¢,),P(GDc,)}
< ComputeDistribution(V, D¢,, D¢,, A, M, K)
2: JS <« JensenShannon(P(G|D¢,)||P(G|Dc¢,))
3:1<«0
4.
S:fori < 1to T do
6:  Build D, and D¢, by randomly shuffling the
condition labels
7. {(P(GIDL,),P(G|D.)}
<« ComputeDistrii)ution(V, D¢, DGC A M, K)
8 JS « JensenShannon(P(G|D"CI§||P(G|D’éz))
9:
10: if JS" > JS then
11: t < t+1
12:  end if
13: end for
14:
15:p«1t)T
16: return JS and p

AM>=1), M(N), T, K
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significance P-value of JS is defined as #/7. This whole
process is specifically defined in Algorithm 1: EDDY.

Simulation experiments

In this study, we prepared two simulation experiments.
The first simulation (Simulation I) is to characterize the
performance of EDDY with varying parameters such as
sample size, network size and network differentiality. The
second simulation (Simulation II) is to compare the per-
formance of EDDY in identifying differential gene sets
with that of other methods (GSCA and GSEA), using
an interaction-focused synthetic data generation model.
The outline of these two simulations is illustrated in
Figure 2.

Simulation I: evaluating the characteristics of EDDY
We conducted simulation experiment to evaluate the
ability of EDDY in discriminating two different condi-
tions. In this simulation experiment, we consider |V| =
discrete random variables that can have three possible
discrete values (—1, 0, 1). A Bayesian network B, with
2v edges is randomly built with the v variables and
randomly initialized conditional probability tables, and d
samples are generated from B, to constitute a data set Dy.
To generate a data set of another condition for compari-
son, By is built by randomly removing s (<2v) edges from
By, and d samples are generated from B for D;. In the
process of edge removal, the conditional probability table
of a variable that is affected by the edge removal is
randomly reinitialized. The objective of this simulation
experiment is to show that the divergence JS increases
and its statistical significance P-value decreases as s,
which represents the distance between two data sets in
the sense of dependency relationship, increases.

Different number of variables were tested with v = 5,
10, 20 and 50 as well as varying sample size with d = 50,
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Figure 2. The outline of two simulation experiments. Simulation I is to
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Simulation II is to compare EDDY with other methods, based on an
interaction-focused synthetic data generation model.
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200 and 500. For the parameters of EDDY, M was chosen
among 50, 200, 1000, 3000, 5000 and N, (the number of all
possible DAG structures for v nodes) according to v that
can represent the size of a problem. A =1, 7 = 1000,
K=3,5 and v—1 (which is the maximum value) were
used throughout the simulation experiment. K =3 and 5
were used to evaluate the effect of limiting incoming edges
on the performance (detailed results of these cases will be
given in Supplementary Figures S1 and S2). For each case
of testing Dy versus Dy, the processes of building random
Bayesian networks B, and B,, generation of data Dy and
D; and applying EDDY was repeated 100 times to
compute the average JS and P-values.

Another network comparison scenario has been also
tested, where B{, was built instead of B, by randomly
relocating the edges in By, then used for comparison
with By. This scenario represents more general cases of
comparison, where the networks generating given data
sets may have more complex interaction discrepancies
than simply missing interactions. For this simulation
experiment, the number of edges in By, was randomly
determined between 0 and the maximum possible
numbers. Brief summaries of the results from these
additional simulation experiments will be given in the
next section, and the detailed reports are given in
Supplementary Figures S3-S9.

Simulation II: comparison of EDDY with other methods
To show the benefits and distinguished characteristics of
EDDY, we compared the performance of EDDY with
that of other methods in identifying differential gene sets
using simulated data sets. There have been several studies
of comparing multiple gene set test methods including
(24-26) using simulated data sets. Their configurations
vary, with the number of samples ¢ in each condition
from 20 to 500, the total number of genes from 100 to
1000 and the size of each gene set v from 10 to >40.
However, they used similar methods to generate synthetic
gene expression data assuming multivariate normal
distributions  and  using  covariance  matrices.
A differentially expressed gene (DEG) between two
conditions is represented with two different mean values
wy and uy in two corresponding conditions, and
differential gene sets between conditions are often
defined by controlling the number of DEGs. Such a
DEG-focused scenario can be appropriate in comparing
methods focused on differential expressions. However, it
has a limitation in comparing methods focused on gene
interactions because differential interactions do not neces-
sarily accompany differential expressions. For this reason,
we used an interaction-focused synthetic data generation
model for the simulation.

