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Purpose: Neuroimaging has demonstrated altered static functional connectivity in
patients with premature ejaculation (PE), while studies examining dynamic changes
in spontaneous brain activity in PE patients are still lacking. We aimed to explore the
reconfiguration of dynamic functional connectivity (DFC) states in lifelong PE (LPE)
patients and to distinguish LPE patients from normal controls (NCs) using a machine
learning method based on DFC state features.

Methods: Thirty-six LPE patients and 23 NCs were recruited. Resting-state functional
magnetic resonance imaging (fMRI) data, the clinical rating scores on the Chinese Index
of PE (CIPE), and intravaginal ejaculatory latency time (IELT) were collected from each
participant. DFC was calculated by the sliding window approach. Finally, the Lagrangian
support vector machine (LSVM) classifier was applied to distinguish LPE patients from
NCs using the DFC parameters. Two DFC state metrics (reoccurrence times and
transition frequencies) were introduced and we assessed the correlations between DFC
state metrics and clinical variables, and the accuracy, sensitivity, and specificity of the
LSVM classifier.

Results: By k-means clustering, four distinct DFC states were identified. The LPE
patients showed an increase in the reoccurrence times for state 3 (p < 0.05, Bonferroni
corrected) but a decrease for state 1 (p < 0.05, Bonferroni corrected) compared to
the NCs. Moreover, the LPE patients had significantly less frequent transitions between
state 1 and state 4 (p < 0.05, uncorrected) while more frequent transitions between
state 3 and state 4 (p < 0.05, uncorrected) than the NCs. The reoccurrence times and
transition frequencies showed significant associations with the CIPE scores and IELTs.
The accuracy, sensitivity, and specificity of the LSVM classifier were 90.35, 87.59, and
85.59%, respectively.

Conclusion: LPE patients were more inclined to be in DFC states reinforced
intra-network and inter-network connection. These features correlated with clinical

Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 721236

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.721236
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.721236
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.721236&domain=pdf&date_stamp=2021-09-13
https://www.frontiersin.org/articles/10.3389/fnins.2021.721236/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-721236 September 8, 2021 Time: 15:43 # 2

Lu et al. Dynamic FC in Premature Ejaculation

syndromes and can classify the LPE patients from NCs. Our results of reconfiguration
of DFC states may provide novel insights for the understanding of central etiology
underlying LPE, indicate neuroimaging biomarkers for the evaluation of clinical
severity of LPE.

Keywords: premature ejaculation, dynamic functional connectivity, reoccurrence times, frequent transitions,
classification

INTRODUCTION

Premature ejaculation (PE), classified as either lifelong PE (LPE)
or acquired PE, is considered one of the most common male
sexual dysfunctions (Laumann et al., 1999). According to a
large observational study, 25.80% of men complained of PE in
China (Gao et al., 2013). Defined as ejaculation within 1 min of
vaginal penetration (Serefoglu et al., 2014b), LPE has exerted a
significant psychological burden on men, their partners, and the
male/partner relationship (Rowland et al., 2007).

Despite the high prevalence and negative impacts of PE,
the mechanisms underlying the pathophysiology of PE have
not yet been entirely elucidated. It is well documented that
a complex interplay among 5-hydroxytryptamine2C (5-HT2C)
receptor hyposensitivity and/or 5-hydroxytryptamine1A (5-
HT1A) receptor hypersensitivity, genetic components, hormonal
factors, and urological conditions contributes to the disruption
of highly coordinated ejaculation processes and the lower
ejaculatory threshold of PE (Saitz and Serefoglu, 2015).

Magnetic resonance imaging (MRI) has been proven to be
an objective and effective approach to investigate the structural
and functional neural basis of PE. Previous neuroimaging studies
have reported several factors in PE patients: marked cortical
thickening over areas in the frontal, parietal, and occipital
lobes and the cingulate cortex (Guo et al., 2018); significantly
larger mean volume of the caudate nucleus (Atalay et al.,
2019); altered DTI structural connectivity of the fronto-cingulate-
parietal control network (Gao et al., 2018; Chen et al., 2021);
lower activation in the left inferior frontal gyrus and left insula,
and higher activation in the right middle temporal gyrus when
exposed to erotic picture stimuli (Zhang et al., 2017); widespread
increases in fractional anisotropy and axial diffusivity values in
the right posterior thalamic radiation, posterior corona radiata
and bilateral posterior limb of the internal capsule (Gao et al.,
2018); and decreased local efficacy in the left amygdala, right
pallidum, and thalamus, as well as decreased global efficacy in the
left amygdala and right rolandic operculum (Chen et al., 2020a).
In addition, studies focused on functional connectivity (FC)
in PE patients have observed decreased short-range functional
connectivity density (FCD) in the bilateral middle temporal
gyrus, left orbitofrontal cortex, and nucleus accumbens and
increased long-range FCD in the left insula, Heschl’s gyrus, and
putamen (Lu et al., 2018); decreased hypothalamus-seeded FC
in the left orbitofrontal cortex, bilateral insula, and superior
temporal cortex (Gao et al., 2020b); and weaker left inferior
frontal gyrus (IFG)-seeded FC in the left dentate nucleus and
right frontal pole (Yang et al., 2018). The aforementioned findings
suggested altered structural substrates and functional activities

