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Synchronized movement of (both unicellular and
multicellular) systems can be observed almost every‐
where. Understanding of how organisms are regulated
to synchronized behavior is one of the challenging issues
in the field of collective motion. It is hypothesized that
one or a few agents in a group regulate(s) the dynamics
of the whole collective, known as leader(s). The identifi‐
cation of the leader (influential) agent(s) is very crucial.
This article reviews different mathematical models
that represent different types of leadership. We focus on
the improvement of the leader-follower classification
problem. It was found using a simulation model that the
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use of interaction domain information significantly
improves the leader-follower classification ability using
both linear schemes and information-theoretic schemes
for quantifying influence. This article also reviews
different schemes that can be used to identify the inter‐
action domain using the motion data of agents.
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Introduction
Collectives are ubiquitous in many biological systems

from unicellular organisms, e.g., the “social” amoeba
dictyostelium discoideum [1,2], cancer development [3],
and wound healing [4], to multicellular systems such as
flocks of birds [5,6] and schools of fish [7]. How can one
infer the underlying mechanism of regulation among

Synchronized movement of both unicellular and multicellular systems can be observed almost everywhere. It is hypothesized that one or a few
agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). Leader(s) may provide vital information about the system.
Hence the identification of the leader (influential) agent(s) is very crucial. In this article, we focus on the improvement of the leader-follower
classification problem using only the motion data of agents.
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individuals? Trajectories of agents within their group
movement are one of the devices to shed light on unveiling
the rule(s). Several simulation models have been proposed
for shedding light on unveiling rules which regulate
collective motility [8,9]. These models have facilitated the
analysis of collective motion [10]. The Vicsek model (VM)
[11] is one of the most well-studied models, based on a
simple rule where the neighboring agents tend to align to
their direction to the average over those positioned within
an interaction domain. The VM was found to be suitable in
studying the underlying origin of dynamics of collectives
such as symmetry breaking [12,13] and phase transition
[14,15]. More recently, the Vicsek model has been modified
to include leadership in order to characterize the influence
of leaders [9,16,17].

It is natural to imagine that two agents cannot
communicate over an infinite distance. Two agents can
influence only each other when they are located within each
other’s interaction domain. In the VM, the interaction
domain is a circle of radius R. Knowledge of interaction
domain plays a vital rule in the classification of leaders and
followers.

It has been shown both theoretically and experimentally
that the collective movement of agents is guided by
dominant individuals, termed as ‘leaders’, which control
the movement of the whole [3,4,16,18]. These special
agents employ asymmetric influence on the other group
members, termed as ‘followers’. There, causal inference
is an essential aspect of determining leadership and its role
in collective systems. The leader-follower relationship
between agents can be observed in the wound-healing
procedure [4], cancer growth [3], and MDCK epithelial cell
migration [18,19]. For example, for MDCK epithelial cells
the removal of leader cell(s) causes a disturbance in the cell
migration [18]. Identifying leader and follower agents is,
however, a complex task. Sometimes the relative positions
of agents within a moving group can be indicative of the
leaders of the group. For example, in the migration of
MDCK epithelial cells, leader cells are positioned at the
tips of finger-like structures [18]. In the case of wound
healing, the procedure starts with the formation of mounds
and one or rarely two leader cells positioned at the top of
the mound pull neighboring follower cells forward into the
wound [4]. Also, in cancer growth, the leader cells were
found at the front of the ‘invasive strands’ [3]. For a fish
shoal, the front fish has a strong influence on the movement
of the shoal [20].

But it is not necessary that the leader should always be at
the front—it may change its position over time. Also, in
many cases it is not possible to identify the top or front
cells, e.g., in dictyostelium discoideum amoeba migration
where the positions of cells may have no meaning in terms
of leader-follower identification.

For such cases, experimental data e.g., the ensemble of

trajectories of agents, can be used to infer distinctive
influences in their interactions and in classifying leader and
follower agents. Various types of linear measures such as
cross-correlation [9,21] and Granger causality [22,23] have
been used on time-lapse motion data to quantify the
direction of influence between pairs of agents. However,
interaction between two agents in nature is generally non-
linear, implying that linear measures are not necessarily
optimal in capturing underlying interactions. As an alterna‐
tive approach, different information-theoretic schemes such
as mutual information [24], time-delayed mutual infor‐
mation [25], transfer entropy (TE) [26], and causation
entropy [27] have been intensively studied, which are all
based on probability distributions and are free from
assuming linear interactions.
This article reviews two central issues in the field of

leader-follower classification:
 i) Solely from measurements, how can one infer causal

relationships between leaders and followers?
ii) How can one infer the interaction domain solely from

the motion data of the agents?
This paper is organized as follows: in ‘Measuring

causality’ section we first overview the possible causal
relationship between a leader agent and a follower agent.
Concurrently, we address the different schemes in quan‐
tifying causality between two processes. Then in the
‘Models’ section, we present a modified version of the
Vicsek model to elucidate the underlying leader-follower
relationship among a group of collectively moving agents.
Also, different types of leadership are addressed. We then
present different types of classifier to identify the leader
agent(s) in a group. Later, we review some existing results
in classifying leader and follower agents, and also in
identifying ‘interaction domain’. Finally, we provide some
future directions in the ‘Conclusion and perspectives’
section.