In this interaction-focused simulation, the expression
levels of a gene set for a condition is generated from a
Bayesian network model of continuous values. The
expression levels of a gene set with v genes for the condi-
tion Cj are generated from a randomly built Bayesian
network model B,, where each node corresponds to a
gene, 2v edges are randomly assigned and conditional
probability tables are randomly initialized. For
computational simplicity in data generation, each node
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has two possible discrete values (—1, 1), and they are later
substituted with two different normal distributions during
the data sampling process (e.g. when a value —1 is
sampled for a gene, a value is randomly sampled from
the corresponding normal distribution instead). The
number of different edge connections between two
Bayesian networks B; and B, of two conditions is
randomly determined to a value higher than v (50%) for
a differential gene set, and it is randomly determined to a
value lower than v/2 (25%) for a nondifferential gene set.
As change in dependency (edge discrepancy) does not
necessarily mean differential expressions, interaction-
focused methods can be preferred in this scenario. For
one synthetic data set, 50 differential gene sets and 50
nondifferential gene sets are prepared, where each gene
set has v genes. Total 10000 genes including the 100
gene sets are generated, and the genes that do not
belong to the 100 gene sets are generated in the same
way of generating nondifferential gene sets. Gene set
sizes of v=10, 20 and 30 were considered, and two
different normal distributions for gene expressions
have the same variance of 1 but different mean values of
1 and 3.

For each scenario, the simulation was repeated 100
times for each of GSEA, GSCA and EDDY, and their
average false-/true-positive rates were evaluated by
varying the P-value threshold then summarized as
receiver operating characteristics (ROC) curves. For
GSCA, Pearson correlation coefficient was used as a cor-
relation measure. For EDDY, A = 1, M = 1000 and 5000
dependency network structures of consideration and
K =13 were used. As EDDY relies on the Bayesian
network model with discrete random variables, the expres-
sion levels of each gene were standardized and quantized
to three discrete values of (—1, 0, 1) using one standard
deviation as a threshold. For all three methods, the same
1000 permutations were used to evaluate P-values.

Identifying GBM subtype-specific gene sets with EDDY
and comparison with other methods

EDDY and other two methods (GSEA and GSCA) were
applied to the TCGA GBM gene expression data to
identify subtype-specific gene sets. Gene expression data
of GBM were obtained from TCGA for 202 samples with
four previously reported GBM subtypes [54 classical, 58
mesenchymal, 33 neural and 57 proneural (27)], as well as
10 normal samples. The expression of 17814 genes in the
GBM samples were log-transformed, and standardized to
z-scores using the 10 normal samples as a reference to
convert the expression levels in GBM samples to the
ratios to the mean expressions from normal samples. As
we used the Bayesian network model assuming discrete
random variables for EDDY, the standardized expression
values were further quantized to three discrete values of ‘1’
(overexpression compared with normal), ‘0’ (no-change
compared with normal) and ‘—1" (underexpression
compared with normal), by using one standard deviation
as a threshold. Using higher thresholds for quantization
rendered the gene expression values less informative
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(too consistent across all samples), thus higher thresholds
were avoided in this experiment.

For all methods, the tests were done by comparing
samples of subtype S versus the rest of the samples to
identify gene sets that show distinct patterns in the
subtype S. For gene sets of test targets, we collected
2101 canonical pathway gene sets and Gene Ontology
(GO) gene sets of biological process and molecular
function from MSigDB (2). In testing each gene set for a
subtype versus the rest using EDDY, A =1, M = 5000
dependency network structures of consideration,
T = 1000 permutations and K = 3 were used. To further
reduce the computational cost, we filter out the genes with
the changes in <10% of the samples after quantization,
resulting only 13884 genes for the analysis. Obtained
P-values were false discovery rate (FDR)-corrected using
the Benjamini and Hochberg’s method (28), and gene sets
with FDR-corrected P <0.05 were declared to be
statistically significant.