of the cortical-subcortical pathways involved in ejaculation
processing in PE patients. These investigations may benefit the
understanding of the central pathological mechanism underlying
PE; however, the results are rarely consistent. This may be
partly attributable to the factor that ejaculation is a complex
process involving the functional segregation and integration
of widespread brain networks (Giuliano, 2011; Chen et al.,
2020c). Thus, it may be more appropriate to explore the
neural basis underlying PE from the perspective of functionally
coordinated brain networks.

Currently, the assessment of PE mainly depends on validated
questionnaires such as the Chinese Index of Sexual Function for
Premature Ejaculation (CIPE)-5 (Yuan et al., 2004), or patient-
reported intravaginal ejaculatory latency time (IELT) (El-Hamd
et al., 2019), which influenced by manual involvement and
potential bias. A study combining static FC (SFC) and machine
learning reported an accuracy of 0.895 ± 0.12 for distinguishing
LPE patients from normal controls (NCs) and concluded that
classification features of SFC might be helpful to discriminate
LPE patients and provide abnormal central functional targets in
LPE etiology (Xu et al., 2019). However, fMRI researchers have
been motivated by the perspective that the brain is inherently
a dynamic system (Hutchison et al., 2013; Allen et al., 2014).
Therefore, previous neuroimaging studies based on SFC may
be limited in their ability to reveal the dynamic changes in
spontaneous brain activity in PE patients. Instead, dynamic
functional connectivity (DFC) can exhibit highly structured
spatiotemporal patterns in which a set of metastable FC patterns,
known as DFC states, reliably recur across time and subjects
(Allen et al., 2014; Li et al., 2017). Altogether, DFC has been
suggested to be a more informative representation of functional
brain networks than SFC (Peraza et al., 2015; Schumacher et al.,
2019). DFC states have been suggested to be associated with
high levels of thought or consciousness (Hutchison et al., 2013),
flexible behaviour (Tognoli and Kelso, 2014), neuropsychiatric
disorders (Damaraju et al., 2014), and development (Hutchison
and Morton, 2015). Two commonly described measures in
DFC studies were reoccurrence times of distinct states and the
number of transitions between states, which have been suggested
significantly associated with neuropsychological, behavioral, and
clinical variables (Allen et al., 2014; Liu et al., 2017; Fiorenzato
et al., 2019). The latter could reflect neural metastability
at another level, that is, enabling multiple brain regions to
flexibly engage and disengage in coordination without being
locked into fixed interaction patterns (Li et al., 2017). Since
ejaculation is considered a coordinated activity associates with
both neuropsychological and behavioral pathways within the
neural circuits (Chen et al., 2020b), we speculated that such
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processes may require the flexible transitions between distinct
DFC states. Instead of the task fMRI data, we chose the resting
state fMRI data, our hypotheses were as follows: (1) certain DFC
state patterns and alterations in DFC state metrics (reoccurrence
times and transition frequencies) would be observed in LPE
patients; (2) the altered DFC state metrics would be associated
with clinical rating scale scores; and (3) the classifier based
on DFC state features could discriminate LPE patients from
NCs at a high accuracy. In the current study, we focused on
exploring the reconfiguration of DFC states in LPE patients
and tried to distinguish LPE patients from NCs using the
Lagrangian support vector machine (LSVM) classifier, which
based on the linearly convergent learning algorithm with high
accuracy, stable performance, and fast learning speed (training
time) (Mangasarian and Musicant, 2001; Czabanski et al., 2020),
based on the feature selection of DFC parametric.