Measuring Causality
In the literature, different definitions of leadership can be

found. In a group of moving agents, the agent moving in
the front position during the movement is often considered
as the leader of the group [28,29]. The agent that departs
‘first’ or has the ability to guide the whole group in adverse
conditions (e.g., famine, presence of predators) is also
considered as a leader [30,31]. In this article, we follow
the definition of leadership by Krause et al. [20] ‘as the
initiation of new directions of locomotion by one or more
individuals which are then readily followed by other group
members’. Based on this definition of leadership, a causal
relationship between a leader and a follower can be
assumed and may be detectable based on trajectory data.
Hence by identifying the causal direction in a pair of
agents, the leader and follower relationship can be inferred
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within the pair. The agent which, on average, leads other
group members can be identified as the group leader [16].

Linear Schemes
Linear correlation is a measure which indicates how

two or more variables are linearly related. Suppose that
X={..., xt–1, xt, xt+1, ...} and Y={..., yt–1, yt, yt+1, ...} are two
random variables. Then the correlation coefficient has the
following form [32]:

r =
∑t xt − x− yt − y−

∑t xt − x− 2 ∑t yt − y− 2
,

where x− and y− denote the time averages of {xt} and {yt},
respectively.
The value of correlation coefficient r lies between –1 and

+1. r takes the value of 1 (–1) if the two variables are
completely correlated positively (negatively), and if the
variables are completely independent the coefficient r is
zero [32]. The correlation coefficient does not shed any
light on the underlying associations behind the relation‐
ships between variables (i.e. causal relationships), rather it
just tells if linear correlation exists between them.

Cross-correlation is a measure of similarity between two
processes as a function of the displacement (delay) of one
relative to another. Cross-correlation between two random
variables X and Y as a function of time-delay τ has the
following form:

CX Y τ =  
∑t xt − x− yt + τ − y−

∑t xt − x− 2 ∑t yt + τ − y− 2
. (1)

It has successfully been used to identify if some
individuals have a strong influence on other agents [16,20].
For instance, if there exists a positive delay time τ that
maximizes CXY(τ), one may interpret that at the level of
linearity X has some influence over Y.
The primary step to finding the leader is to measure

pairwise causality within the group. Measuring causality
has been one of the most intriguing subjects since it cannot
always be proven. Wiener [33] first proposed a quantifiable
definition of causality. It was proposed that for one variable
to be “causal” to another, the information about the first
variable should improve the predictability of the second
variable [34,35]. The first variable is known as the ‘cause’
and the second one is called the ‘effect’. However, no
practical implementation scheme was presented. Later
Granger [22] proposed a scheme applicable to real data.
Suppose that we want to identify whether there is a causal
relationship between variables X and Y. In order for a
causal relationship to be inferred, knowledge of one
variable should improve one’s ability to predict the other
one. Suppose we want to predict xt+1. Suppose that, to
predict xt+1, one can use either only the past terms of X or

those of both X and Y. If the second prediction is more
accurate compared to the first one, then one may conclude
that the past of Y contains information that is helpful to
predict xt+1 which is not contained in the past of X. In this
case, Y is said to be a G-cause (Granger cause) of X [22].

Granger causality is normally tested based on linear
regression models as follows. The prediction of xt can be
made based on the following linear autoregression on its
own history:

xt = ∑
i = 1

∞

aixt − i + δt,

where {ai} represent the autoregression coefficients and
{δt} characterize the corresponding prediction errors [36].

Moreover, one can use the history of both X and Y to
predict xt using linear regression as follows:

xt = ∑
i = 1

∞

bixt − i + ∑
j = 1

∞

c jyt − j + δt
−,

where {bi} and {cj} are the joint linear regression
coefficients, and δt

−  are the corresponding prediction
errors. If X is causally driven by Y, i.e., Y is the cause and X
is the effect, then the prediction of xt is expected to be
improved by incorporating the history Y along with the
history of X, compared to using the history of X alone.
Consequently, the variance of the prediction error δt

− is
expected to be smaller than that of δt. Hence the Granger
causal value from Y to X has the following form [36]:

GY X = log var(δt)
var(δt

−) .

In the case where Y has no causal influence on X, the
prediction of xt is not improved by the incorporation of the
history of Y, which means that the prediction errors would
have same variances, i.e., var(δt) ≃ var(δt

−) that results in
zero Granger causality from Y to X, i.e., GY X ≃ 0.

When there is causal relationship between two variables,
there must exist a certain time lag (delay) between the
cause and the effect [37]. The Wiener-Granger framework
of prediction-based causality is equivalent to looking for
dependencies between the variables at a certain time delay
[38].

Both Granger causality and cross-correlation are based
on a linear relationship between the two variables.
Dynamical systems can be highly nonlinear, in general,
suggesting that the application of Granger causality and
cross-correlation is limited to some classes of systems [36].

Information-theoretic Schemes
Information-theoretic measures are based on probability

distributions of stochastic random variables; hence these
measures are model-free and expected to be capable of
capturing nonlinear interactions between systems [39].
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Suppose the probability mass functions of X and Y
are p(xt)=Pr(X=xt) and p(yt)=Pr(Y=yt), respectively. The
fundamental measure of information in information theory
is Shannon entropy or simply entropy H(X), which is
defined by [24]

H X = −∑
xt

p xt log2 p xt .