For comparison with conventional methods based on
differential gene expression, we applied GSEA to
identify gene sets for each subtype. Of the 2101 gene
sets, 2067 gene sets (98.4%) with up to 500 genes were
tested using GSEA. In running GSEA for each gene set,
1000 permutations were applied. From the result, P-values
were FDR-corrected using the Benjamini and Hochberg’s
method, and the same P-value threshold 0.05 was used for
statistical significance. We also compared our result with
that of GSCA, which is a method that evaluates the
differentiality of interactions given a gene set, but based
on simple pairwise correlations rather than assessing
global topology of network structures. For GSCA,
Pearson correlation coefficient was used as a correlation
measure, and 1000 permutations were applied to compute
statistical significance of measured discrepancy. The
FDR-corrected P-value = 0.05 was used as a threshold
for statistical significance. In applying GSEA and
GSCA, the standardized gene expression data were used
without quantization.

RESULTS
Simulation I: the characteristics of EDDY

Figure 3 shows JS and P-values by varying s, from
applying EDDY with different parameters and data
amounts, but with K = v — 1. In general, JS divergences
increase and P-values decrease as the discrepancy in-
creases between the Bayesian networks from which Dy
and D; were generated, which meets our expectation.
Regarding the number of dependency network
structures M, using larger M gives higher JS divergence
values and lower P-values as shown in Figure 3. This is
because considering more dependency network structures
improves the approximation of probability distributions
P(G|D). Therefore, EDDY can distinguish two different
data sets more correctly, and can recognize smaller
discrepancies better. Compared with EDDY, the
approach of considering only the best scoring networks
suffers with low reliability. This is because many
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Figure 3. JS divergence and P-values from applying EDDY to compare Dy and D;. (A) v = 5 variables. (B) v = 10 variables. (C) v = 20 variables.
(D) v = 50 variables. K = v — 1 was used for all cases. Each point in a plot represents the average from 100 repetitions. Error bars indicate the 95%

confidence interval of the average.

near-optimal networks can have similarly high scores in
real applications, and it can lead to higher false positives.

The effect of using more samples for the test is also
evident from Figure 3. When smaller number of samples
(e.g. d = 50) was used, the increase of JS and the decrease
of P-values are less clear even if the discrepancy s in
dependency is increased between the networks behind
the data sets. However, as the available amount of
samples increases (e.g. d = 200 and 500), the pattern of
increasing JS and decreasing P-values becomes clearer.
This indicates that the performance of EDDY in
discriminating distinct data sets improves as we increase
the number of available samples for a test.

Another observation is that more dependency network
structures (larger M) may need to be considered as the
problem size gets bigger (larger number of variables).
From Figure 3A and B of 5 and 10 variable cases
accordingly, considering. M = 50~1000 dependency

network structures could make EDDY show properly
increasing JS and decreasing P-values with increasing s.
However, such patterns are not comparably clear for the
case of 20 variables with the same amount of dependency
network structures and sample sizes (the case of d = 200 in
Figure 3C). Using more samples (the case of d = 500 in
Figure 3C) made JS and P-values more distinguishable,
but increasing the amount of dependency network struc-
tures for consideration (M = 3000 and 5000) made EDDY
provide much clearer pattern of varying JS and P-values.
Using larger M values also produced reasonable
performances for the case of 50 variables (Figure 3D).
This is because the number of possible dependency
network structures is significantly increased as the
number of variables increases. Thus, it requires more
dependency network structures to be considered for
proper approximation of probability distributions
P(G|D) in the process of EDDY.
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Figure 4. The ratio r that EDDY identifies P(G|Dy) # P(G|Dy) with P < 0.05, of 100 repetitions. (A) v = 5 variables, (B) v = 10 variables, (C) v = 20
variables, and (D) v = 50 variables. K = v — | was used for all cases. Note that the cases of s = 0 correspond to false positives as both Dy and Dy are
derived from the same network, and those of s > 0 correspond to true positives.

