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Background: Mastitis is the most prevalent disease in dairy cattle and one of the most

significant bovine pathologies affecting milk production, animal health, and reproduction.

In addition, mastitis is the most common, expensive, and contagious infection in the

dairy industry.

Methods: A meta-analysis of microarray and RNA-seq data was conducted to identify

candidate genes and functional modules associated with mastitis disease. The results

were then applied to systems biology analysis via weighted gene coexpression network

analysis (WGCNA), Gene Ontology, enrichment analysis for the Kyoto Encyclopedia of

Genes and Genomes (KEGG), and modeling using machine-learning algorithms.

Results: Microarray and RNA-seq datasets were generated for 2,089 and 2,794

meta-genes, respectively. Between microarray and RNA-seq datasets, a total of 360

meta-genes were found that were significantly enriched as “peroxisome,” “NOD-like

receptor signaling pathway,” “IL-17 signaling pathway,” and “TNF signaling pathway”

KEGG pathways. The turquoise module (n = 214 genes) and the brown module

(n = 57 genes) were identified as critical functional modules associated with mastitis

through WGCNA. PRDX5, RAB5C, ACTN4, SLC25A16, MAPK6, CD53, NCKAP1L,

ARHGEF2, COL9A1, and PTPRC genes were detected as hub genes in identified

functional modules. Finally, using attribute weighting and machine-learning methods,

hub genes that are sufficiently informative in Escherichia coli mastitis were used to

optimize predictive models. The constructed model proposed the optimal approach

for the meta-genes and validated several high-ranked genes as biomarkers for E. coli

mastitis using the decision tree (DT) method.

Conclusion: The candidate genes and pathways proposed in this study may shed

new light on the underlying molecular mechanisms of mastitis disease and suggest new

approaches for diagnosing and treating E. coli mastitis in dairy cattle.
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BACKGROUND

Mastitis is a severe disease characterized as an inflammatory
condition affecting the mammary glands (Gelasakis et al., 2015).
Escherichia coli, Staphylococcus aureus, and Streptococcus uberis
are the three major bacterial pathogens associated with mastitis
disease (Vasudevan et al., 2003), with E. coli causing severe
inflammation in dairy cattle (Vangroenweghe et al., 2005). The
focus of current research has shifted to elucidating the underlying
mechanisms and developing effective treatment strategies for
mastitis disease (Takeshima et al., 2008; Compton et al., 2009). E.
coli typically infects the mammary glands during the dry period,
and inflammation progresses during the early stages of lactation
(Burvenich et al., 2003). Recent research indicates that E. coli’s
pathogenicity is entirely dependent on a protein called FecA
(Blum et al., 2018).

Recent advancements in high-throughput transcriptome
profiling technologies, such as microarray and RNA sequencing
(RNA-seq), have enabled opportunities for precision critical
care medicine to understand better the molecular mechanisms
underlying diverse biological functions (Bansal and Di Bernardo,
2007; Farhadian et al., 2020; Panahi et al., 2020). On the
other hand, identifying disease biomarkers can aid breeders in
optimizing their genetic programs for dairy animals (Kulkarni
and Kaliwal, 2013; Duarte et al., 2015; Lai et al., 2017). Previous
research identifiedTNF- and SAA3 (Swanson et al., 2009), STAT3,
MAPK14, TNF (Gorji et al., 2019), IL8RB, CXCL6, MMP9 (Li
et al., 2019), IRF9,CCL (Buitenhuis et al., 2011), S100A12,MT2A,
SOD2 (Mitterhuemer et al., 2010), CXCL8, CXCL2, S100A9
(Sharifi et al., 2018), PSMA6, HCK, and STAT1 (Bakhtiarizadeh
et al., 2020) as potential biomarkers for mastitis disease.

Meta-analysis is a systematic and quantitative study
methodology used to evaluate prior research and reach a
conclusion (Haidich, 2010). On the other hand, independent
studies have limitations in sample size, statistical power, and the
reliability of the results (Panahi and Hejazi, 2021). Meta-analysis
has demonstrated that combining p values resolves several issues
(Rhodes et al., 2002; Tseng et al., 2012; Panahi et al., 2019a).
When combining p values using Fisher’s technique, the null
hypothesis is that the actual effect is zero in each of the combined
datasets (Evangelou and Ioannidis, 2013), suggesting that the
techniques should be sensitive even when only a subset of the
combined datasets has an impact magnitude more significant
than zero. Fisher’s approach outperformed other methods for
establishing associations. In addition, the p value combination
method shows considerable promise for identifying novel
markers or differentially expressed genes (DEGs) (Evangelou
and Ioannidis, 2013). Moreover, connectivity analysis of known
meta-genes has been presented as a promising approach for
disentangling the complicated method (Panahi et al., 2020).

