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Abstract: Reactive oxygen species (ROS) can be generated in mammalian cells via both enzymatic
and non-enzymatic mechanisms. In sperm cells, while ROS may function as signalling molecules
for some physiological pathways, the oxidative stress arising from the ubiquitous production of
these compounds has been implicated in the pathogenesis of male infertility. In vitro studies have
undoubtedly shown that spermatozoa are indeed susceptible to free radicals. However, many reports
correlating ROS with sperm function impairment are based on an oxidative stress scenario created
in vitro, lacking a more concrete observation of the real capacity of sperm in the production of ROS.
Furthermore, sample contamination by leukocytes and the drawbacks of many dyes and techniques
used to measure ROS also greatly impact the reliability of most studies in this field. Therefore, in
addition to a careful scrutiny of the data already available, many aspects of the relationship between
ROS and sperm physiopathology are still in need of further controlled and solid experiments before
any definitive conclusions are drawn.

Keywords: dihydroethidium; lucigenin; luminol; tetrazolium salts; NADPH oxidase;
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1. Introduction

The history of the relationship between reactive oxygen species (ROS) and spermatozoa starts with
some fundamental experiments conducted by John MacLeod in 1943 [1]. Considering the knowledge
accumulated till the present day, it is assumed that ROS, in high enough concentrations, can trigger
peroxidative damage by the generation of reactive aldehydes, which are detrimental to cell function.
This perception was demonstrated in different ways. However, in most studies, the negative effect of
ROS on sperm quality was observed following external addition of ROS or exposure to ROS-generating
in vitro systems, thus diverging from a physiological scenario. In this review, we discuss the many
challenges in this field, including the various pitfalls associated with the techniques used for measuring
ROS, which make it difficult to ascertain whether these compounds are a major factor contributing to
male infertility or just metabolites playing a passive role. Nonetheless, novel and better methods for
measuring ROS together with the current understanding of the pathways associated with peroxidative
damage will certainly allow new insights into the involvement of oxidative stress in sperm function
and male infertility.

2. The Foundation of the Link between ROS and Human Sperm

The earliest citation of the presence of ROS in spermatozoa comes from the laboratory of John
MacLeod [1]. In 1943, MacLeod [1] decided to test the prevailing knowledge that the metabolism of
human spermatozoa was exclusively dependent on glycolysis and that oxygen consumption was “being
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of such small magnitude that it could not properly be interpreted as true respiration” (cited from MacLeod [1]).
Therefore, to investigate the existence of mitochondrial activity, MacLeod [1] used methylene blue as
a redox sensor and observed that human sperm can reduce either glucose or succinate. In the case
of succinate, the reduction of methylene blue is likely a consequence of the production of FADH2 in
the presence of succinic dehydrogenase (or electron transport chain Complex II), an enzyme of the
mitochondrial respiratory complex that oxidizes succinate into fumarate. In addition, the oxidation
of p-phenylenediamine by sperm cells was also observed in MacLeod’s experiments, indicating the
presence of cytochrome b, cytochrome c and cytochrome c oxidase. As such, this was the first evidence
that sperm cells have indeed mitochondrial activity, or as better phrased by MacLeod, that they present
an “active cytochrome” system.

Following these first observations, MacLeod [1] further examined the impact of high oxygen
levels on sperm cells. For this purpose, he incubated human sperm in a 95% oxygen environment at
38 ◦C. Under these conditions, a drastic reduction in sperm motility occurred over time, which was
completely prevented when the experiment was repeated in the presence of catalase, an enzyme that
converts hydrogen peroxide (H2O2) into water and oxygen [1]. The notion here is that when forced to
use oxidative phosphorylation, a toxic by-product is created in the form of H2O2. In fact, as revealed
later by others, up to 0.2% of the oxygen used during mitochondrial respiration undergoes incomplete
reduction, forming superoxide anion (O2•

−), which quickly reacts (dismutation) producing H2O2 [2]
(for details see Figure 1). The latter can be fully reduced to water or may form oxygen radicals, such as
the hydroxyl radical (•OH), that are subsequently detrimental to sperm. Thus, the fundamental
concept that ROS can negatively affect spermatozoa function was laid [3–6].

MacLeod [1] reasoned that spermatozoa were the major source of ROS, but later reports showed
that leukocytes within sperm samples, a common feature among human ejaculates, were also involved
in ROS production [7–9]. Leukocytes contain an NADPH-oxidase (NOX) that catalyses the production
of O2•

− by the oxidation of NAD(P)H [10]. The O2•
− is then used to generate a wide range of reactive

oxidants, with the main purpose of killing invading microorganisms [10]. However, this enzyme is so
active that spermatozoa can be immobilised by as little as 6 × 105 stimulated leukocytes [8].