In addition to the aforementioned characteristics of JS
and P-values, we also characterized how sensitive EDDY
is in determining statistical significance with varying s. Of
the 100 repetitions of EDDY for each comparison of Dy
versus Dy, the ratio of cases with P <0.05 was computed.
Figure 4 shows the ratio of such statistically significant
cases by varying the discrepancy s. As expected from the
P-value plots in Figure 3, the ratio of statistically signifi-
cant cases increases with increasing network discrepancy s.
Similarly to JS and P-values, increasing the number of
samples or the number of dependency network structures
of consideration clearly allows EDDY to identify more
statistically significant cases. One observation is that
EDDY identifies relatively small amount of statistically
significant cases (true-positive cases) when the number of
available samples or computational capacity is limited
(small d or small M), or when the size of a problem is
huge (large v). However, considering that statistically sig-
nificant cases from the test of D, versus Dy (the cases of
s = 0 in Figure 4) correspond to false positives, it is im-
portant to note that EDDY provides low false positives
regardless of conditions as nearly 0% cases are reported to
be statistically significant for s = 0. The ratio of statistic-
ally significant cases from the tests of Dy versus D; (s > 0)
can be seen as sensitivity, although it needs to be
considered differently with the case of conventional
classification problems as the ratios in Figure 4 depends
on the degree of discrepancy between conditions.

In summary, we have shown that the discrepancy
detected by EDDY well correlates with the true
dependency discrepancy behind the data sets. We were
also able to observe that increasing the number of
available samples or the number of dependency network

structures of consideration improves performance, while
requiring more computations. One important benefit of
EDDY is its conservative behavior of giving low false
positives; thus, we can get trustworthy results even for
challenging problems.

We also evaluated the effect of using smaller K values
for selected cases. Limiting the number of incoming edges
to each variable restricts possible DAG structures, thus
limits the ability of the algorithm to correctly approximate
the probability distribution of dependency network struc-
tures. For this reason, limiting K to smaller values gives
similar effects with considering less dependency network
structures (smaller M) in approximating the network dis-
tribution, which results relatively lower discrepancy,
higher P-values and lower calling rates of statistically sig-
nificant cases (see Supplementary Figures S1 and S2).
However, limiting K significantly improved the running
speed of the algorithm (~2-folds for 20 variables and
8-folds for 50 variables from our implementation), thus,
helped to increase the scalability of the method. As the
running time of the algorithm linearly increases with the
considered amount of dependency network structures M,
using practically small K with good amount of M can be a
useful strategy for problems of large sizes.

Finally, we also evaluated the performance of EDDY
when the topology of an original network was altered
without reducing the number of edges, then used to
generate a synthetic data set, as previously described.
For the observed range of topology discrepancy, EDDY
showed the similar behavior—increasing JS, decreasing
P-values and increasing statistical significance calls, as
the discrepancy in networks behind the data sets increases
(see Supplementary Figures S3—-S9 for more details).
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Table 1. The area under curve values of GSCA, GSEA and EDDY
in identifying differential gene sets from Simulation II

Table 2. The number of statistically significant gene sets for each
subtype

Method v=10 v =20 v=730 Method Classical Mesenchymal Neural Proneural
GSCA 0.5774 0.5822 0.5965 EDDY 13 10 22 22
GSEA 0.4911 0.5574 0.6075 GSEA 1 (0) 245 (1) 6 (0) 3(0)
EDDY (M = 1000) 0.7440 0.6768 0.6704 GSCA 1590 (11) 1432 (7) 1681 (21) 1563 (17)
EDDY (M = 5000) 0.8287 0.7580 0.7064

Bold face indicates top performance.

Simulation II: comparison of EDDY with other methods

Figure 5 illustrates the ROC curves of GSCA, GSEA and
EDDY from Simulation II, and Table 1 lists the area
under curve values of the corresponding ROC curves in
Figure 5.

From the results of the interaction-focused simulation
experiments (Figure 5), EDDY demonstrates superior
performance than the other two methods. This is partly
due to the fact that the data were generated from models
assuming conditional dependencies in gene expressions
rather than simple linear correlations, which is also
assumed by the Bayesian network model that the current
implementation of EDDY wuses. The performance of
EDDY declines with increasing the size of gene sets, but
it improves with more computations (by using larger M as
shown in Figure 5). Another observation is significantly
lower false positive rates of EDDY than that of other
methods (Supplementary Figure S10-S12).

This simulation study clearly indicates that EDDY
significantly outperforms other methods when differential
gene sets are defined in the sense of gene interactions, with
significantly lower false-positive rates.

Besides the simulation scenario covered in this study,
there can be various different simulation configurations
depending on the methods to generate synthetic data
sets and the definition of differential gene sets. However,
it is not feasible to enumerate and cover all such different
cases, and thus, they are left for future studies.

The number of common cases with EDDY is indicated in the
parentheses.

