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Abstract: Additive manufacturing or 3D printing is the advanced method of manufacturing mono-
lithic adsorbent materials. Unlike beads or pellets, 3D monolithic adsorbents possess the advantages
of widespread structural varieties, low heat and mass transfer resistance, and low channeling of fluids.
Despite a large volume of research on 3D printing of adsorbents having been reported, such studies
on porous carbons are highly limited. In this work, we have reported direct ink 3D printing of porous
carbon; the ink consisted of commercial activated carbon, a gel of poly(4-vinylphenol) and Pluronic
F127 as plasticizer, and bentonite as the binder. The 3D printing was performed in a commercial
3D printer that has been extensively modified in the lab. Upon 3D printing and carbonization, the
resultant 3D printed porous carbon demonstrated a stable structure with a BET area of 400 m2/g and
a total pore volume of 0.27 cm3/g. The isotherms of six pure-component gases, CO2, CH4, C2H6, N2,
CO, and H2, were measured on this carbon monolith at 298 K and pressure up to 1 bar. The selectivity
of four gas pairs, C2H6/CH4, CH4/N2, CO/H2, and CO2/N2, was calculated by Ideally Adsorbed
Solution Theory (IAST) and reported. Ten continuous cycles of adsorption and desorption of CO2 on
this carbon confirmed no loss of working capacity of the adsorbent.

Keywords: porous carbon; 3D printing; gas separations

1. Introduction

Porous carbon-based materials are widely used in many types of industries and house-
hold applications [1]. Porous carbon is extensively used in the field of water purification [2],
air purification [3], gas separation [4] and storage [5], catalysis and catalyst support [6],
electrode materials [7], supercapacitors [8], batteries [9], gas masks [10], medical applica-
tions [11], and many more. Porous carbon is available in many different forms, names, and
properties, such as activated carbon or charcoal, mesoporous carbon, carbon molecule sieve
(CMS), activated carbon fiber (ACF), and others. The key attractive features of porous car-
bons are inexpensive and sustainable precursors, tunability of porosity, structural stability
in various environments, and affinity to a wide range of molecules to facilitate adsorption
behaviors. In the majority of applications, carbon materials are employed as powdered
forms, pellets, or beads. In the case of application of carbon in powdered form, it possesses
the difficulty of large pressure drop, handling problems, and finding suitable supports. In
order to overcome these hurdles, structured forms of carbons were needed, and in order
to meet such demand, pelletized forms of carbons have been employed. As of today, it
is the most state-of-the-art form of carbon to be used in all industrial setups. However,
the pelletized form of carbon possesses a few drawbacks, including high mass and mass
transfer resistance, high-pressure drop, fluidization, and unwanted channeling or mald-
istribution of the flowing fluids [12,13]. Different types of customized formulations also
exist for fabricating structured adsorbents, such as surface extrusion, direct deposition, or
matrix incorporation [14–16]; however, the majority of those structures do not possess the
suitability to incorporate porous carbon-based materials.
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In modern times, additive manufacturing or 3D printing of adsorbents has evolved
that facilitates the production of on-demand shape and size of the adsorbent monoliths,
which overcome most of the drawbacks mentioned above [17,18]. The 3D printing of
adsorbents can be achieved by different techniques, such as direct ink 3D printing [19],
secondary seeding growth [20], polymer phase separation [21], sol-gel printing, or binder-
less printing [22]. While the published literature on 3D printed structured adsorbents,
including different types of 3D printed carbon composites [23] or graphene-based mate-
rials [24,25], is quite large, the research on 3D printed structures and monolithic porous
carbon adsorbents is very limited. Direct ink 3D printing of carbon aerogels was reported
for resorcinol-formaldehyde (RF) resins that were carbonized to produce a carbon aerogel.
This was later activated with CO2 to produce porous carbon with a high BET area of
2000 m2/g [26]. The 3Dprinted and hard-templated mesoporous carbon was reported with
SiO2 as templating agent and starch/gelatin as the carbon precursor. Several steps were
followed after 3D printing, including freeze-drying, carbonization, and template removal
to obtain the final form of the porous carbon monolith. The BET surface area varied from
183 to 833 m2/g [27,28]. UV-curable clear 2005T resin from Miicraft was employed as
a carbon precursor to print the polymer in a DLP (digital light processing) 3D printer,
and the resultant structure was carbonized in order to obtain the carbon [29]. The BET
area of this carbon was not reported, however, owing to lack of porogen or activation,
it is expected that the surface area will be very small. The 3D printed electrode of the
supercapacitor was fabricated by printing a mixture of activated carbon, polyvinyl alcohol
(PVA), and H3PO4 [30]. The maximum amount of activated carbon was limited to 35 wt.%
only. Although the pristine BET area was as high as 904 m2/g, it is expected that the
available surface area in the electrode will be much smaller, owing to the small percentage
of carbon. Nonetheless, 3D printing was performed with a lithography-based technique
by incorporating ZIF-8 as a templating agent and a mixture of UV-curable polymers [31].
The carbon was synthesized by pyrolyzing the composite and dissolving the template.
Therefore, no direct attempt was made to 3D print the carbon itself.