Weighted gene coexpression network analysis (WGCNA) has
been proposed as a versatile tool for gene coexpression analysis,
which provide valuable information about gene connectivity
based on gene expression levels (Ebrahimie et al., 2014; Farhadian
et al., 2021). A combination of machine-learning algorithms and
microarray meta-analysis was used to identify mastitis genes in
dairy cattle (Sharifi et al., 2018), However, they did not include

RNA-seq data in their analysis and instead focused on the
expression patterns of meta-genes.

The present study is the first that the authors are aware of that
integrates meta-analysis of microarray and RNA-seq datasets,
connectivity analysis, andmodel optimization in mastitis disease.
Thus, in this integrative study, we identified master genes
associated with mastitis disease using a combination of meta-
analysis, WGCNA, and machine-learning algorithms.

MATERIALS AND METHODS

Data Collection
The National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) repository (https://www.ncbi.nlm.
nih.gov/gds/) was explored for datasets related to dairy
cattle mastitis. This database was searched for RNA-seq and
microarray studies using the keywords “Bos taurus,” “mastitis,”
and “Escherichia coli.” For this research, six microarrays and
two RNA-seq datasets were chosen. Table 1 lists the platform,
accession number, species, and references for each dataset. All
healthy and mastitis animal samples were from the Bos taurus
species, which have a high sensitivity to E. coli. Fifteen healthy
German Holstein Frisian cows in midlactation (3–6 months
postpartum) were included in dataset GSE15025. The animals
were inoculated with E. coli in one-quarter and died after 6 h
(n = 5) or 24 h (n = 5) in two distinct infection scenarios. Five
heifers were used as controls; they were not given any medication
and died after 24 h. At 4 to 6 weeks following parturition, 16
healthy primiparous Danish Holstein-Friesian cows were tested
with E. coli for the GSE24217 dataset. The overall udder health of
24 dairy cows was assessed before the disease challenge. Control
quarters were selected based on bacteriological tests performed
before E. coli inoculation and the quarter foremilk SCC at 24 and
192 h. From the total German Holstein population, 11 heifers at
day 42 postpartum, either with high or low sensitivity to mastitis,
were chosen for the GSE24560 dataset. Heat-inactivated E. coli
plus S. aureus was used to challenge the cells, as a control. The
cells were collected after 1, 6, and 24 h, and mRNA expression
was compared. Four first-lactation Holstein cows in the fourth
month of lactation were also experimentally inoculated with the
mastitis-causing E. coli pathogen strain 1303 for the GSE25413
dataset. The transcriptomes of the treated and untreated cells
were examined at 1, 3, 6, and 24 h. In the GSE32186 dataset,
four first-lactation Holstein cows were given primary MEC
(pbMEC) cultures for 6 h, and some cultures were stimulated.
E. coli particles were collected from the udders of three healthy,
pregnant (day 130 of gestation) cows in the middle of their
first lactation 12 or 42 h later. Six Holstein Friesian cows were
challenged with E. coli mastitis for the GSE50685 investigations.
Every 6 h after infection, blood and milk samples were taken.
At successive milkings, the treatment was repeated (12, 24,
and 36 h postchallenge). At 24 h (n = 3) and 48 h (n = 3)
following infection, the cows were sacrificed for tissue collection.
GSE75379 and GSE159286 were two datasets related to RNA-
seq. Sixteen healthy primiparous Holstein cows at 4–6 weeks
of lactation were included in the GSE75379 dataset. Biopsy
specimens of healthy and diseased udder tissue were taken at
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TABLE 1 | Selected microarray and RNA-seq datasets for systems biology analysis of mastitis disease.