Comparison of EDDY with other methods in application
to TCGA GBM gene expression data

Table 2 lists the number of statistically significant gene
sets identified with the three different methods for each
subtype. EDDY and GSEA produced different results,
as EDDY identified 10 ~22 gene sets for each subtype,
whereas GSEA identified 245 gene sets for mesenchymal
but just a few for other subtypes. Moreover, there is only
one common gene set (for mesenchymal) between the
results from the two methods. A possible hypothesis of
GSEA identifying many gene sets only for mesenchymal
is that mesenchymal is the most differentiated form of
GBM (physiologically or genotypically) (27), and many
genes are differentially expressed in mesenchymal
compared with other subtypes. Compared with GSEA,
the results of EDDY are relatively less biased to a
specific subtype (for the lists of identified gene sets from
EDDY and GSEA, see Supplementary Tables S1-S8).
Compared  with  the other two  methods,
GSCA identified much more gene sets as statistically
significant, from 68 to 80% of the tested gene sets,
making it almost noninformative (for the lists of identified
gene sets from GSCA, see the supplementary file provided
in http://biocomputing.tgen.org/software/EDDY). This
becomes clearer from Figure 6, where the P-values from
GSCA are much closer to 0 in general than that of EDDY
and GSEA (for direct comparison of P-values from
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versus nonneural. (D) From testing proneural versus nonproneural.

GSCA and EDDY, see Supplementary Figure S13). To
better understand the result of GSCA showing too many
cases of low P-values, we compared the P-values of EDDY
and GSCA along with the sizes of gene sets, where both
methods target differential genetic interactions. GSCA
reported much lower P-values as the size of gene sets in-
creases, while the result from EDDY did not show such
bias related to the size of gene sets (Supplementary Figure
S14). This characteristic of GSCA has been noted by the
developers of GSCA (21), as GSCA could be sensitive to
the sum of minor local correlation changes from many
gene interactions of a large gene set. This can lead
to GSCA reporting significantly lower P-values for larger
gene sets, hence, biased results toward larger gene sets, as
can be seen from the application to the TCGA GBM gene
expression data (Supplementary Figure S14). We also

show from the simulated comparisons in the previous sub-
section that GSCA reports higher false-positive rates than
EDDY in general (Supplementary Figures S10-S12). Even
though EDDY may be less sensitive (higher false negative)
than GSCA, results from EDDY can be more informative
once identified as statistically significant due to such
low false positives. Moreover, the sensitivity of EDDY
can be increased with more computational resources
without increasing false positives, as shown from
Simulation I that evaluated the characteristics of EDDY
(Figure 4).

Gene sets identified with EDDY for each GBM subtype

Figure 7 illustrates which biological functions contribute
to the gene sets identified with EDDY for the four
subtypes of GBM and their proportions. All four GBM
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subtypes are associated with gene sets of biological
functions that are popular in general cancer, such as cell
cycle, immune system and signal transduction. Besides
such cancer-generic functions, some functional groups
are specifically associated with different subtypes. For
the mesenchymal subtype (Figure 7B), gene sets that are
related to cell migration/structure were identified. This fits
well with the characteristics of the mesenchymal subtype,
where cancer cells go through epithelial-mesenchymal
transition and show migrative behavior. The neural
subtype is exclusively associated with gene sets that are
related to DNA damage repair (Figure 7C). The failure
of DNA repair mechanism can lead to the formation of
cancer through unregulated cell division, which can be
related to cancer in general. Thus, it can be a viable next
step to investigate the activities of DNA repair functions
in GBM subtypes to find out the neural subtype-specific
driving mechanism for the abnormality of this function.
Another observation is that only the neural and proneural
subtypes are associated with gene sets related to apoptosis,
and the cause and effect of this abnormal activity of
apoptotic gene sets in these two subtypes remain for
future study.