The unit of entropy depends on the base of the logarithm. In
this article we use the logarithm of base 2 so that the unit of
information is in bits. H(X) measures the uncertainty
associated with the variable X. H(X) is maximum whenever
the outcomes of the random variable X are all equally
probable. On the other hand, if only one outcome is more
likely to happen and all the rest are not, H(X) is zero.
The joint entropy of X and Y, denoted by H(X, Y), is

defined by [24]

H X , Y = −∑
xt

∑
yt

p xt, yt log2 p(xt, yt),

where p(xt, yt) represents the joint probability distribution
of X and Y. Joint entropy H(X, Y) represents the amount of
uncertainty associated with both processes X and Y.

Conditional entropy of X given Y, denoted by H(X|Y),
measures the remaining uncertainty about the random
variable X when the outcomes of the other variable Y are
known [24]:

H X Y  = −∑
xt

∑
yt

p xt, yt log2 p(xt yt),

where p(xt|yt) represents the conditional probability of X
given Y. If the random variable Y has no information about
X, the knowledge of Y does not reduce the uncertainty of X.
In that case, H(X|Y)=H(X).
The random variables X and Y can be independent of, or

dependent on each other. In the case of dependency, one
random variable contains information about another. To
quantify the amount of information that X has about Y (or
vice versa) one can compute mutual information [24]:

I X ; Y = ∑
xt

∑
yt

p xt, yt log2

p(xt, yt)
p(xt)p(yt)

. (2)

Equation (2) means that mutual information is
symmetric, i.e., I(X;Y)=I(Y;X). For the case of causality, the
present of a variable (effect) depends on the past of another
variable (cause) and the causal direction (direction of
information flow) from the cause to the effect is inferred.
One may obtain an asymmetric measure named time-
delayed mutual information by introducing a time-lag
parameter τ in any of the variables X and Y as follows
[40,41]:

I X t ; Y t + τ = ∑
xt, yt + τ

p xt, yt + τ log2

p(xt, yt + τ)
p(xt)p(yt + τ)

, (2a)

and

I X t + τ ; Y t = ∑
xt + τ, yt

p xt + τ, yt log2

p(xt + τ, yt)
p(xt + τ)p(yt)

. (2b)

A non-zero amplitude of I(X(t);Y(t+τ)) as a function of
delay-time τ* indicates the presence of interaction between
the processes X and Y, and the sign of τ can be used to infer
the direction of influence [36]. If there exists a positive τ*
for which time-delayed mutual information has a peak as a
function of τ (Eq. (2a)) one can deduce that X shares a
maximum amount of information with the future state of Y.
In other words, one may say that X drives Y. Conversely, a
negative τ indicates that X shares a maximum amount of
information with the past of Y, and hence X is driven by Y
[36].

Time-delayed mutual information is capable of capturing
both linear and nonlinear correlation between two time
series and, hence, can be used as a measure of mutual
coupling or information transmission between two
processes [25]. However, it fails to consider shared history
(and also common external driving effects) between two
processes and may lead to spurious inferences of directed
information transfer [42]. Let us consider the following two
binary state time series X and Y whose initial states (at time
t=1) were chosen randomly, i.e.,

X t = 1 = x1 =
0 witℎ probability 12

1 witℎ probability 12

  ,

and

Y t = 1 = y1 =
0 witℎ probability 12

1 witℎ probability 12

  ,

where the process X is autonomous, and its current state xt

depends only on its own past state. Assume that the state of
X is switched from 0 to 1 and from 1 to 0 at each time step
with probability of 100%. Conversely, the state of Y at time
(t+1), yt+1, has no direct relationship with its past state but
depends on the state of X at the preceding time step as
yt+1=xt with probability 1 + c

2 , and yt+1=1–xt with probability
1 − c

2  for some constant –1≤c≤1. Hence, easily one can find
that p xt = 0 = p xt = 1 = 1

2 . After some manipulations,
one can also find that p yt = 0 = p yt = 1 = 1

2 . Finally,
joint probabilities p(yt+1, xt) and p(xt+1, yt) can also be
computed (detail derivation can be found in Appendix).

Finally, using these marginal probabilities and joint
probabilities in Equations. (2a) and (2b) and setting τ=1, we
get

I X t ; Y t + 1 = I X t + 1 ; Y t

= 1
2 1 + c log2 1 + c + 1 − c log2 1 − c .
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Except c=0, I(X(t+1);Y(t))>0. As the process X is
independent of Y by definition, a positive time-delayed
mutual information I(X(t+1);Y(t)), which indicates the
information flow/transport [43] from Y to X, contradicts
with what we may expect. This means that time-delayed
mutual information can misinterpret ‘spurious transfer of
information from Y to X ’. One should wonder about the
source of this ‘spurious information flow’. If we take a
closer look at the model, we can realize that yt can tell the
possible state (value) of xt–1 because yt=xt–1 by definition,
and furthermore xt–1=xt+1 by definition and hence yt can
successively tell us everything about xt+1, which creates the
spurious information flow from Y to X [42,44]. One might
criticize the two binary model itself discussed here as an
extreme case but, in general, such spurious information
flow can happen in systems where X and Y have shared
history.

Hence to get the true influence of the past of X on the
present of Y, Schreiber [26] pointed out that we must
condition on the past state(s) of Y in Equation (2a) using
conditional mutual information. This leads to the definition
of transfer entropy (TE), which overcomes this drawback
of time-delayed mutual information. TE from the random
variable X to Y is defined for a time lag τ [38]:

TEX Y = I yt + τ; xt yt

= ∑
yt + τ, xt, yt

p yt + τ, xt, yt log2

p yt + τ yt, xt

p yt + τ yt
, (3)

where I(.;.|.) and p(.|.) represent conditional mutual
information and conditional probability, respectively. TE
from X to Y quantifies how well the random variable X can
predict the outcome of the variable Y using the past of both
Y and X, rather than using the past of Y alone.