In a unique approach, lithographic 3D printing was achieved by employing photoin-
duced copolymerization of pentaerythitol tetraacrylate and divinylbenzene as the carbon
precursor alkylphthalate as soft-template or porogen [32]. The BET surface area was 64 to
125 m2/g; however, additional CO2 activation increased the BET area up to 3019 m2/g.

Therefore, 3D printing of porous carbon-based materials is very limited compared
to that of other adsorbents. In the majority of cases, 3D printing required either several
steps [27,28], resulting in low porosity [29,30] in the final 3D printed structure, or very
specialized polymer as carbon precursor [33]. Therefore, there is a need to develop a
simplified approach for direct ink 3D printing of porous carbons with moderate to high
surface area. It is also highly advantageous to incorporate commercially available porous
or activated carbon as one of the constituents of 3D printed structure. Therefore, in order
to address those aspects in this research, we have reported a methodology of direct ink
3D printing of porous carbons with the ink consisting of commercial activated carbon,
poly(4-vinylphenol)-plutonic F127 gel as a plasticizer, and bentonite as the binder. The
3D printed structure was carbonized to obtain the final form of porous carbon, where
resorcinol-formaldehyde-plutonic F127 yielded additional porosity to the carbon. The 3D
printed porous carbon monolith was used for demonstrating gas-separation applications.

2. Experimental Section
2.1. Synthesis of Ink for 3D Printing

The commercial activated carbon that was chosen for this research is granular activated
carbon from Calgon with a BET specific surface area of 831 m2/g and a total pore volume
of 0.47 cm3/g. This carbon was ground in a coffee grinder to form a fine powder. After
that, 12 g poly(4-vinylphenol) and 6 g Pluronic F127 were dissolved in an 18 mL mixture
of deionized (DI) water and ethanol (1:1 v/v) and 3 mL HCl (36%). After stirring for a
day, a polymer mixture settled at the bottom. The top layer consisting of mostly solvents
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was discarded, and the polymer layer was added with 12 mL N N-dimethylacetamide
(DMAc). The polymer layer was completely dissolved into it. Then, 24 g of previously
ground activated carbon mixture was added to the mixture in small increments of 1 g. In
the same mixture, a total of 7.5 g of bentonite was added in increments of 0.5 g. The mixture
was vigorously stirred with a glass rod until a homogeneous mixture was obtained. The
schematic of ink production is shown in Figure 1.
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Figure 1. Schematic of synthesis of ink for direct ink 3D printing.

2.2. Modification of 3D Printer and Fabrication of 3D Printed Structure

The 3D printer that was used in the course of this research is the Ender 3 v2. After
proper installation and construction of the printer, it underwent a few custom modifications
to ensure the printing of the carbon monolith. The heated nozzle of the original 3D printer
was replaced by a syringe pump (New Era), which was attached to the printer with screws
(Figure 2). The syringe pump was loaded with a 3 mL syringe fitted with an 18-gauge
dispensing needle. The weight of the syringe pump posed an instability and a wobbling
motion in the stepper motor, which allowed the printing head (now replaced with the
syringe pump) to move in the z-direction. In order to avoid instability, a 2nd stepper
motor along with a 2nd lead screw was added to the printer (Figure 2b). This arrangement
allowed more stability as the syringe pump moved in all three directions and compensated
for the added weight of the pump.

In order to correlate the speed of the syringe pump and the printing speed (as those
two parameters are independently set; the printing speed was set by the software and
the flow rate in the syringe pump was set manually) the printer speed (mm/min) was
converted into the syringe pump speed (mL/s) followed by necessary adjustments in
real-time if there was any noticeable speed difference was observed during the printing.