Motivated by the observations on the NOX activity of leukocytes, Whittington and Ford decided
to reinvestigate the impact of high oxygen levels (i.e., 95% O2 and 5% CO2 versus 95% N2 and 5% CO2)
using MacLeod’s methodology. However, this time, sperm samples were freed of leukocytes following
purification by Dynabeads [11]. Of interest, the leukocyte-free sperm populations were less affected by
the high oxygen tensions and remained motile for over 6 h, showing only a reduction in curvilinear
velocity. This finding clearly raises the question of whether sperm produce enough ROS to cause any
significant cell damage.
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Figure 1. Possible mechanisms by which sperm cells may generate reactive oxygen species (ROS): (1) As
a by-product of the oxidation of arachidonic acid (AA), which may be promoted by cyclooxygenases
and lipoxygenases, such as arachidonate 15-lipoxygenase (LOX-15); (2) Through the stimulation
of NADPH-oxidase (NOX) activity by AA itself or by their oxidation-generated metabolites, being
15-hydroperoxyeicosatetraenoic acid (15-HpETE) and 15-hydroxyeicosatetraenoic acid (15-HETE)
potential inducers; (3) Generation by an NOX system, such as NADPH-oxidase isoform 5 (NOX5),
which is embedded in the plasma membrane and is activated through an EF-hand Ca2+ binding
domains; (4) Generation by the mitochondrial electron-transport chain, with the electron leakage within
the ubiquinone binding sites in complex I (CI) and in complex III (CIII) being the most important
mechanisms. Cat: catalase; CyC: cytochrome C; GPx: glutathione peroxidase; PLA2: phospholipase
A2; Prx: peroxiredoxins; Q: ubiquinone; SOD: superoxide dismutase.

2.1. Spermatozoa and Their Susceptibility toward ROS

Regardless of the ROS source, the work developed by John MacLeod inspired a generation
of andrologists to look at the susceptibility of spermatozoa towards these metabolites. Arguably,
Thaddeus Mann was one of the first to realize the clinical significance of this association. In a landmark
paper with Roy Jones and Dick Sherins, published in 1978, sperm cells showed motility loss when
exposed to either exogenously introduced fatty acid, previously treated with UV light, or peroxidation
of endogenous sperm phospholipids, induced by ascorbate and ferrous sulphate [12]. Both treatments
are known to catalyse the oxidation of unsaturated fatty acids, forming unsaturated aldehydes such as
acrolein, malonaldehyde (MDA) or 4-hydroxy-2-nonenal (4-HNE) [13]. Indeed, MDA production was
confirmed by Jones et al. [12] using the thiobarbituric acid reacting substances test (TBARS). The active
aldehydes formed by ROS can react with proteins through a Michael-type addition, particularly with
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the sulfur atom of cysteine, the imidizole nitrogen of histidine and the amine nitrogen of lysine [14].
Importantly, the toxic effect exerted by the covalently bounded aldehydes depends on the role of the
adducted residue (e.g., protein structure and/or function) [15].

Currently, evidence shows that 4-HNE, a by-product of lipid peroxidation, can impair
the activity of enzymes from the glycolytic and oxidative phosphorylation pathways, such as
glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) [16] and cytochrome-c oxidase [17]. In addition,
4-HNE has the potential to form adducts with A-kinase anchor protein 4 (AKAP4) and dynein heavy
chain [18], two proteins involved in sperm motility [19,20]. These findings could explain the two main
points observed by Jonas et al. [12], i.e., that sperm motility is impaired by reactive aldehydes and
that necrozoospermic samples have higher MDA levels. Regardless of the adducts formed, the work
developed by Jones et al. [12] appears to have sparked a major interest in the field of “ROS and defective
spermatozoa” and, for the first time, offered a mechanism into why men may become infertile.

Following these initial observations, other reports have clearly confirmed that both ROS and
aldehydes are detrimental to sperm function. However, something easily overlooked is the fact that most
of the approaches within this theme use an exogenous source of ROS/aldehyde or force spermatozoa
to generate ROS. For instance, much of the early work, reporting sperm motility loss, involved the use
of exogenously added ascorbate plus ferrous ion [12,21–24], which induces the production of O2•

−,
H2O2 and •OH. Other examples include the addition of exogenous xanthine–xanthine oxidase [25–29],
H2O2 [24,26,30,31], glucose and glucose oxidase [30], nitric oxide radical [32], menadione [24,33] and
unsaturated aldehydes (acrolein, 4-HNE and MDA) [18,34–36]. All of these methods were shown to
be detrimental to spermatozoa by the same pathway investigated by Jones et al. [12], in which the
aldehydes formed by oxidation of unsaturated fatty acids lead to inhibition of sperm motility.