MATERIALS AND METHODS

Subjects
From 2013 to 2016 in Nanjing Drum Tower Hospital, 36 right-
handed patients with LPE were recruited, and 23 NCs were
enrolled in this study. All the PE patients were recruited from
andrology department and the NC participants were recruited
from the community. Some data from the datasets have been
reported in our previous work (Zhang et al., 2017; Lu et al.,
2018). The ISSM guidelines were applied for the diagnosis of LPE
patients (Serefoglu et al., 2014a). More specifically, LPE patients
were characterized by (a) ejaculation that always or nearly always
occurs prior to or within about 1 min of vaginal penetration;
(b) the inability to delay ejaculation on all or nearly all vaginal
penetrations; and (c) negative personal consequences such as
distress, bother, frustration, and/or the avoidance of sexual
intimacy. Twenty three subjects were recruited as NCs, with self-
reported IELTs of more than three min. All the subjects were
in a stable relationship with the same, non-pregnant, sexually
active partner for at least 1 year. All participants completed the
International Index of Erectile Function (IIEF)-5 questionnaire
(Rhoden et al., 2002) to assess the erectile function, the CIPE-5
questionnaire (Yuan et al., 2004) (including 5 questions focused
on ejaculatory latency, sexual satisfaction, difficulty in delaying
ejaculation, and depression, with each question responding to on
a 5 point Likert-type scale). Participants with IIEF-5 score < 21,
reduced sexual desire, inhibited male orgasm, mental disorders,
systemic or neurological problems, physical illnesses which affect
ejaculatory function, abuse of alcohol, and any medical treatment
for PE in the past 6 months were excluded.

Image Acquisition
The imaging data were acquired with a 3T Achieva TX MRI
system (Achieva 3.0 T TX, Philips Medical Systems, Eindhoven,
Netherlands), and the detailed acquisition parameters of rs-fMRI
data were set as follows: field of view (FOV) = 192 × 192 mm2;
section thickness = 4 mm with no section gap; matrix = 64 × 64;
repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms; and
flip angle = 90◦. There were 12 dummy scans, then 230 volumes

were acquired followed. During rs-fMRI scanning, each subject
was asked to lie quietly with their eyes closed. In addition, we
acquired high-resolution 3D T1-weighted brain structural images
with the following parameters: TR = 7,600 ms; TE = 3,400 ms;
flip angle = 8◦; FOV = 256 × 256 × 192 mm3 and slice
thickness = 1 mm.

Image Preprocessing
Rs-fMRI data preprocessing was performed by the Data
Processing and Analysis for Brain Imaging (DPABI, vision 5.0)1

(Yan et al., 2016). Slice timing, realignment, nuisance regression
(white matter and cerebrospinal fluid signals and rigid-body
6 head motion parameters), and spatial normalization to the
standard Montreal Neurological Institute (MNI) echo-planar
imaging (EPI) template with a resampled voxel size of 3 × 3 × 3
mm3 were conducted for all 230 time points. We did not perform
global signal regression to avoid introducing distortions in the
time series data (Murphy et al., 2009; Anderson et al., 2011).
Then, the data were smoothed with an 8-mm full width at half
maximum Gaussian kernel, detrended to remove the linear trend
of time courses, and band-pass filtered (0.01–0.10 Hz voxel by
voxel) to reduce the effects of low-frequency drift and high-
frequency respiratory and cardiac noise. No participant was
excluded with head motion ≥ 3 mm/3◦. Two-sample t-tests
indicated no significant differences in the mean framewise
displacement (Jenkinson) (Jenkinson et al., 2002) between the
LPE and NC groups (0.090 ± 0.055 mm versus 0.087 ± 0.054 mm,
p = 0.856).

Dynamic Functional Connectivity
Network
Figure 1 shows the flowchart of the DFC network analysis in this
study. The main manipulations can be described as follows:

Sliding Window Approach
The Power 264 atlas (Power et al., 2011) was used to calculate
the DFC, which contains thirteen brain subnetworks, including
the auditory (AUD), cerebellar (CB), cingulo-opercular task
control (CON), dorsal attention (DAN), default mode (DMN),
fronto-parietal task control (FPN), memory retrieval (Mem),
sensory/somatomotor hand (Motor), visual (Vis), salience (SN),
subcortical (Sub), ventral attention (VAN), and other networks.
Here, we used the Power 264 atlas as a template, and the sliding
window approach (Barttfeld et al., 2015; Karahanoğlu and Van
De Ville, 2015) was applied to estimate the DFC network for
each subject, resulting in (264 × (264–1))/2 = 34,716 features. We
created tapered windows by convolving a rectangle (length = 22
TRs) with a Gaussian of σ = 3 TRs because previous studies have
shown that a window length of 22 TRs provided a good trade-
off between the quality of the functional network connectivity
estimate and the temporal resolution (Allen et al., 2014). The
onset of each window progressively slid in steps of 1 TR from that
of the previous one, resulting in 209 windows. In the calculations,
we also imposed an L1 penalty on the precision matrix (inverse of
the correlation matrix) to enhance sparsity (Smith et al., 2009).