Finally, it was observed that ease of printing can be achieved at a particular rheology
of ink that does not allow it to dry quickly after printing, resulting in partial mixing of
printed layers. In order to avoid this problem, an additional heat lamp was set in the
proximity of the printing area (Figure 2c) that helped to dry ink rapidly, thereby preventing
interlayer mixing.
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2.3. The 3D printing of Carbon Monolith

Upon modifying the 3D printer, about 2.5 mL of ink was loaded onto a disposable
syringe and fitted with an 18-gauge dispenser (blunt) needle. The syringe assembly was
loaded onto the syringe pump attached with the modified 3D printer. The flow rate from
the syringe was set as 0.6 mL/min while printing the structure. Over the course of printing,
the heat lamp was turned on in order to quickly dry the ink. Upon completion of printing,
the 3D printed structure was scraped out from the plate. After that, the monolith was put
into a porcelain boat, and the boat was inserted into the Lindberg-blueTM tube furnace for
carbonization. The furnace was heated to 900 ◦C at the ramp rate of 10 ◦C/min and cooled
down to room temperature. All the heating and cooling profiles were performed under N2
gas flow.

2.4. Characterization of Ink and 3D-Printed Carbon Monolith

The ink was characterized by thermogravimetric analysis (TGA) in TA instruments’
DCA Q600 thermogravimetric analyzer under N2 and air. The carbonized monolith was
characterized by optical images, pore textural properties, and scanning electron imaging
(SEM). The pore textural properties, including BET specific area, pore volume, and pore
size distribution, were calculated from N2 adsorption–desorption analysis at 77 K and
CO2 adsorption at 298 K, which were performed in the Autosorb-iQ-Any gas instrument
(Quantachrome, Boynton Beach, FL, USA). The SEM images were captured by the FEI
Quanta 400 (Thermo Fisher Scientific, Hillsboro, OR, USA) in secondary electron mode.
X-ray diffraction patterns were obtained by the Miniflex XRD instrument (Rigaku, Austin,
TX, USA). In order to capture the XRD pattern of the 3D printed structure, it was ground to
a fine powder in mortar and pestle and introduced within the sample holder.

2.5. Gas Adsorption Studies

The gas adsorption isotherms, including CO2, CH4, C2H6, N2, CO, and H2, were
measured in the same Autosorb-iQ-Any gas instrument. All the gases were of ultra-
high purity (UHP) and obtained from commercial sources (Air Gas). The isotherms were
measured at a temperature of 298 K and pressure up to 1 bar. The temperature of the
isotherm bath was maintained by an external circulating chiller (Julabo). The cyclability of
CO2 adsorption and desorption was carried out under the hysteresis mode of operation of
the same instrument.
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3. Results and Discussions
3.1. Thermogravimetric Analysis (TGA) of the Ink

The thermogravimetric analysis (TGA) of the ink under N2 and air are shown in
Figure 3. The TGA plot under N2 simulates the carbonization of the monolith. It shows the
prominent weight loss around 400 ◦C that corresponds to the decomposition of sacrificial
F127 from the system, along with a part of decomposition of poly(4-vinylphenol) that
occurs in the region of 350–500 ◦C. It is observed that the total yield of the monolith is
around 58.3 wt.%. The TGA plot under air shows that the carbon-based materials were
completely burned out at 635 ◦C. The final yield under air at around 15.9 wt.% corresponds
to bentonite in the system.
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Figure 3. Thermogravimetric analysis (TGA) of ink under N2 and air.

3.2. Characteristics of 3D Printed Porous Carbon Monolith

The optical image of the 3D-printed monolith is shown in Figure 4a,b. The length,
width, and depth of the individual monolith are around 2.4 cm × 1.4 cm × 0.4 cm. The
width of the solid boundary along the mesh is around 2 mm. It is observed that there
are some non-uniform widths of the solid boundary that might have been caused by the
fluctuations in fluid flow from the syringe in the course of printing. The current three-
dimensional structure was chosen to ensure that the monolith could be dried properly
before different layers of the structure are mixed with each other, resulting in the collapse
of the structure. A rectangular prism in a mesh pattern with a high aspect ratio allowed
for a stable print. This is because the rectangle was longer in length than height, which
decreased the drying time of one layer before the next layer was printed on top of it. This
thereby prevented the layers from sinking into each other. The other limitation associated
with the dimension of this particular shape was attributed to the maximum amount of ink
that could be held in the syringe (3 mL) and in the course of 3D printing. The SEM images
confirmed that the outer surface is relatively smooth with the inner surface exhibiting
roughnesses. The SEM images of the monolith are shown in Figure 5a–d. The inner surface
has no specific shape or morphology. Most likely, the bright crystalline entities in Figure 5d
are the bentonite crystals mixed with carbon matrix.