Going back to the binary example, one may easily
compute the joint probabilities p(yt+1, yt, xt), p(yt+1, yt) which
are necessary to compute TEX→Y (see Appendix for detail
calculations).

Setting τ=1 in Equation (3), we then get

TEX Y = 1
2c 1 + c log2 1 + c − 1 − c log2 1 − c

− 1
2 1 + c2 log2 1 + c2 > 0

except c=0, ±1. Note that xt can tell the state of xt+1
perfectly, resulting in p(xt+1|xt)=1. This implies that xt+1
contains no uncertainty to be reduced once xt is known,
hence H(xt+1|xt)=H(xt+1|xt, yt)=0. These yields TEY→X=0. The
causal structure described in the example does not allow
information to flow from Y to X, which is correctly
identified by TE as TEY→X=0. Also, for c≠0, TEX→Y>0 which
is along what we expect [44].

A positive TEX→Y indicates that past of X contains some
useful information about yt+τ which is not contained in the

past of Y, which indicates the causal influence of X on Y
[26]. Since a follower agent follows the motion of a leader
but the converse is not true, hence a leader can predict the
motion of a follower more precisely. But a follower cannot
predict a leader with such precision. Also, net TE from X to
Y is defined as NTEX→Y=TEX→Y–TEY→X. Hence a positive
NTEX→Y indicates that Y follows X. In other words, one may
classify X as a leader and Y as a follower when NTEX→Y>0.

Models
Vicsek et al. proposed a flocking model displaying a

transition to collective motion [11]. The system consists of
a two-dimensional square box of length L with periodic
boundary conditions, and N self-propelled agents move
within the box with the same constant speed v, and at time
t=0 the agents are positioned and oriented randomly [45–
47]. In addition, the velocities  v i  of the agents are
updated simultaneously with time increment Δt. The
position of the agent i (i=1, 2, ..., N) is updated according to

 r i t + 1 =  r i t +  v i t Δt, (3a)

where  r i t  and v i t  denote the position and velocity of the
agent i at time t, respectively. The velocity v i t + 1  of the
agent i at time (t+1) is calculated to have the constant value
v and an orientation θi(t+1) given by

θi(t + 1) = <θ(t)>R,  r i(t)+Δθi(t), (3b)

where < θ t >R,  r i t  represents the averaged orientation over
agents (including the agent i itself) which are located
within a circle of radius R at time t centered on r i t  (Fig.
1). The motion of the agent is perturbed by the noise term
Δθi(t) which is a random number uniformly distributed in
the range − η0

2 , η0
2 , where η0 is considered as a temperature-

like parameter.
To study the phase transition between ordered states of

motion at low levels of noise and disordered motion at high
level of noise, a natural order parameter can be the absolute
value of the normalized mean velocity (ϕ), i.e.,
ϕ = 1

Nv ∑i = 1
N v i . In the disordered phase the value of ϕ is

close to zero and it is close to unity in the ordered phase
[46]. In the VM, all the agents have the same effect on their
neighbors, which means there exists no leader-follower
relationship between agents.

To create a mathematical model of the leader-follower
relationship between moving agents, one first needs to
define what leadership means. Garland et al. [48] has
pointed out three categories of leadership, that is, (i)
structural leadership, (ii) informed leadership, and (iii)
emergent leadership.

Structural leadership relies on the structure of the
interaction between agents in a group. The existence of
structural leadership implies that the rules of interaction are
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encoded with information about which agent(s) is (are) the
leader. Age, gender, size, reproductive state, lifespan etc.,
could be the decisive factors for this kind of leadership. For
instance, a queen in a colony of honeybee has ten times
lifespan relative to workers and is the only agent that can
lay fertilized eggs [49,50]. An elephant clan is guided by a
matriarch [51]. The leader in a baboon group is occupied by
a big male [52].

Informed leadership is the case where a member of the
group has additional information that the other members do
not. By incorporating this information into its actions, the
collective will be skewed to the leader’s direction. For
example, animals migrate to find food, nestle, or find a
more favorable living or breading condition [53–57].
During this migration, an individual or a subset of the
migrating group may have prior knowledge about the
migration routes, source of water, or locations of predators
[58]. Taking advantage of this prior knowledge, that small
part of the migrating group influences the movement of the
whole group by changing speed, the direction of
movement, or through other signaling indications
[48,59,60]. That individual or small group can be
considered as the leader(s) of the group, and such kind of
leadership is termed as the informed leadership.

Even in the absence of the social structure or differential
information, another form of leadership may arise, termed
as emergent leadership. When the motion of the agents is
influenced by the individuals that are in front of them, for
example, the frontal agents may be more influential even

Figure 1 The ovals (solid and dotted) denote the moving agents
within a square box of length L, and the red circle of radius R
represents the interaction domain of the red agent (at the center of the
circle). According to the protocol used in the VM [11], the motion of
the red agent is affected by the solid-black agents as they are located
within the interaction domain of the red agent. But the black dotted
ovals are located outside the interaction domain, hence the motion of
the red agent is free from the influence of those dotted-black agents.