Accession no. Species Bacteria Platform Samples* (C:T) References

Microarray datasets

GSE15025 Bos taurus Escherichia coli Affymetrix 15:15 Mitterhuemer et al., 2010

GSE24217 B. taurus E. coli Affymetrix 23:26 Buitenhuis et al., 2011

GSE24560 B. taurus E. coli Affymetrix 27:31 Brand et al., 2011

GSE25413 B. taurus E. coli Affymetrix 6:24 Günther et al., 2011

GSE32186 B. taurus E. coli Affymetrix 12:12 Günther et al., 2012

GSE50685 B. taurus E. coli Affymetrix 5:15 Sipka et al., 2014

RNA-seq datasets

GSE75379 B. taurus E. coli Illumina 6:12 Moyes et al., 2016

GSE159286 B. taurus E. coli Illumina 53:52 Cebron et al., 2020

*Number of healthy and infected samples.

FIGURE 1 | Flowchart of different steps of mastitis microarray and RNA-seq meta-analysis based on combing p value.

T = 24 h and T = 192 h after infection. In total, 12 heifers
were intramuscularly vaccinated with heat-killed E. coli for the
GSE159286 investigations. Half of the heifers (IM group, n = 6)
received a booster injection 2 months later. Others (IMM group,
n = 6) received 50 g of protein concentrate produced from E.

coli in two quarters. Cows were then challenged with an E. coli
P4 bacterial suspension infusion at 49 days in milk inside one
healthy quarter (10e3 bacteria). Before the trial, blood was taken
7 days after the first and second injections (immunization phase)
and then at 0, 12, and 40 h following infection (challenge phase).
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FIGURE 2 | Flowchart of applied systems biology approach in this study.

Preprocessing and Analysis of Microarray
Datasets
The GEO database was used to collect all microarray expression
raw data and associated annotations for each study, and
microarray data were preprocessed to obtain reliable findings.
Nonbiological data variances were then removed, and
appropriate scales were used for further analysis (Bolstad
et al., 2003). The quantile normalization method and batch
effects reduction were used to conduct effective gene expression
analysis and eliminate variability between studies. The Limma
software (2.16.0) (Smyth et al., 2005) was used to calculate DEGs
among each control and treatment group after preprocessing the
raw data. DEGs were deemed significant when the false discovery
rate (FDR) using the Benjamini–Hochberg method was p <

0.05 and the logarithm of fold change > ±0.5 (Benjamini and
Hochberg, 1995).

Preprocessing and Analysis of Individual
RNA-seq Datasets
The data generated by RNA-seq can be skewed due to
biases introduced during library preparation, polymerase chain
reaction, and sequencing. The technique of trimmed mean of m-
values was used to eliminate the effect of known nonbiological
features on the RNA-seq data (Robinson and Oshlack, 2010).
Each sample was inspected for quality using the FastQC tool
version 0.11.5 (Trapnell et al., 2012), and low-quality reads were
trimmed using the Trimmomatic (v 0.32) software (Goldman
et al., 2006). Bowtie2 (2.2.4) software was used to index
reference genomes, and clean reads were then mapped to the
B. taurus reference genome (ARS-UCD1.2 version) employing
Tophat2 (2.0.10) software (Kim et al., 2013; Love et al., 2014)
with default settings. The sample mapping rates are listed in
Supplementary Material 1, Table 1. The htseq-count package
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FIGURE 3 | Results of meta-analysis of RNA-seq data using Fisher and

invorm method.

FIGURE 4 | Results of common meta-genes using Venn diagram.

(2.7.3) (Anders et al., 2013) was used to calculate the expression
count matrix. The Bioconductor DESeq2 software (1.10.1) was
used to determine the differential gene expressions in each
research (Love et al., 2014). In terms of normalization and batch
effect correction, the methods outlined in the studies (Farhadian
et al., 2021; Panahi and Hejazi, 2021) were followed. In summary,
genes with a CV <10% were initially removed. The group was
then used as a covariate, using DESeq2 library size, size factor
normalization factors. The variance-stabilizing transformations
(VSTs) function was used to reduce sample disparities. The VST
function does not typically remove variations related to the
batch or other variables. As a result, the “removeBatchEffect”
function was used to remove batch variations. The blind = false
option was selected as re-estimation of the dispersion values
was not required. This process leveled the library size and other
normalization variables. Each study’s samples were normalized
jointly, implying that each dataset was normalized individually
(Love et al., 2014).