The pore textural properties of the porous carbon monolith are shown in Figure 6a,b.
Figure 6a shows the N2 adsorption–desorption plot at 77 K. It is observed that the nitrogen
isotherm does not resemble a single type of isotherm according to the IUPAC classifications.
The sharp rise in the low (near-zero) pressure region is attributed to the presence of
microporosity. The gradual increase in the elevation of the plateau at higher pressure, along
with the presence of the hysteresis loop, signifies the presence of mesoporosity. Most likely,
this isotherm is closely associated with the combination of type I and type IV isotherm. The
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type of the hysteresis loop is closely associated with the H4-type of hysteresis [33]. This
type of hysteresis is generally caused by mono- and multi-layer adsorption and capillary
condensation. The BET specific surface area calculated from the N2 adsorption plot is
400 m2/g. The pore size distribution was calculated by non-local density function theory
(NLDFT) within the built-in software of the instrument, and is shown in Figure 6b.
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It needs to be noted that the polymer mixture of poly(4-vinylphenol) and Pluronic F127
is the precursor of so-called soft-templated mesoporous carbon, where poly(4-vinylphenol)
acts as the carbon precursor and Pluronic F127 acts as porogen or soft-template. In soft-
templating strategy, cross-linked phenolic polymer, mostly from phenol, resorcinol, and
phloroglucinol serves as the precursor whereas the surfactant (F127) acts as porogen [34,35].
The width and shape of the mesopore depend on the surfactant molecule leading to the
formation of micelles that are hydrogen bonded with phenolic polymer, pH of the synthesis
medium, and other processing conditions of the polymer mixture before carbonization.
Although a sharp and distinct mesopore peak is observed in most of the soft-templated
mesoporous carbons, no such mesopores are observed in this monolith (Figure 6b). Disso-
lution of the polymer mixture of poly(4-vinylphenol) and Pluronic F127 by DMAc in the
course of making the ink probably ruptured the micelles of the surfactant, leading to the
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disrupted and distributed mesoporosity in the region of 25–60 Å (Figure 6b). The pore size
distribution plot also suggested that the monolith has micropore widths in the regions of
19, 15, 8, and 5 Å. The total pore volume of the monolith is 0.27 cm3/g.

The XRD image is shown in Figure 7. The XRD pattern of pure carbon as control
is obtained by grinding the material that was obtained by carbonizing the ink without
bentonite powder, i.e., without 3D printing. The XRD of this control carbon material is
typical of the other carbon materials, it has two broad peaks at around 23◦ and 43◦ that
are the remnants of graphitic ordering, which is very common for sp2-hybridized carbons.
Pure bentonite has several peaks spread along the spectrum that are associated with its
crystallinity. The prominent peaks in the bentonite structure are present in 7.7◦, 20.1◦, 22.3◦,
26.9◦, 28.7◦, 35.6◦, 54.6◦, and 62.3◦ positions. In the 3D printed carbon, the presence of all of
these peaks is clearly visible, owing to the presence of bentonite in it. The little ‘hump-like’
morphology around 23◦ and 43◦ positions still bear the signatures of the original carbons.
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3.3. Gas Adsorption Studies

Gas adsorption isotherms from CO2, CH4, C2H6, N2, CO, and H2 at 298 K and pressure
up to 760 torr are shown in Figure 8. These gas pairs are selected according to industrial
needs. In order to minimize greenhouse gas emissions to the atmosphere, CO2 needs to
be separated from N2 from flue gas in coal-powered electricity generation plants, and
adsorption plays a crucial role in this separation [36]. Natural gas (CH4) needs to be
separated from C2H6 and N2 in order to purify and enrich the natural gas [37]. C2H6 can
be recovered and enriched as fuel or as precursor to synthesize other chemicals. CO and H2
are constituents of syngas reactions, and adsorption is considered to be one of the feasible
ways to separate them [38].