1http://www.restfmri.net
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FIGURE 1 | Power 264 atlas (A) and the flowchart of the dynamic functional connectivity analysis (B). For these resting-state functional magnetic resonance imaging
data, we used the sliding window approach to obtain 209 time windows and clustered the windows for all participants by the k-means algorithm. The cluster
centroids and cluster membership assignments that were obtained for all the windows represented the state transition vector.

K-Means Clustering
Because the DFC patterns reoccur within the subjects across time
and the subjects, we applied the k-means algorithm to divide the
DFC windows into separate clusters (Allen et al., 2014; Barttfeld
et al., 2015). Before clustering, we estimated the variability in the
DFC across all pairs at each window, and subject exemplars were
chosen as those windows with local maxima in FC variance. Then,
we performed a k-means analysis on the set of all the subject
exemplars with random initialization of the centroid positions.
For this analysis, k = 4 was determined using the elbow criterion,
defined as the ratio of within cluster to between cluster distances
(Damaraju et al., 2014). The correlation distance function was
chosen because it is more sensitive to the DFC pattern, regardless
of magnitude (Allen et al., 2014). These resulting centroids were
then used as starting points to cluster the DFC windows for
all the subjects.

In this study, the properties of the DFC of each subject were
depicted by two metrics, the reoccurrence times for all DFC
states and the DFC transition frequencies between all the pairs
of the DFC states. For each subject, the reoccurrence times
for each DFC state were defined as the total number of DFC
windows assigned to that state, and the DFC transition frequency

counts how many times the DFC windows altered their allegiance
between a pair of two successive states (e.g., the transition
frequency between DFC state 1 and state 2 counted if the DFC
windows altered their allegiance from state 1 to state 2 or from
state 2 to state 1).

Feature Selection Lagrangian Support
Vector Machine-Based Classification
An LSVM method was applied to classify LPE patients from
NCs using the number of states, reoccurrence times and the
transition frequencies as features. The 10-folds cross validation
was adopted to evaluate the classification performance, which
provides a good estimation for the generalizability of the
classifiers, particularly when the sample size is small (Pereira
et al., 2016). The selection of the discriminative features and
elimination of the non-informative features has been widely
employed to boost classification performance (Dosenbach et al.,
2010; Dai et al., 2012). This study applied a nested 10-folds
cross validation using the outer loop to estimate classification
accuracy and the inner loop to determine the optimal feature
selection (Whelan et al., 2014; Hahn et al., 2015). The details
of this framework were described in a previous study (Vapnik,
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2013), including feature selection, LSVM implementation, and
evaluation of classification performance, and codes can be found
at https://github.com/ZaixuCui/HBM_Dyslexia_Classification.

Statistical Analysis
Age, body mass index (BMI), and clinical rating scale scores
were compared using two-sample t-tests, while education level
and marital status were calculated by chi-square tests. Group
differences in the reoccurrence times for each DFC state and
the transition frequencies between each pair of DFC states were
also estimated using two-sample t-tests. We further calculated
the Pearson’s correlations between DFC state metrics and clinical
variables of IELTs and CIPE scores. The associations between
DFC metrics and mean framewise displacement (Jenkinson)
were also assessed. Statistical analyses were performed with
SPSS version 21.0 (IBM Corp., Armonk, NY, United States),
and p < 0.05 was set as a statistically significant value.
Mann-Whitney U-test was used for the non-parametric tests.
Bonferroni corrections were applied for multiple comparisons.

RESULTS

Demographic and Clinical Data
Demographic, psychiatric, and behavioral features for the LPE
patients and NCs are listed in Table 1. As shown, the two
groups did not significantly differ in age, marital status, BMI,
or education level. The IIEF-5 scores also showed no significant
difference between the groups, indicating the preserved erectile
function in LPE patients. In contrast, the LPE patients showed
significantly lower CIPE scores (p < 0.01) and shorter IELTs
(p < 0.01) than NCs. Furthermore, the scores of each CIPE
question were also significantly lower in the LPE patients
than in the NCs.