Although the external addition of the aforementioned compounds clearly affects sperm function,
what remains a challenge to the field is the significance of this finding when we consider only the level
of lipid peroxidation that occurs spontaneously in vitro and, most importantly, in vivo. Early studies
with rabbit, mouse and human sperm have shown that spontaneous lipid peroxidation, based on
MDA measurements, occurs at a slow rate, and factors such as temperature, oxygen tension and
medium composition may greatly interfere [37–40]. In a work performed with stallion, the percentage
of sperm naturally expressing 4-HNE increased from 53% to 86% over a 24 h incubation period under
aerobic conditions [41]. In accordance, after 24 h, a slight increase in lipid peroxidation was detected
in human sperm using the probe C11-BODIPY(581/591) [34]. These increments in lipid peroxidation
were accompanied by a loss in sperm motility, which may limit sperm lifespan within the female
tract [37–39,41]. Of interest, the lifetime of human sperm (i.e., time for complete loss of motility) was
shown to be highly correlated with their level of superoxide dismutase (SOD) activity (r = 0.97) [40],
strongly suggesting that peroxidation involving O2•

− may play a major role in motility loss over
time. Nevertheless, Aitken et al. [42] observed that SOD levels on both low- and high-density sperm
populations, following Percoll separation, were negatively correlated with total motility after 24 h of
incubation (r = −0.303 and r = −0.338, respectively). Although SOD activity was measured by different
methods, one with acetylated ferricytochrome [40] and the other with lucigenin [42], this might not
account for the contrasting data.

2.2. Polyunsaturated Fatty Acids Quantity and Sperm Susceptibility

It is quite clear that sperm motility is affected by ROS despite their source, and most likely this is
related to lipid peroxidation. The question that arises from this observation is: Why are spermatozoa
vulnerable in this regard? One argument put forward is that “mammalian spermatozoa membranes are
very sensitive to free radical-induced damage” (cited from [43]) due to their high level of polyunsaturated
fatty acids (PUFA). In whole ejaculates, the overall PUFA content in spermatozoa is between 36% and
39%, while in Percoll-purified sperm, this level reaches 48–52% of the total fatty acids [44]. This clearly
demonstrates that spermatozoa are within the range of other PUFA-enriched tissues such as brain,
retina and placenta (around 35%, 37% and 44% PUFA, respectively) [45–47]. In general, the hydrogen
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of the bisallylic methylene group (i.e., between two double bonds) has a weak bond energy (around
75 Kcal/mol) when compared to the ones present in allylic methylene groups and methylene groups
that show bond dissociation energy of approximately 88 and 101 Kcal/mol, respectively [48,49].
Considering that bisallylic carbons are only present in PUFA, this intrinsic characteristic makes them
more prone to peroxidation than monounsaturated and saturated fatty acids, therefore increasing the
susceptible of PUFA-rich membranes such as those of sperm cells.

The most abundant PUFA in Percoll-purified human sperm was shown to be docosahexaenoic
acid (DHA, 22:6n-3), followed by arachidonic acid (AA, 20:4n-6) and linoleic acid (LA, 18:2n-6), with
around 34.5%, 10.5% and 6.5% of the total fatty acids, respectively [44]. Likewise, DHA is also the
predominant PUFA in ruminant sperm cells [50,51]. High concentrations of DHA are also found in rod
photoreceptors [52] and synaptosomes [53], where they likely modulate membrane properties, including
“fluidity”, flip-flop, membrane fusion and vesicle formation (reviewed by [54]). These properties are
also known to be important for sperm function, thus making DHA a crucial membrane component for
this cell type. To demonstrate its importance, Roqueta-Rivera and colleagues [55] showed that male
mice depleted of the delta-6 desaturase enzyme, which participates in the synthesis of AA and DHA,
have impaired fertility that can only be restored upon oral supplementation of DHA. Of interest, DHA
presents higher oxidisability when compared to LA and AA due to their greater amount of bisallylic
methylene groups [56]. Therefore, the benefits of having a singular high amount of DHA come at the
expense of making sperm even more susceptible to lipid peroxidation.