CDKN2A and p53 roles in GBM revisited

We also investigated each gene set and found few cases
that are consistent with the previous studies and were not
identified with GSEA. From the result of applying
EDDY, three sclected pathway gene sets are illustrated
in Figure 8, where their genetic relationships were
distinct with statistical significance between a subtype
sample and the rest of the samples. To present an intuitive
visualization of how much difference exists regarding
dependency relationships, we composed a representative
dependency network of each pathway, which shows
subtype-specific, nonsubtype specific (specific to the
other samples than the subtype) and common
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dependencies. In the process of EDDY, M/2 probable
dependency network structures were proposed by
Algorithm StructurePropose (see the ‘Materials and
Methods’ section and Supplementary Method S2 for
details) and collected for each case of subtype and
nonsubtype samples. For each case, the frequency of
edge connection from the M/2 collected dependency
network structures was evaluated for every gene—gene
pair. If an edge existed in >95% dependency network
structures, the edge was included for visualization in
Figure 8. As Figure 8 shows, genes in the three
pathways have many changes in dependency relationships
between each corresponding subtype and nonsubtype
cases. However, individual genes do not show clear
differential expression between each subtype and
nonsubtype cases as shown in heat maps of Figure 8.
This implies that the dependency relationships between
genes can be significantly different across conditions
even when the overall expression of individual genes
does not show clear differential patterns. Thus, using
EDDY can be a better approach than using differential
gene expression-based methods (e.g. GSEA) for such
cases. Figure 8A shows the gene set for the ARF tumor
suppressor pathway, identified from testing classical
versus nonclassical. This is related to the findings of a
previous study, where Verhaak et al. (27) reported that
there is focal 9p21.3 homozygous deletion targeting
CDKN2A in the classical subtype, and subsequently,
RB pathway is almost exclusively affected through the
CDKN2A deletion. This relationship between CDKN2A
deletion and RB protein in the classical subtype can be
seen in Figure 8A, where CDKN2A lost many dependency
relationships with other genes in the classical subtype
(dotted edges) possibly due to its deletion, while the only
dependency relationship it acquired in the -classical
subtype is with RBI1. Figure 8B illustrates the G2
pathway gene set and Figure 8C shows the p53 pathway
gene set, where both were identified from testing proneural
versus nonproneural. We found that these two cases can
be related to the pS3 mutation enrichment in the proneural
subtype, which was also reported by Verhaak et al. (27).
From these two pathway gene sets, p53 lost all of its
dependencies with other genes in the proneural subtype,
possibly due to its mutation. None of these three cases was
identified using GSEA.

DISCUSSION

We proposed a method, EDDY, which is a statistical test
method for a given gene set to evaluate the differentiality
of dependencies between two conditions and its statistical
significance. Unlike previous gene set test methods that
evaluate only differential expressions, EDDY evaluates
the discrepancy between conditions by considering the
probability  distribution of dependency networks.
Compared with the previous methods to identify local dif-
ferential interactions or condition-specific subnetworks,
EDDY distinguishes itself with its functionality of
testing gene sets for dependency differentiality, while
those methods lack the functionality of testing gene sets.

PAGE 12 0F 13

The proposed method has been evaluated through simu-
lation experiments and it demonstrated that EDDY
provides well-correlated results with the true discrepancy
behind the synthetic data sets, while returning low false
positives. When EDDY was compared with other
methods through simulation studies, EDDY showed
better performance than other methods when differential
gene sets are defined in the sense of conditional
dependency changes. We also applied EDDY to the
TCGA GBM gene expression data to identify gene sets
that show statistically distinct genetic relationships
among the four subtypes of GBM, and its result was
compared with the result of GSEA. We showed that
EDDY can identify largely different gene sets with those
from GSEA, while providing meaningful outcomes that
are often consistent with previously reported findings in
addition to potentially novel findings. EDDY has been
also compared with GSCA, which is a gene set test
method that evaluates differential interactions within a
gene set using pairwise correlation measures. From the
application to the real data set, GSCA showed biased
results with the size of gene sets, while EDDY did not
show such a behavior. From the extent of our knowledge,
EDDY is the only method to identify gene sets with stat-
istically significant changes in genetic interactions without
the risk of getting high false positives.

A potential bottleneck of the proposed method is that it
requires a significant amount of computational resources,
especially for large gene sets. The necessity of such huge
computation is mainly because large number of
dependency network structures needs to be evaluated as
the size of a gene set is increased. For this reason, we used
heuristics to limit incoming edges to each gene and filtered
genes based on expression variance to further reduce the
computational cost in real applications. Furthermore, we
are also planning our future work to develop a naive
version of EDDY, which tests the relationship between
each gene—gene pair independently across conditions and
aggregate the statistics for a final result. Additionally, only
two conditions were considered for the application of
EDDY in this work. However, it is possible to extend
the algorithm for more than two conditions, as the JS
divergence can be extended for more than two discrete
probability distributions, and such extension will be part
of our future work.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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