though they have no additional information, motivation, or
status. In the VM [11] or the modified VM studied in
[9,16], the interaction domain is assumed to be a circle (for
2-D motion) (Fig. 1) of a specified radius and the motion of
an agent is influenced by its surroundings by assuming a
360° angle of view. But all species of animals do not have a
360° view of their surroundings [61]. For example, the field
of view of grey-headed albatross is about 270° [62], and
Dasyatis sabina fish is about 327° [63]. Hence instead of a
whole circular interaction domain, Durve et al. [61] has
considered a section of the circle (field of view) as the
interaction domain, and this section moves with the change
of heading of the agent. In other words, the motion of an
agent can be influenced by the motion of another agent if
the latter one lies within a certain distance and field of view
of the 1st agent. Hence the latter agent should have an
asymmetric influence on the motion of its posterior agents
that constitutes the emergent leadership. Yet there is no
social rule signifying that this agent should be a leader (i.e.
it may have occurred by chance), and that agent has no
additional navigational knowledge compared to other
agents.
The modified Vicsek model studied by Basak et al. [9] is

an example of structural leadership where the sociality
matrix w was introduced to emulate asymmetric interaction
between agents. The orientation angle of the agent i was
updated at each time step:

θi(t + 1) = <θ(t − κ + 1)>R, w,  r i(t)+Δθi(t), (4)

where < θ t − κ + 1 >R, w,  r i t  represents the weighted
alignment of agents averaged over other agents which are
located within the circle of radius R at time (t–κ+1)
centered at r i t . Naturally, there should be a finite time
difference between the interaction time and timescale of
movement of agents which was characterized by the
variable κ in Equation (4). The element wij of the sociality
matrix w corresponds to the interaction strength that the
agent i exhibits on j. If i is a leader and j is a follower, then
wij>wji which characterizes the dominance of leader agents.
The interaction strength between two follower agents, two
leader agents, and also from follower to leader agents were
set to 1, i.e., wFF=wLL=wFL=1. Also, wLF was set to 1.05 for
the results reviewed in this paper. The interactions among
the agents were set to occur only when the agents are
within the interaction radius R.

Identifying Leader Agents
Hypothetically in a group of mutually interacting agents,

the group decision-making should be strongly influenced
by the leader(s) of the group [64]. Hence the agents that on
average lead other group members could be identified as
leaders of the group. A directed network scheme has been
introduced in [16] to infer leader-follower relationships
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where each node corresponds to an agent and the weighted
directed edges represent the role of agents (leader or
follower) in the pair. Based on the interaction strength, the
weighted adjacency matrix W is formulated. For a pair of
agents i and j, let Iij represent the influence (measured using
cross correlation (CC), TE, time delayed mutual
information (TDMI) etc.,) that the agent i exhibits on j.
Then the element Wij of the matrix W is chosen in such a
way that Wij=Iij if i is detected as the leader and j as the
follower (Iij>Iji), otherwise Wij=0. Hence both Wij and Wji

cannot be positive simultaneously but their values could be
zero if neither of the two is detected as a leader. Then the
average pairwise interaction for the agent i is defined as:

χi = 1
N − 1∑j = 1

N

W i j − W ji ,

where N represents the number of agents in the group. This
average pairwise asymmetric interaction for the agent i
would be negative if the agent is dominated on average by
other(s), and positive if it dominates other(s) on average. χi

is then used as the classifier. Setting a threshold ε on the
value of χi, for example ε=0, agents are assigned as leaders
(followers) whenever χi>ε (χi≤ε).

In the weighted adjacency matrix W, the element Wij is
set to zero if the scheme identifies i as the follower and j as
the leader. That means the effect of a follower on a leader is
disregarded, and hence some information is lost which may
have an effect on the performance of leader-follower
classification.

A much simpler classification algorithm has been
presented in [9] where the identification of an agent is
based on the following classifier:

χi = 1
N − 1 ∑j( ≠ i)

Ii j − I ji ,

where N represents the number of agents and Iij represents
TE (or CC) from the agent i to j. The basis of the leader-
follower relationship is that the influence of a leader is
much greater on its followers compared to that of a
follower on the leader. Hence the net quantity (Iij–Iji) is a
good candidate for classifying leader and follower agents.
The agents having higher χ values are the candidates for the
leaders of the group.
The value of χi for each agent is compared to a threshold

value ε to determine their identities. An agent for which χi

is higher than the threshold ε is identified as a leader,
otherwise as a follower. This classification result is then
compared to the ground truth to obtain the number of true
positives and number of false positives for the chosen ε.
The exact theoretical value of ε is positive whenever i is a
leader of j, negative when j is a leader of i, and zero when
there is no leader-follower relationship between i and j.
Therefore, a natural value to choose for ε is 0. However,
one can tune ε when it is desired to do so. A larger ε could

be desirable, for example, if false negatives are preferred
over false positives. To show the classification performance
of a classifier over all possible ε, a receiver-operating
characteristic (ROC) curve is used. It is obtained by
plotting the true-positive rate (TPR) versus false-positive
rate (FPR) at different values of ε, where TPR and FPR are
defined as follows [65]:

TPR = True positive
True positive + False negative ,

FPR = False positive
False positive + True negative .

A good classifier has the highest TPR along with the lowest
FPR. Hence, the closer the ROC curve gets to the top-left
corner, the better the classifier is (Fig. 2). To quantify the
diagnostic ability of a binary classifier and also to compare
the performance of different binary classifiers one can use
area under ROC curve (AUC). An AUC score of 0.5
represents the performance of a random classifier (which
means that the classifier has no class separation capability
at all) and the maximum value of AUC (1.0) corresponds to
a perfect classifier [66].