The main α, β-unsaturated aldehyde formed by non-enzymatic oxidation of DHA is
4-hydroxy-2-hexenal (4-HHE), whereas the n-6 PUFA (e.g., LA acid and AA) generate 4-HNE [57].
These 4-hydroxyalkenals are very reactive and may serve as second toxic messengers, thus mediating the
detrimental effects of oxidative stress upon sperm cells. For instance, even at femtomolar concentrations,
4-HHE is capable of inducing transition pore opening in mitochondria [58], which could be responsible
for sperm motility loss and apoptotic changes [59,60]. However, despite its likely importance, the level
of induced or spontaneous in vitro production of 4-HHE has never been examined in human sperm
cells, yet it would theoretically be a more sensitive marker of oxidative stress. In contrast, 4-HNE
has already been assessed and associated with a concomitant motility loss in stallion and human
sperm [18,34,61,62].

Another by-product of the non-enzymatic oxidation of both n-3 and n-6 PUFA is the 3-carbon
aldehyde MDA [63]. Although less toxic than 4-HNE, MDA is often used as a biomarker of lipid
peroxidation due to its facile reaction with thiobarbituric acid. Nevertheless, the reliability of the TBARS
test has been questioned by many, with one article stating that the “MDA assay is not able to provide
valid analytical data for biological samples due to its high reactivity and possibility of various cross-reactions
with co-existing biochemicals” [64]. Certainly, MDA levels have been found to be higher within infertile
sperm [23,65–67], but the TBARS test has been used in all cases and, hence, further work is necessary
to confirm these findings.

2.3. Leukocytes and Their Contribution to ROS Generation

Throughout the history of the relationship between ROS and sperm function, many have argued
in favour of the hypothesis that the presence of seminal leukocytes is a confounding factor [68–71].
In this regard, reports correlating the number of white blood cells (WBC) within ejaculates and sperm
dysfunction have shown both positive [68,69] and negative [72,73] correlations. In an intriguing study
run by Harrison et al. [74], fertile men (i.e., fathered within 12 months) showed great variation in WBC
counts, ranging from 0.5 to 16 × 106/mL of semen. It is worth mentioning that many of these fertile
men were within the 95th percentile range of the WHO criteria that define leukocytospermia (i.e.,
more than 1 × 106 WBC/mL) [75]. On the other hand, within infertile men, the reported prevalence of
leukocytospermia based on this cut-off value varies from 10% to around 20% [69,76]. These results show
that leukocytospermia is not a strictly limiting factor for male fertility. In fact, Kaleli et al. [70] stated
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that “leukocytospermia may have a favorable effect on some sperm functions at seminal leukocyte concentrations
between 1 and 3 × 106/mL”.

Data regarding the impact of leukocyte on semen quality are always difficult to interpret because
it is hard to predict: (1) when these cells had entered the seminal compartment; (2) whether they
were activated; and (3) when and how they were activated. Normally, spermatozoa only encounter
a large number of WBC upon ejaculation, and significant numbers of leukocytes are rarely seen in
the lumina of the seminiferous or epididymal tubules [77]. In addition, upon ejaculation, when WBC
generally contact sperm cells, seminal plasma is also present, thus protecting sperm with its antioxidant
compounds [78,79]. Nevertheless, as soon as seminal plasma is removed, leukocytes may damage the
spermatozoa, a tendency easily verified by the strong association between the presence of leukocytes
in washed sperm preparations and in vitro fertilization (IVF) rates [80].

3. The Free Radical-Generating Systems in Sperm

One question still pending concerns the exact nature of the enzymatic systems responsible for
free radical production in sperm cells (Figure 1). In a major review by Agarwal et al. [81], the authors
indicate two ways spermatozoa may generate ROS, being: (1) an NADPH-oxidase system embedded
in the plasma membrane [82]; and (2) an NADH-dependent oxidoreductase (diaphorase) at the level of
mitochondria [83].

3.1. The Potential for an NADPH–Oxidase System in Sperm

The NOX hypothesis for sperm was conceived on the basis of two main observations. Firstly,
ionophore A23187 was shown to increase the ROS-dependent chemiluminescent signal of either
oligozoospermic samples [84] or capacitated sperm [85], indicating the action of a Ca2+-dependent
NOX. Secondly, the addition of NAD(P)H to sperm suspensions can generate a dose-dependent increase
in luminol–peroxidase signal and in nitro blue tetrazolium (NBT) reduction, indirectly suggesting O2•

−

production [86,87]. In line with this theory, the NAD(P)H-dependent lucigenin signal was effectively
inhibited by the addition of copper, zinc, diphenyleneiodonium (DPI) and SOD [86–89].