Connectivity Patterns of the Dynamic
Functional Connectivity States
Figure 2 shows the centroids of the four DFC states. Briefly,
state 1 showed a predominance of moderate correlations
within most of the networks, especially the fronto-parietal
task control network (CON), default mode network (DMN),
somatomotor network (Motor), and Visual (vis) networks,
while weak connectivity between networks (Figure 2A). State
2 represented a highly connected state. The dorsal attention
network (DAN), Motor, Vis, and ventral attention network
(VAN) networks showed highly inter-network connection, while
the salience network (SN) and auditory network (AUD) networks
showed sparse inter-network connections with other networks
(Figure 2B). The connectivity pattern in state 3 resembled that
in state 1 but showed slightly increased strength within the
subcortical network (Sub), CON, Motor, and Vis networks, as
well as increased strength between the Sub, CON, and Motor
networks (Figure 2C). In state 4, the Sub, CON, Motor, and
Vis networks displayed both high inter-network and intra-
network connectivity, while other networks showed sparse inter-
network connections (Figure 2D). The number and proportion

of different states assigned to the LPE and NC groups are shown
in Table 2.

Group Differences in Dynamic Functional
Connectivity State Metrics and the
Correlations With Clinical Rating Scale
Scores
The two-sample t-tests indicated an increase in the reoccurrence
times for state 3 (p < 0.05, Bonferroni corrected) but a decrease
for state 1 (p < 0.05, Bonferroni corrected) in the LPE patients
compared to the NCs (Figure 3). In addition, the LPE group
showed significantly less frequent transitions between state 1 and
state 4 (p < 0.05, uncorrected), while more frequent transitions
between state 3 and state 4 (p < 0.05, uncorrected) (Figure 4).

As shown in Table 3, the reoccurrence times for state 1 were
significantly positively correlated with both CIPE scores and
IELTs (r = 0.437, p = 0.001; r = 0.452, p < 0.001, respectively,
Table 3) after Bonferroni corrections with adjusted α of 0.0025.
While the reoccurrence times for state 3 were negatively
correlated with CIPE scores and IELTs (r = −0.323, p = 0.013;
r = −0.342, p = 0.008, respectively) under uncorrected criteria.
Furthermore, the number of transitions between state 3 and state

TABLE 1 | Demographic and clinical data of LPE patients and NCs.

LPE (n = 36) NC (n = 23) Statistics p

Age (years)

Mean ± SD 27.61 ± 4.48 26.39 ± 4.11 1.053 0.297

Marital status (%)

Single/Married 52.78/47.22 60.87/39.13 0.373 0.541

BMI (kg·m−2)

Mean ± SD 23.81 ± 3.17 23.47 ± 2.95 0.413 0.681

Education level (%) 0.094 0.954a

Elementary 11.11 8.70

High school 38.89 39.13

University 50.00 52.17

IIEF-5 score

Mean ± SD 23.78 ± 1.31 24.17 ± 0.65 −1.344 0.184

CIPE

Total 9 (7, 10) 22 (20, 24) 828.00 <0.001

Q1 2 (1, 2) 5 (5, 5) 828.00 <0.001

Q2 1 (1, 1) 4 (3, 5) 828.00 <0.001

Q3 1 (1, 1) 4 (4, 5) 828.00 <0.001

Q4 1 (1, 1) 4 (4, 5) 828.00 <0.001

Q5 4 (2.25, 4) 5 (4, 5) 600.00 0.001

IELT (minutes)

Mean ± SD 0.80 ± 0.40 9.96 ± 4.47 −12.269 <0.001

The data from questionnaires were presented in terms of the mean scores (Mean)
and standard deviations (SD) in the lifelong premature ejaculation (LPE) and normal
control (NC) groups. Mann- Whitney U-test was used for IIEF score comparison,
data were presented in terms of the media (25th quartile, 75th quartile).
IIEF-5, International Index of Erectile Function-5; CIP, Chinese Index of Premature
Ejaculation; IELT: intravaginal ejaculatory latency time; BMI, body mass index.
aAccording to the years of education each subject accepted, they were classified
as elementary (0–9 years), high school (9–12 years), and university (>12 years)
education level.
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FIGURE 2 | Connectivity patterns of the dynamic functional connectivity (DFC) states. The centroids of the DFC states are shown above (A–D). The total number
and percentage of occurrences of each state are listed above each centroid. Sub, subcortical; CB, cerebellar; CON, cingulo-opercular task control; DAN, dorsal
attention; DMN, default mode; FPN, fronto-parietal task control; Mem, memory retrieval; Motor, sensory/somatomotor hand; Vis, visual; SN, salience; Aud, auditory;
VAN, ventral attention.