Some Studies for Leader-follower Classifications
Based on Trajectories of Agents

Using synthetic trajectory data of zebrafish pairs
swimming in 2D, net transfer entropy was found to be the
most accurate classifier for leader-follower relationship,
compared to cross-correlation and extreme-event
synchronization [67]. For two different cases, that is, a

Figure 2 ROC curves using the modified VM [9] for R=2 at
η0=4π/3 using two different schemes. The ROC curve using the ‘cutoff
scheme’ lies above that of ‘without cutoff scheme’. It suggests that the
cutoff scheme possesses better classification ability compared to the
without cutoff (conventional) scheme.
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fixed box size while the number of agents is varied, and a
fixed density while the number of agents is varied, it was
shown using a modified VM that the classification score
decreases as the number of agents increases. This is due to
the fact that, for any pair of agents for which TE is
estimated, the motion of an agent is influenced by other
agents [9]. Interestingly at very low, and very high levels of
noise AUC scores are close to 0.5 (i.e., same as coin toss).
The reasoning was, at low noise levels, the probability of
encountering of two agents depends largely on the initial
position of the agents. Also, the leader and follower agents
get aligned in the same direction quickly once they
encounter each other, resulting in the same symbols in their
time series. Hence TE between agents depends on the
initial configuration of the agents to a great extent resulting
in higher variances in the distributions of leaders and
followers, making the classification difficult (Fig. 3a). On
the contrary, at very high noise levels, the distributions
become indistinguishable with much smaller variances that
produce a low AUC score (Fig. 3c).
Mwaffo et al. [11] revised the VM to discuss informed

leadership where the motion of leader agents does not
depend on the other group members, and instead moves
towards a specific direction with the presence of noise. The
headings of the follower agents were updated based on the
response of the group in presence of noise.

But leadership may change over time from one agent to
another i.e., a leader agent may emerge as a follower after
leading the group for a certain period of time, and a new
follower takes the charge of the group as the leader. Butail
et al. [68] have studied the switching leadership in the
collectives where the motion (orientation) of leader agent is
independent of the influence of other agents whereas the
orientation of a follower agent is calculated based on its
instantaneous neighboring agents. The role of a leader and a

Figure 3 Distribution of classifier χ for the leader and follower
agents at three different noise levels η0, (a) 0.1π, (b) 1.2π, and (c) 1.8π.

follower agent could be switched randomly over a
simulation. It has been shown that TE is capable of
partitioning of time series data to detect leadership switches
in collective behaviors.

Recent image sensing technologies such as image
processing and global positioning system (GPS) have
enabled us to collect various kinds of data of animal groups
such as bats [69,70]. Studying the 3D trajectories of wild
bats flying in pairs, higher transfer entropy from the bat
flying in front to the bat flying in the rear was confirmed,
which provides the evidence that the relative spatial
positioning is the key in navigational leadership [70].

However, in all above-mentioned studies, any distance
evaluating transfer entropy between two agents was not
considered. Recently, we showed [9] using a modified VM
that the classification scores of leaders and followers
increase significantly by combining the identified
interaction domain in the TE estimation compared to the
conventional scheme where the distance information is not
considered in the estimation.

We proposed information-theoretic schemes to infer the
domain of interaction using the trajectories of the agents.
The schemes are based on a quantity termed as the ‘cutoff
distance λ’, which is defined as a predefined maximum
distance up to which the interaction between agents is
considered for the estimation of TE [9,71]. In fact, for a
pre-defined cutoff distance λ, the TE between two agents is
computed as follows: only if the distance between two
agents at time t is less than or equal to λ, their time series of
the two agents are used to estimate probability distributions
at that time instance [9]. Then the value of λ is varied and
TE between agents is computed as a function of λ. In the
problem setting, the domain of interaction was considered
as a circle of radius R, which is typically unknown.

For very long data set (T=100,000) it was shown that the
average TE as a function of λ over all pairs of agents,
<TE>λ, drops for a small interval of λ when λ is small. Then
<TE>λ is almost flat up to λ≅R, and for the region of λ>R,
<TE>λ decreases again [9]. It was also found that the
derivative of <TE>λ with respect to λ i.e., d < TE >λ

dλ  exhibits a
minimum near λ=R (Fig. 4). Here the proposed scheme is:
the estimated interaction radius R is defined as the
corresponding λ value for which d < TE >λ

dλ  exhibits a local
minimum i.e.,

R = argminλ
d < TE >λ

dλ , with d2 < TE >λ

dλ2 = 0.

For a VM system of ten agents where a single agent
serves as a leader and rest are the followers, it was found
that the above-mentioned protocol successfully identifies
the interaction radius [9]. In data acquired from
experiments, the data acquisition process is discrete, and
the observed time scale does not exactly match the
timescale of interaction in general. Hence one may not be
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able to sample the data at every relevant time step.
Consider the case where one can sample the data once
every τobs time steps. When the time scale of system
dynamics in Equation (4) and the observation time scale τobs

are the same, cross correlation (CC) can also estimate the
underlying interaction radius as TE does except at low
noise and short interaction radius R. However, for low and
moderate noise levels, it was observed that the performance
of CC gradually decreases as the observation timescale is
higher than the interaction timescale. But when the noise
level gets much higher, both the schemes fail to detect the
underlying interaction domain for the case of the
observation time τobs>1 [9].
This scheme in inferring interaction domain can be used

for a system containing a large number of agents, and even
for a system where there exists no leader-follower
relationship among the agents [9].
The global minimum of d < TE >λ

dλ  scheme is capable of
identifying actual interaction radius for sufficiently long
trajectory data (≥50,000). However, it was found that for
shorter length (T=12,000–25,000), d < TE >λ

dλ  fails to capture
the correct interaction domain with the global minimum at
shorter λ than the underlying desired value (Fig. 5). Since
in actual experiments it is sometimes not possible to get a
set of long trajectories, we thus developed a different