Following these previous observations, studies performed on equine and human sperm presented
the NADPH-oxidase isoform 5 (NOX5) as one potential candidate for the ROS-generating system
(Figure 1) [90–92]. This NOX isoform contains EF-hand Ca2+ binding domains, being activated by
Ca2+ [90,93]. The mRNA expression of NOX5 is first detected in pachytene spermatocytes (human [90]),
whereas the protein can be visualized in the developing spermatid (equine [91]). In human spermatozoa,
a NOX5 antibody demonstrated cross-reactivity in the flagellum, neck and acrosome regions [92], with
higher reactivity in asthenozoospermic men [94]. Additionally, Armstrong et al. [95] demonstrated
that sperm NOX5 has a lower ROS-producing capacity when compared to WBC, and its activation
is probably independent of protein kinase C. Despite these results, some points have not yet been
satisfactorily addressed by previous reports, such as the possibility of leukocyte contamination in
sperm samples, discrepancies in molecular weight and a lack of mass spectrometry evidence on the
abundance of NOX5 in sperm [96–98]. Additionally, NOX5 is not found in rodents, which limits deeper
pathophysiological studies.

Furthermore and in contrast to the results presented so far, the addition of NAD(P)H was
also reported not to stimulate O2•

− production when the superoxide-dependent probe 2-methyl-6-
(p-methoxyphenyl)-3,7-dihydroimidazo [1,2-a] pyrazine-3-one (MCLA) [99] and the electron spin
method [100] were used, therefore questioning the existence of a NOX activity in sperm.

This contradiction was later elucidated when our laboratory successfully identified the enzymes
responsible for the NAD(P)H-dependent lucigenin signal as cytochrome p450 reductase (CP450R) [101]
and cytochrome b5-reductase (Cb5R) [102]. CP450R (acting preferably on NAD(P)H) and Cb5R (with
higher affinity for NADH) are both capable of a direct one-electron reduction of either lucigenin
(Figure 2) or tetrazolium salts (e.g., NBT and WST-1) (Figure 3), thus easily explaining why these
probes can evoke a signal with NAD(P)H, whilst other methods had failed (i.e., MCLA and electron
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spin resonance). In addition, the reduction of lucigenin and tetrazolium salts by these enzymes
forms unstable radicals that may also produce O2•

−, which are essential for signal generation
(Figures 2 and 3; for more detail see [101] and [102]). Due to the latter, SOD has the ability to inhibit
the NAD(P)H-dependent lucigenin chemiluminescence and the tetrazolium salt formation generated
by CP450R and Cb5R (Figures 2 and 3). Unfortunately, this inhibition by SOD is similar to the one
expected when ROS is generated by NOX activity. Furthermore, like NOX, CP450R and Cb5R are also
flavoproteins and, therefore, susceptible to DPI inhibition (Figures 2 and 3). Taken together, these
inhibition tests are not suitable to differentiate whether the lucigenin and the tetrazolium salt signals
were generated by cytochrome and/or NOX activity.Antioxidants 2019, 8, x FOR PEER REVIEW 7 of 18 
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Figure 2. The pathways involved in lucigenin (bis-N-methylacridinium nitrate) chemiluminescence.
(1), Lucigenin (Luc2+) can be reduced to the lucigenin cation radical (LucH•−) by flavoprotein reductases,
including cytochrome b5-reductase (Cb5R) and cytochrome p450 reductase (CP450R). LucH•− can
be autoxidize back to lucigenin resulting in the production of (superoxide anion) O2•

−, or (2) can
react with O2•

−, forming lucigenin dioxetane (LucO2.) The latter spontaneously decomposes into
N-methylacridone (NMA) that generates the chemiluminescence signal. Note that the signal can be
abolished by diphenyleneiodonium (DPI) (3), which inhibits flavoprotein reductases, and by superoxide
dismutase (SOD) (4), which consumes the O2•

− necessary for the formation of LucO2
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Figure 3. Chemical pathways for the 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H
tetrazolium monosodium salt (WST-1) assay. WST-1 can be reduced by electron transport from NADH
via flavoprotein reductases, such as Cb5R and CP450R (1), forming the WST-1 radical (WST-1H•).
The latter goes through disproportionation (2), which generates the reduced soluble purple formazan
product (WST-1H2) detected by spectrophotometry methods. Notably, WST-1H•may also react with
molecular oxygen, forming O2•

− (3). The generation of WST-1H• can be prevented by the addition of
DPI (4), a flavoprotein inhibitor. Likewise, SOD (5) may inhibit the formation of WST-1H2, because the
reduction of O2•

− concentration by SOD increases the autoxidation of WST-1H•, therefore reducing
the latter’s availability for the formation of WST-1H2.