Meta-Analysis of Microarray and RNA-seq
Datasets
In microarray studies, the MetaDE package (1.0.5) was used
to identify meta-genes (Wang et al., 2012). The meta-analysis
included the following steps: after quantile normalization,
labeling samples as “Infected” or “Healthy”; the “Gene Symbol”
was matched to multiple probe IDs using the interquartile range

for probe selection (Wang et al., 2012). Merging genes is an
approach used to determine which genes should be studied
further (Wang et al., 2021). Because the number of genes in
the research varied, the multiple gene expression datasets may
not have been adequately matched by genes. In this study,
the direct merging method was used to obtain common genes
across different investigations. The Fisher technique (Marot et al.,
2020) was used to identify meta-gens in RNA-seq data using
the metaRNASeq software (1.0.5). Initially, the DEGs for each
study were defined using the DESeq2 package (1.30.1), and
the corresponding p value was extracted. Then, the fishcomb
function included in the metaRNASeq package was used to
combine the p values. For downstream analysis, the genes shared
between meta-analyses of microarray and RNA-seq data were
extracted (Figure 1).

Weighted Gene Coexpression Network
Analysis
Common genes were used to construct coexpression networks
using the WGCNA Bioconductor R package (version 3.5.1) to
understand the correlation patterns among genes and identify
significant modules associated with mastitis disease (Langfelder
and Horvath, 2008). Initially, networks were constructed using
Pearson correlations across all common genes (Botía et al., 2017).
A soft threshold was used to evaluate the correlation and noise-
filtering power to fulfill the scale-free topology requirement.
The weighted gene coexpression network design promotes
strong correlations at the cost of low correlations by increasing
the absolute magnitude of the correlation to a soft threshold
(Langfelder and Horvath, 2008). The topological overlap matrix
(TOM) and its corresponding dissimilarity matrix (1–TOM)
were used to visualize the network, which resulted in a network
diagram for module detection. Module eigengenes and module
membership were used to identify the hub genes for each
significant coexpressed module (Langfelder and Horvath, 2008).
The following parameters were used to construct the modules:
cut height of 0.975, minimum module size of 30 genes, “hybrid”
method, and deepSplit= 2.

Functional Enrichment Analysis
The STRING (Szklarczyk et al., 2015) database was used to
conduct enrichment analysis on the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) (Dennis et al.,
2003). The FDR (<0.05) correction was used to determine the
statistical significance of GO and KEGG terms.

Protein–Protein Interaction Networks of
Common Genes
Gene network analysis of protein–protein interaction between
common genes was performed using Cytoscape software to
visualize gene networks and identify hub genes. Hub genes are
defined as those with the highest degree of connectivity and those
with a greater biological significance than other gene members
(Shannon et al., 2003).
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TABLE 2 | Significant common meta-genes in mastitis disease.

Gene symbol Full name Chromosome Compartment

ELMO2 Engulfment and cell motility 2 20 Cytosol

ORM1 Orosomucoid 1 (alpha-1-acid glycoprotein) 9 Extracellular

ABCB7 ATP-binding cassette subfamily B member 7 X Mitochondrion

LRRC41 Leucine-rich repeat containing 41 1 Nucleus

CXCL3 C-X-C motif chemokine ligand 3 4 Extracellular

SOD2 Superoxide dismutase 2 6 Extracellular

ZFYVE1 Zinc finger FYVE-type containing 1 14 Mitochondrion

SORL1 Sortilin-related receptor 1 11 Plasma membrane

PTCD3 Pentatricopeptide repeat domain 3 2 Mitochondrion

RPS6KA5 Ribosomal porotein S6 kinase A5 14 Nucleus

LHFPL2 LHFPL tetraspan subfamily member 2 5 Plasma membrane

TRIQK Triple QxxK/R motif containing 8 Endoplasmic reticulum

MAOA Monoamine oxidase A X Mitochondrion

CORO2A Coronin 2A 9 Cytosol

TPM3 Tropomyosin 3 1 Extracellular

PTPRC Protein tyrosine phosphatase receptor type C 1 Plasma membrane

LOC407171 Fc gamma 2 receptor 18 Extracellular

Supervised Machine-Learning Models
The common meta-genes identified were utilized to select
features using 10 different weighting algorithms, including
information gain, information gain ratio, χ

2, deviation, rule,
support vector machine, Gini index, uncertainty, relief, and PCA
to validate the hub genes’ efficacy in distinguishing different
genes involved in mastitis disease (Farhadian et al., 2018a, 2021).
The Rapid Miner software (Rapid Miner 5.0.001, Dortmund,
Germany) was used for attribute weighting (Ebrahimi et al., 2011;
Farhadian et al., 2018a; Panahi et al., 2019a; Nami et al., 2021).
The primary objective of attribute weighting algorithms was to
extract a subset of input features (genes) by excluding those
that contained little or no information (Panahi et al., 2019b).
The decision trees (DTs) were constructed using features with
weighting values greater than 0.5. The DTs were constructed
using the following methods: information gain, information gain
ratio, Gini index, and accuracy criteria. Figure 2 depicts the
flowchart of an analytical strategy for microarray and RNA-seq.