Figure 4 (a) Averaged TE <TE>λ as a function of cutoff distance
λ for R=3 and η0=1.2π. (b) d < TE >λ  

dλ  as a function of cutoff distance λ
for R=3 and η0=1.2π. It has been found that d < TE >λ  

dλ  exhibits a
minimum near the actual interaction radius R.

scheme based on the convexity score of points at coarse-
grained level [71]. The convexity score scheme was found
be robust against fluctuations of d < TE >λ

dλ . This scheme is
based on the fact that d < TE >λ

dλ  as a function of λ is convex
near the actual interaction radius R.
The convexity score κ(λi) based on the M neighboring

points of λi was defined as follows:
κ λi = 1

M ∑m = 1
M σi(m) where

σi(m) =
+1, if  f λi − m − f λi > δ and f λi + m − f λi > δ
−1, if  λi − f λi − m > δ and λi − f λi + m > δ

0, otℎerwise

Here δ represents the non-negative small number,
f λ = d < TE >λ

dλ , and –1≤κ(λi)≤1. Finally, the point λ=λi around
which the convexity score κ(λi) is the maximum was chosen
as the estimated interaction radius R. The optimal values of
the parameter M were chosen in such a way that the cost
function C M = ∑T ∑T ′ R M , T − R M , T ′    is the
minimum. It should be noted that, those T for which
R M , T  was not chosen uniquely due to the degeneracy of
κ, or R M , T  was undefined due to the absence of strongly
convex part of d < TE >λ

dλ , were excluded from the computation
of optimal M [71].

To compare the performances of global minimum
scheme and convexity score scheme, relative error has been
used. Relative error (ΔR) is defined as follows [9]

ΔR =
R −  R

R ,

where R is the actual interaction radius and R is the
identified interaction radius. It was shown using a relative
error diagram that the convexity score scheme identifies the

Figure 5  d < TE >λ
dλ  as a function of cutoff distance λ for different T

at η0=1.2π and R=3. For shorter T a global minimum of d < TE >λ
dλ  has

been observed at short λ. Hence global minimum scheme identifies
inaccurate interaction radius when T is short.

Basak et al.: Transfer entropy dependent on distance for agents 139



interaction radius satisfactorily, (at moderate noise levels)
even when data length is short for those data lengths T
where the global minimum scheme has high relative error
(Fig. 6) [71]. Also, when the data length T is very short
(≈6,000), the convexity score fails to identify the
interaction radius for large R (Fig. 6(b)).

Hence, a measure of convexity of d < TE >λ
dλ  is expected to be

useful in identifying interaction radius. In brief, for the sake
of simplicity, let’s assume that the interaction strength
remains the same inside the interaction zone (shaded region
in (Fig. 7)) and no interaction exists outside it. Then, the
analytical expression of average TE, <TE>λ as a function of
λ is easily acquired, showing <TE>λ emains the same for
λ≤R that yields d < TE >λ

dλ = 0 [71]. In VM, as seen in Figure 4a,
<TE>λ drops rapidly for λ≪R with respect to λ and turns to
be flat, yielding d < TE >λ

dλ ≃ 0, near λ≅R. As λ increases more
than R, the number of non-interacting agents that behave
independently increases. As independent agents do not
share information, hence <TE>λ decreases. As a result,
d < TE >λ

dλ  becomes negative. Eventually <TE>λ converges to
zero as λ→∞. Consequently, d < TE >λ

dλ  approaches to zero.
Hence, a kink/minimum is expected at λ=R in the d < TE >λ

dλ

curve.

Conclusion and Perspectives
In recent studies it has been elucidated that information-

theoretic measures are successful in identifying leaders and
followers [9,16,33,34,67,70–72]. However, these measures
have disadvantages in the cases where there are multiple
interacting variables or when the amount of available data
is limited. Knowledge of the interaction domain greatly
increases the accuracy of information-theoretic measures
for classifying leaders and followers by incorporating only

the relevant portions of time series in computing the
measures [9]. This interaction domain can be inferred using
transfer entropy with cutoff function, however,
information-theoretic measures themselves have some
drawbacks that still need to be addressed, both for inferring
interaction domain and for inferring leadership. For
example, information-theoretic measures such as transfer
entropy require discretization of the data, and none of the
studies in this area of research have addressed the question
of computing the optimal discretization of data for
computing transfer entropy. Furthermore, the transfer
entropy computation requires a parameter τ to understand

Figure 7 This schematic diagram of how the number of
interacting (black solid ovals)/non-interacting agents (dotted ovals)
depends on cutoff distance. The shaded region represents the
interaction zone of the red-colored agent. For simplicity, it is assumed
that the interaction strength inside the interaction zone remains the
same and no interaction exists outside the shaded zone. As the cutoff
distance λ increases over interaction radius R, the number of non-
interacting agents increases.