3.2. Other Enzymatic Sources of ROS in Sperm

Given the compelling pieces of evidence supporting the importance of ROS in sperm
physiopathology, studies are still needed in order to determine the involvement of other sperm
enzymes in the production of O2•

−. Besides NOX, the oxidative metabolism of AA, the second most
abundant PUFA in human sperm cells [44], by cyclooxygenases (COX) and lipoxygenases (LOX) is
also an important ROS-generating source. In this case, ROS can be generated as a by-product of AA
oxidation [103] and/or as a result of NOX activation by either AA itself [104,105] or its LOX- and
COX-generated metabolites [106,107] (Figure 1). The connection between LOX metabolites and ROS
generation by NOX may be true for sperm cells. For instance, in mice germ cells, the inhibition of the
isoform 15-LOX by PD146176 resulted in the reduction of ROS production within these cells [108].
Although not further investigated by Bromfield et al. [108], a study developed with Jurkat cells reported
that 15-LOX metabolites may be involved in NOX stimulation [109].

3.3. Sperm Mitochondria and ROS Generation

In mammalian cells, another potential enzymatic source of ROS is the mitochondrial
electron-transport chain. Under normal conditions, around 0.1–0.2% of the electrons passing
the respiratory chain may leak and react with oxygen molecules, mainly forming O2•

− [110].
Electron leakage may occur in several sites within the respiratory chain, being the ubiquinone binding
sites in complex I (Q-binding site; O2•

− is produced on the matrix side) and in complex III (Qo site;
O2•

− is produced in the intermembrane space) the most important ones [111,112] (Figure 1). In sperm,
the specific inhibition of electron transport in complex I (by rotenone) and complex III (by antimycin-A)
showed that these cells are also capable of producing ROS in these mitochondrial sites [113]. However,
it is still unclear whether the ROS produced by mitochondria exerts specific physiological and/or
pathological roles in sperm. For equine sperm, mitochondrial ROS were reported to positively correlate
with sperm motility and velocity, probably due to an intense oxidative phosphorylation activity [114].
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Nevertheless, contrasting with the equine species, human spermatozoa greatly rely on glycolysis
for ATP production, with little contribution of oxidative phosphorylation [115]. For this reason,
the interference of mitochondrial ROS in human sperm function may be less obvious. Of interest,
defective human sperm have been shown to spontaneously generate mitochondrial ROS to a point
that sperm motility may be affected [113].

4. ROS Measurement Techniques and Their Reliability

Throughout the literature on sperm and ROS, many statements and theories are still controversial
and in need of re-examination and rectification. In part, this is due to some limitations and drawbacks
which may be seen with the techniques and probes commonly used to evaluate ROS in living cells.
Currently, no probe offers an unbiased measurement of ROS, with an ideal high reactivity and specificity
for one ROS species. Importantly, this leads to a scenario in which unrealistic conclusions about the
relationship between ROS and sperm function can be made. An extensive discussion on this theme
can be found elsewhere (see [116]). In this review, we will limit the discussion to the probes that are
more commonly used in the field of spermatology (Table 1).

Table 1. Characteristics and limiting factors of the probes commonly used to detect ROS in sperm cells.

Probe Method Characteristics and Limiting Factors

Tetrazolium salts Colorimetric

Nitro blue tetrazolium (NBT) is the most commonly used one
Low sensitivity to detect ROS
Low specificity for O2•

− detection, with various intracellular
reductases being able to generate the same response
Autoxidation can generate O2•

−

Lucigenin Chemiluminescence

More specific for extracellular O2•
−

Inability to detect O2•
− at low level

Low specificity for O2•
− detection. Signal can be triggered by

various nucleophiles and reducing agents, being sensitive to
changes in the reductase activity within the tested systems.
Reduced radical can generate O2•

−

Luminol/HRP Chemiluminescence

Allows the detection of both intra- and extracellular ROS
Reacts with several electron-donor compounds, showing
indiscriminate recognition of numerous free radicals
The luminol radical formed by various univalent oxidants can
form O2•

− through autoxidation
Susceptible to various interferences in biological systems,
such as poor ROS detection at neutral pH and absorption of the
emitted light (400 nm) by some biomolecules

DHE
Fluorescence
HPLC and
LC–MS

Used to detect intracellular O2•
−

Highly specific for O2•
− detection, producing

2-hydroxyethidium (2-OH-E+); however, the majority of DHE
reacts with other oxidants, resulting in the production of
ethidium (E+)
Both by-products of non-specific (E+) and specific (2-OH-E+)
oxidation have overlapping fluorescence properties, thus not
allowing distinction by fluorescence methods.
For specific O2•

− quantification, 2-OH-E+ must be measured by
techniques such as HPLC and LC-MS

Dihydroethidium (DHE); high-performance liquid chromatography (HPLC); horseradish peroxidase (HRP); liquid
chromatography–mass spectrometry (LC-MS); superoxide anion (O2•

−).