RESULTS

Meta-Analysis
We conducted a meta-analysis of DEGs using data from
microarray and RNA-seq experiments. Six raw microarray
datasets containing 211 samples and two RNA-seq datasets
containing 123 independent dairy cattle experiments were
chosen separately for the meta-analysis. Finally, a total
of 2,089 and 2,794 meta-genes in response to E. coli
mastitis in microarray and RNA-seq data, respectively,
were observed using the Fisher method in the metaDE
and metaRNASeq packages. Supplementary Material 2

and Figure 3 contain the results of the meta-analysis of
RNA-seq data.

Identification of Common Genes by
Meta-Gene Comparison
A total of 360 genes were identified as common meta-genes
in meta-analysis of microarray and RNA-seq data (Figure 4).
Table 2 and Supplementary Material 3 contain additional
information about the significant common meta-genes.

Functional Enrichment Analysis of
Common Genes
The STRING database was used to conduct GO analyses on 360
common meta-genes to ascertain their biological process (BP),
molecular function (MF), and cellular component (CC) roles in
mastitis disease. The results found 170, 33, and 36 GO terms for
BPs, MFs, and CCs, respectively. The terms “cellular process,”
“response to stimulus,” “biological regulation,” “regulation of a
biological process,” and “regulation of a cellular process” were
used to denote the most critical process in the BP category.
“Binding,” “ion binding,” “actin binding,” “cation binding,” and
“metal ion binding” were all significantly overrepresented in
the MF category. In terms of CC, the terms “intracellular,”
“cell,” “cytoplasm,” “intracellular organelle,” and “organelle” were
significantly enriched. Additional information is available in
Table 3 and Supplementary Material 4.

This analysis identified a total of nine significant KEGG
pathways. In addition, the results indicated that the
“peroxisome,” “NOD-like receptor signaling pathway,” “IL-
17 signaling pathway,” and “TNF signaling pathway” were
significantly overrepresented. Table 4 contains additional
information about KEGG pathways.

Cytoscape demonstrates the involvement of DEGs in protein–
protein interaction. Figure 5 illustrates the gene network
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TABLE 3 | Significant GO terms of common genes.

Term ID Description GO terms p value

GO:0009987 Cellular process BP 1.52E-10

GO:0050896 Response to stimulus BP 1.96E-10

GO:0065007 Biological regulation BP 8.53E-10

GO:0050789 regulation of BP BP 3.66E-09

GO:0050794 Regulation of cellular process BP 3.66E-09

GO:0051716 Cellular response to stimulus BP 6.09E-08

GO:0019222 Regulation of metabolic process BP 2.26E-07

GO:0051171 Regulation of nitrogen compound metabolic process BP 2.26E-07

GO:0080090 Regulation of primary metabolic process BP 2.26E-07

GO:0031323 Regulation of cellular metabolic process BP 2.63E-07

GO:0005488 Binding MF 3.90E-10

GO:0043167 Ion binding MF 2.55E-06

GO:0005515 Protein binding MF 1.30E-05

GO:0003779 Actin binding MF 0.00011

GO:0043169 Cation binding MF 0.00024

GO:0046872 Metal ion binding MF 0.00029

GO:0008092 Cytoskeletal protein binding MF 0.00034

GO:1901363 Heterocyclic compound binding MF 0.0014

GO:0097159 Organic cyclic compound binding MF 0.0019

GO:0036094 Small molecule binding MF 0.002

GO:0005622 Intracellular CC 7.27E-13

GO:0005623 Cell CC 8.74E-13

GO:0005737 Cytoplasm CC 8.74E-13

GO:0043229 Intracellular organelle CC 1.39E-09

GO:0043226 Organelle CC 1.74E-09

GO:0043227 Membrane-bound organelle CC 5.37E-09

GO:0043231 Intracellular membrane-bound organelle CC 7.48E-09

GO:0005829 Cytosol CC 2.03E-07

GO:0070013 Intracellular organelle lumen CC 1.28E-05

GO:0005634 Nucleus CC 3.30E-05

Only the significantly enriched (p < 0.05) GO terms are presented.