TABLE 2 | The number of windows in each state in the LPE and NC groups.

State 1 State 2 State 3 State 4 Sum

LPE 2,868 (38.12%) 972 (12.92%) 2,286 (30.38%) 1,398 (18.58%) 7,524

NC 2,668 (55.50%) 548 (11.40%) 976 (20.30%) 615 (12.80%) 4,807

Sum 5,536 1,520 3,262 2,013 12,331

LPE, lifelong premature ejaculation, n = 36; NC, normal control, n = 23.
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FIGURE 3 | Group differences in reoccurrence times of each dynamic
functional connectivity state. The reoccurrence times of each individual in the
lifelong premature ejaculation (LPE) and normal control (NC) groups are
presented in blue and khaki, respectively. For each group, the black line
indicates the mean reoccurrence times in that group, and the light gray
rectangle covers the data within one standard error above and below the
mean. The pairs of groups with asterisks indicate significant differences
between them: **p < 0.05, Bonferroni corrected.

4 showed negative correlations with CIPE scores (r = −0.272,
p = 0.037). No significant associations between DFC metrics and
mean framewise displacement (Jenkinson) were observed.

Classification Evaluation
The LSVM classifier accurately discriminated LPE patients from
NCs using the number of states, reoccurrence times and the
transition frequencies as features. Specifically, the accuracy,
sensitivity, and specificity were 90.35, 88.21, and 85.59%,
respectively. The permutation test revealed a level of p < 0.001 for
accuracy (Figure 5B), suggesting significantly higher prediction
accuracy than chance. The classification results are shown as a
receiver operator characteristic (ROC) curve using each subject’s
classification score as a threshold in Figure 5A. The area under
the curve (AUC) was 0.91, which was also significantly higher
than chance (p < 0.001), indicating excellent discriminative
power (Figure 5C).

DISCUSSION

To the best of our knowledge, this is the first study combining
DFC analysis and a machine learning classification approach to
investigate DFC characteristics in LPE patients and constructed
an optimal classifier to distinguish LPE patients from NCs. Our
findings suggested that (1) LPE patients were more inclined to
be in the DFC state with reinforced intra-network connectivity in
the Sub, CON, Motor, and Vis networks, as well as strong inter-
network connections among the Sub, CON, and Motor networks
compared to the NCs; (2) the DFC state measures of reoccurrence
times and transition frequency could reflect the severity of clinical
symptoms; and (3) the LSVM classifier based on DFC state
features could discriminate LPE patients from NCs at a high
accuracy of 0.85. This study may provide novel insights into the

FIGURE 4 | Group differences in the transition frequencies between the
dynamic functional connectivity states. The ticks on the horizontal axis
indicate the state transition pairs, e.g., “1–2” refers to the transitions between
state 1 and state 2. The state transition times of each individual in the lifelong
premature ejaculation (LPE) and normal control (NC) groups are presented in
blue and khaki, respectively. For each group, the black line indicates the mean
state transition times in that group, and the light gray rectangle covers the
data within one standard error above and below the mean. The pairs of
groups with asterisks indicate significant differences between them:
*p < 0.05, uncorrected.

TABLE 3 | Correlations between dynamic functional connectivity metrics and
clinical variables.

CIPE IELT

r p r p

Reoccurrence times

State 1 0.437 0.001** 0.452 < 0.001**

State 2 −0.037 0.779 0.008 0.953

State 3 −0.323 0.013* −0.342 0.008*

State 4 −0.110 0.407 −0.146 0.271

Transitions

State 1–state 2 0.054 0.684 0.091 0.493

State 1–state 3 −0.052 0.695 −0.020 0.882

State 1–state 4 0.223 0.090 0.230 0.080

State 2–state 3 0.052 0.698 −0.008 0.954

State 2–state 4 0.061 0.647 0.074 0.576

State 3–state 4 −0.272 0.037* −0.248 0.059

CIP, Chinese Index of Premature Ejaculation; IELT, intravaginal ejaculatory latency
time. **p < 0.0025 (Bonferroni adjusted α); *p < 0.05, uncorrected.

dynamic organization principles of brain networks underlying
LPE and pave the way for the accurate and automated diagnosis
of LPE. This study may help the clinical docker have a better
neuroimage mechanism understanding of the LPE disease.