4.1. Lucigenin and Tetrazolium Salts

The use of NAD(P)H in conjunction with either lucigenin or tetrazolium salt techniques has
been previously discussed here in Section 3.1. In this case, the main concern is that several tissue
reductases, including sperm cytochromes (CP450R and Cb5R) [101,102], can reduce both probes
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and, therefore, lead to artefactual NAD(P)H-dependent reduction and the generation of O2•
− by

autoxidation [117,118] (Figures 2 and 3). However, despite these consistent factors, many studies
have used this approach to indirectly report the presence of O2•

− in sperm and further correlate it
with semen quality [119–121], capacitation [122], hyperactivation [123], DNA integrity [120,124,125],
apoptosis [120], IVF outcomes [121], among others. Yet, caution and a deep understanding of the
limitations of both detection methods must guide the interpretation of these data.

4.2. Luminol/HRP

Luminol (5-amino-2,3-dihydro-1,4-phthalazine-dione) present the advantage of having a high
sensitivity and the capacity to detect both intra- and extracellular ROS [82,118]. To react with O2•

−,
luminol is first converted into an intermediate radical by a one-electron oxidation normally mediated
by H2O2 [126,127] and enhanced by the addition of horseradish peroxidase (HRP) [82,128] (Figure 4).
One major limitation is the fact that the luminol radical reacts not only with O2•

− but also with various
compounds capable of donating an electron [126,127], thus showing indiscriminate recognition of
several free radicals. In addition, other complex and difficult-to-control factors, such as the formation
of O2•

− by the luminol radical, may influence the chemiluminescence of this probe [118,127,129].
Therefore, according to Zhang and colleagues [118], it is “unwise to monitor the dynamics of free radical
generation in cells or systems with this probe alone”.
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Figure 4. Chemical reactions responsible for luminol chemiluminescence. Luminol is first oxidized
by many radicals (e.g., •OH and CO3•

−, except O2•
−) and peroxidases, forming the luminol radical

(L•−) (1). L•− then reacts with O2•
−, forming the short-lived intermediate hydroperoxide (2). Molecular

oxygen may be reduced to O2•
− by L•− (3), with a rate around seven orders of magnitude lower

than that for reaction (2), resulting in the production of 5-aminophthalazine-1,4-dione. The latter
may also form the intermediate hydroperoxide by the addiction of hydrogen peroxide anions (4).
The intermediate hydroperoxide is quickly decomposed to 3-aminophyhalane in an excited state (5),
which emits light on relaxation to the ground state (6).

Previous studies have used the luminol-based technique to suggest that pathological spermatozoa
(e.g., amorphous heads, damaged acrosomes and retained cytoplasmic droplets) generate higher
amounts of ROS than their normal counterparts [130,131]. Nevertheless, one possible interpretation
for these data is that luminol–HRP reacts with sperm containing luminol-reactive metabolites not yet
specified. This is reinforced by the fact that the retention of an excess of residual cytoplasm, a common
feature of abnormal sperm, is associated with higher ROS measurements [132]. It is important to note
that the excess of residual cytoplasm may contain higher amounts of the metabolites responsible for
luminol signal, therefore not directly related to ROS production.
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4.3. Dihydroethidium

Dihydroethidium (DHE), also called hydroethidine (HE), has been branded as a superoxide
indicator and, when combined with the hexyl triphenylphosphonium cation (MitoSOXTM Red),
it can specifically detect mitochondrial ROS. Oxidation of DHE by intracellular O2

•− forms
2-hydroxyethidium (2-OH-E+), that emits a red fluorescence with excitation at 510 nm [133]
(Figure 5). However, DHE is also susceptible to non-specific oxidation by other oxidants (e.g.,
H2O2, •OH), generating ethidium (E+), a compound with fluorescence characteristics similar to those
of 2-OH-E+ [134]. For this reason, because both by-products of specific (2-OH-E+) and non-specific
(E+) oxidation of DHE have overlapping fluorescence, quantification of O2•

− by this means is not
possible when only fluorescence-based techniques are used. Of concern, many reports have used
these methods to assess O2•

− in sperm cells, thus not considering the potential contribution of the
non-specific oxidation of DHE via alternative pathways [135–138].
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Red oxidation. The non-specific oxidation, which forms ethidium, is predominant over the superoxide
anion-induced reaction that results in the formation of 2-hydroxyethidium. Notably, both oxidized
by-products present overlapping fluorescence properties.