TABLE 4 | The significant KEGG metabolic pathways associated with the

common genes.

Pathway name p value Total genes in

pathway

Strength

Peroxisome 0.0012 10 0.84

NOD-like receptor signaling pathway 0.0058 12 0.61

IL-17 signaling pathway 0.0058 9 0.76

TNF signaling pathway 0.008 9 0.68

Salmonella infection 0.008 8 0.76

Viral carcinogenesis 0.008 13 0.55

Human papillomavirus infection 0.0089 16 0.46

Necroptosis 0.0194 10 0.56

Autophagy—animal 0.0216 9 0.59

TNF, tumor necrosis factor.

visualization of commonmeta-genes. The top genes were STAT1,
RTPRC, SOD2, and VCP (Supplementary Material 5).

Weighted Gene Coexpression Network
Construction
A WGCNA was performed to identify genes with a high
correlation and classified the common genes into four modules.
The turquoise module (n = 214 genes) and the brown
module (n = 57 genes) were identified as critical functional
modules associated with mastitis through WGCNA analysis
(Figure 6A). The remaining modules, such as the blue module
(n = 84 genes) plus the gray module (n = 5 genes), were
not notable. Figure 6B illustrates the hierarchical clustering of
common genes.

The correlation coefficient and p value for the significant
modules in the mastitis and healthy groups were r = 0.28,
p= 0.002, and r= 0.36, p= 4e – 05, respectively, for the turquoise
and brown modules (Figure 7).

Turquoise had a negative correlation with mastitis disease,
whereas brown had a positive correlation. Table 5 lists
the top five hub genes in brown and turquoise modules.
Supplementary Material 6 contains a list of the more significant
modules identified.
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FIGURE 5 | Protein–protein interaction network for the common genes using Cytoscape.

“Peroxisome,” “viral carcinogenesis,” and “arginine and
proline metabolism” were determined as the most significantly
enriched pathways based on the enriched functional analysis
in these modules that were potentially associated with mastitis
development. These modules enriched for genes involved
in “negative regulation of peptidyl-serine phosphorylation,”
“response to stimulus,” “cell process regulation,” “protein
hydroxylation,” “actin filament-based process,” and “cellular
process.” These modules carried out critical MFs such as
“actin binding,” “binding,” “transcription factor binding,” and
“peroxidase activity.” “Intracellular,” “organelle,” “cytoplasm,”
“cell,” “cortical actin cytoskeleton,” and “microvillus” were
identified as CCs.

Attribute Weighting
The data-cleaning process was used to eliminate redundant
and highly correlated (>95%) attributes. Finally, modeling was
performed on the 360 genes. If an attribute was assigned a
weight >0.5 by a specific attribute weighting algorithm, it

was considered essential. Supplementary Material 7 contains
the results of 10 different attribute weighting algorithm
applications. Table 6 summarizes the number of attribute
weighting algorithms that supported the selected DEGs.

Validation Hub Genes in Coexpressed
Modules
The DT technique was used to validate the identified hub
genes. Thus, the accuracy of various models was calculated
and presented in Supplementary Material 8 using four different
criteria, namely, information gain ratio, information gain,
Gini index, and accuracy. According to the results, the DT
with the gain ratio criterion achieved the highest accuracy
(75%) (Table 7). The DT validated the role of the top-ranked
genes in mastitis classification using the expression values of
common meta-genes.

As illustrated in Figure 8, because the LOC407171 gene is
located at the root of the constructed tree, it can be considered
a biomarker for mastitis. When the LOC407171 gene value
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FIGURE 6 | WGCNA: (A) Cluster dendrogram of the common genes. The branches and color bands demonstrate the specific module. (B) TOM plot; light color

symbolizes low overlap, and progressively darker red color symbolizes higher overlap between common genes. Blocks of darker colors along the diagonal correspond

to modules.

exceeded 8.119, and the SFN gene value exceeded 5.291, the
samples were classified as having mastitis. When the LOC407171
gene value is equal to or<8.119, the sample is considered healthy.
When LOC407171 exceeded 8.119, SFN was equal to or <5.291,
and PTPRC was equal to or <14.390, the sample was classified as
healthy. In addition, if the last feature exceeded 14.390 and the
expression of IDH1 was present, PTPRC would be classified as
having mastitis.