As observed in Figure 8, the highest adsorbed gas is C2H6, followed by CO2 and CH4.
The lowest adsorbed amount belongs to H2; CO and N2 have similar adsorption amounts,
which are slightly higher than that of H2. It is clear that the adsorbent is selective to CO2,
CH4, and CO compared to N2, and C2H6 compared to CH4.
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Figure 8. Gas adsorption isotherms on 3D printed porous carbon monolith at 298 K.

All the gas adsorption isotherms are modeled with the Sips equation, which is an empir-
ical form and constructed with the correlations from the Langmuir and Freundlich equations.
The Sips equation fits well with most experimental isotherms and can be written as:

q =
ambp1/n

1 + bp1/n , (1)

where q and p are adsorbed amount and pressure, respectively. am, b , and n are constants
and found by the solver function of Microsoft Excel. The values of the constants are given
in Table 1.

Table 1. Fitting parameters of Sips equation.

Sips Constants CH4 C2H6 CO2 CO N2 H2

am 500 499.048 499.025 68.649 68.649 68.649
b 1.9 × 10−4 2.3 × 10−4 3.2 × 10−5 1.54 × 10−6 2.28 × 10−6 1.59 × 10−7

n 3.633 2.515 1.555 0.897 0.95 0.891

As mixed-component adsorption is very challenging to perform, owing to complexity
in instrumentation, it is a common practice to perform the pure component adsorption
(like that in Figure 8) and report the selectivity of the preferred gas compared to that of the
unpreferred one. The equilibrium selectivity (α1/2) of component 1 (preferred adsorbate)
over component 2 (unpreferred adsorbate) is defined as [39]:

α1/2 =
x1/y1

x2/y2
(2)

where x and y are the mole fractions of adsorbate in the adsorbed phase and the bulk gas
phase, respectively. The most common and popular way of calculating selectivity from
adsorption isotherms is the Ideally Adsorbed Solution Theory (IAST), originally proposed
by Myers and Prausnitz [40].
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The IAST-based selectivity of C2H6/CH4, CH4/N2, CO/H2, and CO2/N2 as a func-
tion of partial pressure are shown in Figure 9. The adsorbent demonstrated the highest
selectivity for CH4/N2, lying within 1400 to 20, followed by CO2/N2, which lies within
130 to 12. The smallest selectivity is associated with C2H6/CH4, which lies within 5 to 2. It
should be noted that separation of CO2 from CH4 is also a highly important industrial sep-
aration for purification of natural gas [37]. Although a majority of carbon-based adsorbents
are more selective toward CO2 over CH4 due to the inherent basicity of the graphene plane
of carbon [36], the 3D printed carbon demonstrated an alternating behavior of selectivity;
it is more selective to CH4 in the pressure lower than 20 kPa, above which its selectivity
switches to CO2. Owing to such altering behavior, we did not calculate the IAST-based
selectivity of CO2 and CH4.
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Figure 9. IAST-based selectivity for gas pairs.

The adsorbent material should have a good cyclability of the working capacity of
the adsorbate. In this work, we have chosen CO2 to be the adsorbate gas and performed
10 cycles of adsorption and desorption. The working capacity was generally calculated as
the difference between the adsorbed amount at 1 bar and the desorbed amount at 0.1 bar.
The ten cycles of the working capacity of CO2 adsorption are shown in Figure 10. As
observed in the figure, working capacity did not vary by more than 2–3%, suggesting a
good cyclability of the adsorbent.
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4. Conclusions

In this research, we have successfully fabricated a 3D printed carbon monolith using
the direct ink method. To the best of our knowledge, it is the first report of the synthesis
of 3D printed porous carbon without any sacrificial template. The commercial activated
carbon was the main source of porous carbon along with poly(4-vinylphenol) and Pluronic
F127 that simultaneously acted as the plasticizer and origin of mesoporosity. The adsorbent
possesses a BET surface area of 400 m2/g and a total pore volume of 0.27 cm3/g. Pure com-
ponent adsorption of CO2, CH4, C2H6, N2, CO, and H2 on the carbon monolith confirmed
that stable adsorption capacity demonstrated the highest selectivity for CH4/N2 pair. The
cyclability of working capacity of CO2 on this carbon confirmed that the stable structure of
adsorbent does not degrade under repeated loading and unloading of adsorbates.
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