An alternative to unambiguously confirm the presence of intracellular O2•
− is to separately identify

both 2-OH-E+ and E+ with techniques such as high-performance liquid chromatography (HPLC) and
liquid chromatography–mass spectrometry (LC–MS) [139,140]. Using HPLC and a reversed-phase
column, the 2-OH-E+ and E+ peaks can be separated and resolved, allowing O2•

− quantification [140].
To the best of our knowledge, this methodology has only been used to analyse menadione-treated
spermatozoa [33] and has never been used to compare the level of ROS spontaneously generated by
normal and pathological sperm cells. Recently, we have used the LC–MS/MS approach to investigate
sperm O2•

− generation during in vitro incubation [141]. As previously reported, we also observed
an increase in DHE over time. However, this was not accompanied by an increment in 2-OH-E+

levels but was rather a consequence of an increase in the level of E+ (i.e., not related to O2•
−

generation). Our finding clearly shows the importance of distinguishing 2-OH-E+ from E+ when
assessing O2•

− production.

5. Conclusions

From past to present, the knowledge gathered over the many years of study in this field offers us
a few lessons that need to be taken into account. Firstly, to avoid any interference when assessing the
production of ROS by sperm cells, an efficient removal of leukocytes from the samples is mandatory.
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Their presence will always cast doubt and potentially lead to data misinterpretation, as clearly
evidenced by the work of Whittington and Ford [11]. Secondly, many of the methods used to assess
ROS in sperm cells present drawbacks and limitations during application, possibly obfuscating the
true nature of the involvement of free radicals in sperm physiology and male infertility. The rational
use of probes and sometimes the adoption of more than one method are recommended for a better
assessment of ROS in cells. An indirect assessment of oxidative stress may also be done by the analysis
of the products originated from lipid (MDA, 4-HNE, HHE) [23,61,62,67] and DNA oxidation (DNA
base adduct 8-hydroxy-2′-deoxyguanosine) [142–144].

Finally, although sperm are susceptible to in vitro induced and exogenous sources of ROS and its
by-products, the in vivo relevance of these compounds needs further clarity. Of interest, considering
only the ROS produced by sperm, our laboratory has recently found that neither O2•

− nor other free
radicals, which lead to 4-HNE production, are responsible for motility loss during incubation [141].
In addition, a clear distinction must be made between the physiological versus the pathological roles
of ROS in sperm. While a subtle increase in ROS may be necessary for sperm function such as in
capacitation, the relationship between sperm abnormality and ROS may arise from a redox imbalance
within the different environments to which sperm are subjected, especially in testis [145]. However,
before any definitive conclusions are made, more studies using refined methodologies to look at the
level of spontaneous ROS generation or lipid peroxidation in fertile and infertile males are required.
In addition, while measurements of both 4-HNE and MDA have been performed in spermatozoa,
the levels of 4-HHE, perhaps a more important aldehyde, still need to be evaluated.
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2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1);
2-hydroxyethidium (2-OH-E+); 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo [1,2-a] pyrazine-3-one
(MCLA); 4-hydroxy-2-hexenal (4-HHE); 4-hydroxy-2-nonenal (4-HNE); A-kinase anchor protein 4 (AKAP4);
arachidonic acid (AA); cyclooxygenases (COX); cytochrome b5-reductase (Cb5R); cytochrome p450 reductase
(CP450R); dihydroethidium (DHE); diphenyleneiodonium (DPI); docosahexaenoic acid (DHA); ethidium (E+);
in vitro fertilization (IVF); glyceraldehyde-3-phosphate-dehydrogenase (GAPDH); high-performance liquid
chromatography (HPLC); horseradish peroxidase (HRP); hydroethidine (HE); hydrogen peroxide (H2O2); hydroxyl
radical (•OH); linoleic acid (LA); lipoxygenases (LOX); liquid chromatography mass spectrometry (LC-MS);
malonaldehyde (MDA); NADPH-oxidase (NOX); NADPH-oxidase isoform 5 (NOX5); nitro blue tetrazolium
(NBT); polyunsaturated fatty acids (PUFA); reactive oxygen species (ROS); superoxide anion (O2•

−); superoxide
dismutase (SOD); thiobarbituric acid reacting substances test (TBARS); white blood cells (WBC).
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