The significance of the LOC407171, PTPRC, ABCG2, and
IDH1 genes in the turquoise module was confirmed using DT
models and attribute weighting, highlighting their critical roles
in mastitis.

DISCUSSION

Mastitis is a significant disease involving multiple genes that may
interact to enrich specific signaling pathways. We performed a
meta-analysis of RNA-seq and microarray transcriptome data
to gain a comprehensive understanding of the master/key genes
duringmastitis disease thatmay play a significant role in response
to E. coli mastitis. As individual studies have limitations in
statistical power and reproducibility, several small impact genes
remain unknown. Meta-analysis has been suggested as a practical
approach for resolving this issue (Farhadian et al., 2018b; Sharifi
et al., 2018). The BP, biological regulation, and reaction to a
stimulus, the study’s primary enriched GO terms, have been
described as BPs in mastitis disease (Asselstine et al., 2019). These
words include various activities, including cell proliferation, cell
growth, biochemical processes, and signaling pathways (Long
et al., 2001; Arnellos, 2018). The terminology used to describeMF
in this research, such as binding, ion binding, protein binding,
actin binding, cation binding, and catalytic activity, has been

previously described in immune response and protein transport
(Swanson et al., 2009; Asselstine et al., 2019).

Enrichment analysis of metabolic KEGG pathways was
used to identify metabolic pathways that were significantly
overrepresented among 360 common genes. Several significant
pathways were enriched, including peroxisomes and three
subcategories of signaling pathways [interleukin 17 (IL-17)
signaling pathway, nucleotide-binding and oligomerization
domain (NOD)–like receptor signaling pathway, TNF
signaling pathway]. Peroxisomes are required to oxidize specific
biomolecules and the inflammatory response to environmental
stress (Trindade Da Rosa, 2016; Su et al., 2019). Mammary
epithelial cells have been shown to have immune activity,
activating signaling pathways during mastitis (Song et al., 2014).
TNF plays a role in various pathological processes, including
immune cell regulation and immune response modulation
(Shah et al., 2012; Gao et al., 2015). The NOD-like receptor
regulates the immune and inflammatory responses in mammals’
innate immune systems (Saxena and Yeretssian, 2014). IL-17
expression in milk peaked 24 to 48 h after pathogen challenge.
These findings indicated that IL-17 was a significant cytokine in
the development of dairy goat mastitis and played a critical role
in mastitis development (Jing et al., 2012). Previously published
research indicated that mastitis involves the NOD-like receptor,
IL-17, and TNF signaling pathways (Asselstine et al., 2019). As a
result of their function, we can deduce that these pathways are
involved in immune system responses to mastitis disease.

The PPI networks constructed using Cytoscape revealed that
the hub genes are PTPRC, SOD2, and STAT1. As a result,
these hub genes may affect mastitis and thus warrant further
validation. The PTPRC gene is required to signal T- and B-
cell antigen receptors (Miterski et al., 2002; Porcu et al., 2012).
PTPRC is a highly connected gene in PPI networks and is
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FIGURE 7 | The module trait relationship (p value) for identified modules (y

axis) in relation with traits (x axis). The relationship was colored according to

the correlation between the module and traits (turquoise, strong negative

correlation; brown, strong positive correlation).

TABLE 5 | Top hub genes in significant modules in mastitis disease.

Mastitis disease

Brown Turquoise

PRDX5 CD53

RAB5C NCKAP1L

ACTN4 ARHGEF2

SLC25A16 COL9A1

MAPK6 PTPRC

involved in the development of mastitis (Bakhtiarizadeh et al.,
2020). SOD2 and IDH1 genes have been up-regulated in ewes’
mammary glands using functional enrichment analysis (Gao
et al., 2018, 2019). SOD2 gene expression increased in mammary
tissue of cows and ewes with mastitis caused by S. aureus

TABLE 6 | Results of different attribute weighting algorithms confirmed the most

important genes.

Attribute No. of weighting models

LOC407171 5

MT2A 4

PTPRC 4

LPCAT2 4

SAMSN1 4

IL1B 4

SELPLG 4

CD53 4

PLEK 4

SFN 3

KCNJ15 3

SPCS3 3

SOD2 3

IDH1 3

SYNGR1 3

TANC2 3

CXCL3 3

TABLE 7 | Accuracy comparison of constructed DT models by different criteria.