In the present study, the k-means algorithm separated the
DFC windows into four distinct states across the entire group,
with each state showing a unique pattern as described above.
Consistent with previous studies (Kim et al., 2017; Viviano et al.,
2017; Fiorenzato et al., 2019; Schumacher et al., 2019; Gu et al.,
2020), the most frequently occurred state was a relatively sparse
connectivity pattern among the four states, that is state 1 in
the present study, characterized by moderate correlations within
most of the networks, while the absence of strong correlations
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FIGURE 5 | Classification results. The receiver operating characteristic (ROC) curve for the classifier using dynamic functional connectivity (DFC) state features
achieved an area under the curve (AUC) of 0.91 (A). Two histograms below are the permutation distribution of the accuracy (ACC; (B) and AUC (C) for the
feature-based classifier. The values obtained using the real labels are indicated by the arrows.

between networks, accounting for 44.89% of the total DFC
windows. State 1 showed a modularized profile dominated by
moderate intra-network connections and may represent the
baseline connectivity pattern that participant spent most of their
time in, while other states with strong connections may reflect
the neuropsychological processes (Viviano et al., 2017; Gu et al.,
2020), such as state 2 and state 4 in the present study. State 3,
accounted for 30.38% of the DFC states in LPE patients, while
20.30% in NCs, which may represent the LPE-related state.

From the perspective of the two metrics of DFC states,
we found that the LPE patients showed significantly fewer
reoccurrence times for state 1 while more reoccurrence times for
state 3 compared to the NCs. The connectivity pattern in state
3 was similar to the baseline state but showed slightly increased
strength within the Sub, CON, Motor, and Vis networks, as well as
more connections between the Sub, CON, and Motor networks.
The Sub network was believed to function in the dopaminergic
pathways and the brain’s reward circuitry to regulate emotional
and cognitive behavior (Holstege et al., 2003; Lu et al., 2018;
Atalay et al., 2019). Increased dopamine neurotransmission in the
subcortical regions might reduce the threshold of ejaculation in
PE patients (Chen et al., 2020b). We speculated that increased

strength within Sub network implied excessive activity of the
dopamine system. Dopamine-related neural activation facilitated
the occurrence of ejaculation (Saitz and Serefoglu, 2015), which
may be one of the pathological basis underlying LPE. The
Vis network is involved in the processing of visual input and
was reported to be associated with visual stimuli that induced
sexual arousal (Walter et al., 2008). Previous studies have shown
increased activation in the visual reward networks underlying the
higher sensitivity to explicit visual erotic stimuli in men than
women (Lee et al., 2015). We hypothesized that the strength of Vis
network connectivity could be related to the sensitivity changes
to visual stimulation in PE patients, which may contribute to
uncontrollable rapid ejaculation. The increased intra-network
connectivity of Motor network may be related to LPE patients
are more actively preparing for income stimuli in the resting
state. Meanwhile, ejaculation is a multidimensional experience
controlled by brain regions involved in the inhibitory processing
of sexual stimuli (Zhang et al., 2017). The increased central
neural circuitry in the CON network observed in the LPE patients
may enhance the inhibitory control over ejaculation, which may
serve in a compensatory way for the high sensitivity to sexual
stimuli. In addition, the connections between the Sub, CON,
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and Motor networks were enhanced in LPE patients, which
may indicate increased communication and interaction between
the excitatory and inhibitory pathways. These findings indicated
that the pathological and compensatory mechanisms coexist in
patients with LPE, resulting in LPE patients more inclined to
be in states with reinforced intra-network and inter-network
connectivity in the Sub, CON, and Motor networks.

In addition, the LPE patients showed a significantly less
transition frequency between state 1 and state 4, while more
transition frequency between state 3 and state 4. We speculated
that state 4, with both high inter-network and intra-network
connectivity in Sub, CON, DAN, Motor, and Vis networks, may
represent the complex neural circuits that partly accountable
for ejaculation. The fewer transitions between state 1 and state
4 in LPE patients may indicate the inability to flexibly switch
between the baseline state and the ejaculation state to transfer
information in a more energy-saving way (Gu et al., 2020).
Instead, the LPE patients showed more switches between state 3
and state 4, suggesting the tendency of more transitions between
the LPE-related state and the ejaculation state, as well as the high
energy-consuming information processing procedure. Notably,
the differences in transitions between states did not survive
Bonferroni corrections and future research will be needed to
confirm these results.