Figure 6 Relative error landscape as a function of interaction radius R and data length T using (a) global minimum scheme, and (b) convexity
score scheme at η0=1.2π with δ=1×10–4 and M={M|2≤M≤30}. Global minimum scheme has high relative error compared to convexity score
scheme for shorter data length. Cross-marked boxes ‘NaN’ mean that the scheme fails to identify the interaction radius.
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the time scale of delay between the leader’s action and the
follower’s response. Without knowledge of a suitable τ, it is
not possible to infer leadership or interaction domain
precisely using transfer entropy. In addition, one
assumption of transfer entropy computation is stationarity,
which is not necessarily guaranteed in some systems.

Another drawback of transfer entropy is that it cannot
necessarily quantify the “flow of information”. Using a
simple binary model, it was demonstrated that the transfer
entropy between two processes is not localized in the way
that the expression of “transfer from one to another” [73],
hence transfer entropy is not appropriate to characterize
‘information flow’ in some cases. However, in recent works
[17,74], it is shown that transfer entropy can be
decomposed into two distinct modes of information flow,
namely intrinsic and synergistic. This intrinsic information
from X to Y is designed to extract solely the information
flow from X to Y, buried in transfer entropy. Hence, this
intrinsic information is more fundamental and appropriate
to describe information flow between two processes.

One example of a system which exhibits above-
mentioned challenges is the aggregation of dictyostelium
discoideum cells. Multiple variables characterize the cell
activity such as its direction of motion, its speed, and its
response to the chemotractant signal cAMP, and its release
of additional cAMP [75–77]. A single quantity e.g.,
direction of motion may not be enough to capture the entire
information flow in such a system. Furthermore, the
activity of dictyostelium discoideum cells in response to
cAMP changes over time. Lastly as real systems, it is not
clear what is a suitable τ or symbolization, and the ability
of the data to characterize information flow depends highly
on the time-resolution of the experiment and the variables
chosen for computing information flow. A fully systematic
approach to interring leadership from experimental data
should address the above issues and in general systems of
collectively moving agents.
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Appendix
From the model it is obvious that

p xt = 1 = p xt = 0 = 1
2.

Now,

p yt = 1 = ∑
xt

p yt = 1, xt

= ∑
xt

p yt = 1 xt p xt

= p yt = 1 xt = 1 p xt = 1
+ p yt = 1 xt = 0 p xt = 0

= p yt = 1 xt − 1 = 0 p xt = 1
+ p yt = 1 xt − 1 = 1 p xt = 0

= 1 − c
2 × 1

2 + 1 + c
2 ×  12

= 1
2 .

Similarly, one can easily find p yt = 0 = 1
2 . Now let us

compute the joint probability p(yt+1, xt). Here,

p yt + 1 = 1, xt = 1 = p yt + 1 = 1 xt = 1 p xt = 1

= 1 + c
2 × 1

2

= 1 + c
4

= p yt + 1 = 0, xt = 0

and, likewise

p yt + 1 = 1, xt = 0 = p yt + 1 = 0, xt = 1 = 1 − c
4 .

Hence,

TDMI X Y = MI yt + 1, xt

= ∑
yt + 1
∑

xt

p yt + 1, xt log2

p yt + 1, xt

p yt + 1)p(xt

= 1
2 1 + c log2 1 + c

+ 1 − c log2 1 − c .

One can also straightforwardly compute TDMI (Y→X):

TDMI Y X = MI xt + 1, yt

= ∑
xt + 1
∑

yt

p xt + 1, yt log2

p xt + 1, yt

p xt + 1)p(yt

= 1
2 1 + c log2 1 + c

+ 1 − c log2 1 − c .

To compute TEX→Y, first we need to determine the joint
probabilities p(yt+1, yt, xt). Here,

p(yt+1, yt, xt)=p(yt+1, yt|xt)p(xt)=p(yt+1|xt)p(yt|xt)p(xt), as yt+1
and yt are conditionally independent given xt. Hence,

p yt + 1 = 1, yt = 1, xt = 1 = p yt + 1 = 1 xt = 1
p yt = 1 xt = 1 p xt = 1

= p yt + 1 = 1 xt = 1
p yt = 1 xt − 1 = 0 p xt = 1

= 1 + c
2 × 1 − c

2 × 1
2

= 1 − c2

8

Likewise, one can find that,

p yt + 1 = 1, yt = 1, xt = 0 = p yt + 1 = 0, yt = 0, xt = 1
= p yt + 1 = 0, yt = 0, xt = 0

= 1 − c2

8 ,

p yt + 1 = 1, yt = 0, xt = 1 = p yt + 1 = 0, yt = 1, xt = 0

= (1 + c)2

8 ,

p yt + 1 = 0, yt = 1, xt = 1 = p yt + 1 = 1, yt = 0, xt = 0

= (1 − c)2

8 .

Again,

p yt + 1, yt = ∑
xt

p(yt + 1, yt, xt)

Hence,

p yt + 1 = 1, yt = 1 = p yt + 1 = 1, yt = 1, xt = 1
+ p yt + 1 = 1, yt = 1, xt = 0

= 1 − c2

8 + 1 − c2

8 = 1 − c2

4 .

Likewise,

p yt + 1 = 1, yt = 0 = p yt + 1 = 0, yt = 1 = 1 + c2

4 ,

p yt + 1 = 0, yt = 0 = 1 − c2

4 .

Finally, we can get

TEX Y = ∑
yt + 1
∑

yt

∑
xt

p yt + 1, yt, xt log2

p yt + 1, yt, xt p yt

p yt + 1, yt p yt, xt

= 1
2c 1 + c log2 1 + c − 1 − c log2 1 − c

− 1
2 1 + c2 log2 1 + c2 .
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