Criteria Accuracy (%)

Gain ratio 75

Information gain 63.89

Gini index 58.33

Accuracy 63.89

and E. coli (Mitterhuemer et al., 2010; Jensen et al., 2013).
Also, in addition, STAT1 regulates genes involved in milk
protein synthesis, fat metabolism, and immune cell activation
(Cobanoglu et al., 2006). The analysis of common meta-gene
coexpression networks identified four modules, two of which
were significant. These modules were the most significant in the
current study based on the enriched functional terms related
to mastitis development. The brown module’s most essential
genes included PRDX5, RAB5C, ACTN4, and MAPK6. The
PRDX5 gene is expressed ubiquitously in tissues and protects
cells from oxidative stress by detoxifying peroxides (Knoops
et al., 2011). PRDX5 has been shown to play a critical role
in inflammation in mice by protecting cells from oxidative
stress (Argyropoulou et al., 2016). In addition, the PRDX5 gene
expression is increased in mastitis sheep milk (Pisanu et al.,
2015). RAB5C and MAPK6 genes were identified as candidate
genes for mastitis in dairy cattle following intramammary
infection with E. coli or S. uberis using a combination of
GWAS and DEG data analyses (Chen et al., 2015). The ACTN4
gene was identified as the DEG in mastitis vs. healthy samples
of sheep milk by transcriptomic analysis (Bonnefont et al.,
2011). Furthermore, ACTN4 was identified as a hub gene
in mastitis-related modules (Bakhtiarizadeh et al., 2020). On the
other hand, the turquoise module’s master genes were the CD53,
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FIGURE 8 | DT model using gain ratio criterion in healthy and mastitis samples.

ARHGEF2, andCOL9A1 genes.CD53 regulates cell development,
and its function has been implicated in mastitis disease (Rinaldi
et al., 2010). The results of a high-throughput analysis on infected
bovine mammary glands with E. coli indicated the ARHGEF2
gene’s importance (Bagnicka et al., 2021). The COL9A1 gene
has been implicated in research involving identifying genomic
regions and expression analysis of mastitis (Lu et al., 2020).

Several genes, including LOC407171, MT2A, LPCAT2,
CXCL3, SFN, IDH1, and ABCG2, were confirmed as essential
genes based on the outcome of the attribute weighting algorithm.
The LOC407171 gene is associated with the innate immune
response in beef cattle and has been identified as an up-regulated
gene in a dairy cow with E. coli mastitis (Li et al., 2019).
MT2A plays a role in stimulus response in the pathogenesis
of bovine E. coli in early lactation cows (Cheng et al., 2021).
LPCAT2 regulates the glycerophospholipid metabolism in
periparturient dairy cattle (Bakhtiarizadeh et al., 2020). CXCL3
is recognized as a proinflammatory cytokine in dairy cows
with experimentally induced S. aureus clinical mastitis (Peralta
et al., 2020). SFN was reported to regulate cell cycle progression
in bovine mastitis via genome-wide association (Miles et al.,
2021). IDH1 was identified as a candidate gene in the milk
transcriptome of dairy cattle implicated in innate immunity by
pathway and network analysis (Banos et al., 2017). ABCG2 gene,
which is regulated by the mammary gland, responsible for the

active secretion of several compounds into milk (Otero et al.,
2015).

The DT model identified the LOC407171 gene as a critical
player in mastitis disease in this study. LOC407171 has been
validated using an attribute weighting algorithm and a machine-
learning algorithm. In addition, SFN and IDH1 were identified
using attribute weighting and machine-learning techniques,
with IDH1, validated using WGCNA. Furthermore, ABCG2 is
recognized using weighted attributes, machine learning, and
WGCNA. In addition, machine learning, attribute weighting, PPI
network, and WGCNA were used to confirm PTPRC.

We examined possible changes in gene expression and
connectivity during mastitis, and it was concluded that genes
involved in the development, proliferation, and differentiation of
cells in the mammary gland, as well as genes involved in immune
system improvement, were primarily altered in their expression.

CONCLUSION

Because of the complexity of mastitis disease in dairy animals,
far more relevant research is required to identify biomarkers
associated with mastitis. The current study’s findings from meta-
analysis, WGCNA, and machine-learning approach allow us
to represent the primary contribution to our understanding
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of the most valuable genes for E. coli mastitis, which may
provide a more robust biosignature and thus serve as reliable
biomarker candidates in future studies. Our study suggests that
all identified genes affect mastitis disease via their immune
system–related functions.
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