The correlation analyses between DFC state metrics and
clinical variables of CIPE scores and IELTs showed that more
reoccurrence times for state 1 were associated with higher CIPE
scores and longer IELTs. Instead, more reoccurrence times for
state 3 were associated with more serious clinical evaluation of
LPE, demonstrated by lower scores of CIPE and shorter IELTs.
Besides, the number of transitions between state 3 and state
4 was negatively correlated with CIPE scores. These findings
were supportive of the suggestion that alterations in DFC state
parameters may be cognitively or behaviorally relevant (Liu et al.,
2017; Fiorenzato et al., 2019; Gu et al., 2020). We speculated
that the two DFC state metrics introduced in the present
study could also reflect the clinical severity of LPE from the
perspective of objective neuroimaging markers. More specifically,
state 1 seemed to represent the central mechanisms of normal
ejaculation, while state 3, a core and specific state for LPE,
seemed to demonstrate the connectivity pattern of uncontrollable
rapid ejaculation. Taken together, these findings confirmed
the reconfiguration of rs-fMRI networks and underlined the
importance of DFC temporal properties in the evaluation of
clinical severity in LPE patients.

Currently, the diagnosis of PE mainly relies on behavioral
assessment of IELT, which is typically time-consuming and
highly depends on the accuracy of the time recorded by the
patient. In contrast, the automated neuroimaging-based machine
learning classification method could avoid manual involvement
and potential bias and provide valuable evidence of the neural
basis underlying LPE. The neuroimaging-based machine learning
classification method has previously been applied to a broad
range of studies (Cui et al., 2016; Plaschke et al., 2017; Spera
et al., 2019), but studies on DFC-derived features have rarely been
reported. Abrol et al. (2019) introduced a multimodal (structural
MRI and DFC) data fusion framework to predict Alzheimer’s

disease progression and found a significant improvement in
performance over unimodal prediction analyses. Sakoglu et al.
(2019) reported a higher accuracy of DFC-based classification
(0.95) than that based on SFC (0.81) for the identification of
cocaine dependence, suggesting the diagnostic value of DFC
metrics. In the present study, we used the DFC state of
each window as features to construct an optimal classifier
to distinguish the LPE patients from the NCs. The classifier
ended up with a relatively high classification accuracy of 0.85.
Therefore, the LSVM classifier based on DFC state features may
provide a tool help clinical doctor distinguish LPE patient from
NCs with an acceptable accuracy. Despite the advantages of
the neuroimaging-based machine learning classification method
mentioned above, it cannot be ignored that cranial MRI canning
is much more expensive than the self-recorded IELT. The idea
that introducing the LSVM classifier to clinical practice is
promising but still has lots of challenges.

Several limitations should be considered in the present study.
First, the DFC analysis was conducted in a small cohort; thus,
the generalization of our findings warrants further validation by
studies with large cohorts. Second, this study focused on LPE
patients, so whether the current results are applicable to other
types of PE is unknown. Caution should be exercised when
extrapolating our findings across other types of PE. Third, the
time points of rs-fMRI across different research centers may
be inconsistent, thus the diagnostic value of DFC measures
remains to be further validated by multicenter clinical studies.
Notably, the number of state reoccurrence times and transitions
between states contained many zero values, which may have an
impact on the correlations between DFC temporal properties and
clinical measures. Further, the alternations in DFC properties
in LPE patients compared to NCs may not totally attributable
to the neural basis of PE, since accompanying suffering,
frustration, dissatisfaction, and other psychological states may
also influence the results (Gao et al., 2020a). The findings
observed in the present study were exploratory results that need
further validation. Finally, other modality features should also
be included to make the classification more comprehensive.
Multimodal imaging data should be applied in classification
studies of PE in the future.

CONCLUSION

To conclude, this is the first study attempting to investigate
DFC temporal properties, with a focus on the reoccurrence times
and transition frequency, and diagnostic value of a machine
learning method based on DFC state features in LPE patients.
Importantly, LPE patients were more inclined to be in the state
characterized by slightly increased intra-network connectivity in
the Sub, CON, Motor, and Vis networks and increased inter-
network connectivity among the Sub, CON, and Motor networks,
which may provide novel insights for the understanding of
central neural basis underlying LPE. The associations between
DFC metrics and clinical variables may suggest neuroimaging
biomarkers for the evaluation of clinical severity of LPE.
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Furthermore, the LSVM classifier based on DFC state features
achieved a high accuracy of 0.85, which may pave the way for the
accurate and automated identification of LPE patients.
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