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Abstract: This study was designed to monitor circulating tumor DNA (ctDNA) levels during
perioperative chemotherapy in patients with non-metastatic gastric adenocarcinoma. Plasma samples
were prospectively collected in patients undergoing perioperative chemotherapy for non-metastatic
gastric adenocarcinoma (excluding T1N0) prior to the initiation of perioperative chemotherapy, before
and after surgery (NCT02220556). In each patient, mutations retrieved by targeted next-generation
sequencing (NGS) on tumor samples were then tracked in circulating cell-free DNA from 4 mL
of plasma by droplet digital PCR. Thirty-two patients with a diagnosis of non-metastatic gastric
adenocarcinoma were included. A trackable mutation was identified in the tumor in 20 patients, seven
of whom experienced relapse during follow-up. ctDNA was detectable in four patients (N = 4/19,
sensitivity: 21%; 95% confidence interval CI = 8.5–43%, no baseline plasma sample was available
for one patient), with a median allelic frequency (MAF) of 1.6% (range: 0.8–2.3%). No patient with
available plasma samples (N = 0/18) had detectable ctDNA levels before surgery. After surgery, one
of the 13 patients with available plasma samples had a detectable ctDNA level with a low allelic
frequency (0.7%); this patient experienced a very short-term distant relapse only 3 months after
surgery. No ctDNA was detected after surgery in the other four patients with available plasma
samples who experienced a later relapse (median = 14.4, range: 9.3–26 months). ctDNA monitoring
during preoperative chemotherapy and after surgery does not appear to be a useful tool in clinical
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practice for non-metastatic gastric cancer to predict the efficacy of chemotherapy and subsequent
relapse, essentially due to the poor sensitivity of ctDNA detection.

Keywords: circulating tumor DNA; gastric cancer; monitoring; minimal residual disease

1. Introduction

Gastric cancer displays significant global variation in incidence, with the highest rates observed
in Eastern Asia, Eastern Europe and South America [1]. The use of preoperative and postoperative
combination chemotherapy, in addition to surgery, has been shown to improve the overall survival of
non-metastatic gastric cancer patients [2]. Current treatment guidelines recommend that chemotherapy
should be administered for 2–4 months prior to surgery, and resumed thereafter, for a total of
about 6 months of chemotherapy [3,4]. Despite this combined treatment, the long-term survival
of non-metastatic gastric cancer remains limited, with a 36% 5-year overall survival rate [2]. While the
pathological response to preoperative chemotherapy has been associated with relapse-free and overall
survival [5], no biological or imaging tool is able to detect and quantify minimal residual disease,
i.e., residual cancer cells after chemotherapy and/or surgery that are responsible for subsequent
metastatic relapse.

Circulating tumor biomarkers have demonstrated their clinical validity in several non-metastatic
cancer types either as baseline prognostic biomarkers, as a monitoring tool during preoperative
chemotherapy and/or as a way to detect minimal residual disease [6–20].

This proof-of-concept study was designed to investigate the sensitivity and prognostic impact
of circulating tumor DNA (ctDNA) detection in non-metastatic gastric cancer patients undergoing
perioperative chemotherapy.

2. Results

2.1. Patients and Samples

Thirty-two patients, with a diagnosis of non-metastatic gastric cancer, were included in this
study between June 2014 and October 2016. Seventeen (53%) of these patients had locoregional nodal
dissemination at baseline imaging; other patient characteristics are shown in Table 1. Median follow-up
was 26 months (range: 11–35 months). A trackable mutation was found in 20 tumor samples (63% of
patients), most commonly TP53 mutations (Table 2). All patients received preoperative FOLFOX-based
chemotherapy, two patients also received trastuzumab and three patients received FOLFOX plus
nab-paclitaxel. Seven patients obtained a pathological complete response (22%), including four of the
20 (20%) patients with a trackable mutation. Seven patients in the cohort with a trackable mutation
experienced metastatic relapse during follow-up.

2.2. ctDNA Detection and Correlation with Patient Characteristics in Patients with a Trackable Mutation

Nineteen of the 20 patients with a trackable mutation were assessable for baseline ctDNA detection
before preoperative chemotherapy (Figure 1). A blood sample was collected before surgery for 18 out
of 19 patients and after surgery for 13 out of 19 patients (Figure 1, Table 2).
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Table 1. Patient characteristics.

Characteristics Whole Cohort
N = 32

Cohort with a
Trackable Mutation

N = 19

Patients with
Detectable Circulating
Tumor DNA (ctDNA)

at Baseline N = 4

Detectable versus
Undetectable ctDNA

at Baseline
p-Value

Age (years)
Median (range) 65 (36–78) 62 (45–78) 60 (45–70) N.S.

Gender
Male 24 (75%) 16 (84%) 4 (100%)

1Female 8 (25%) 3 (16%) 0 (0%)

T stage (baseline)
T1 3 (9%) 1 (5%) 0 (0%)

0.77
T2 8 (26%) 4 (21%) 1 (25%)
T3 18 (56%) 12 (63%) 2 (50%)
T4 3 (9%) 2 (11%) 1 (25%)

N stage (baseline)
N0 15 (47%) 9 (47%) 2 (50%)

1N+ 17 (53%) 10 (53%) 2 (50%)

Histology
Intestinal 26 (81%) 17 (89%) 4 (100%)

1Diffuse 6 (19%) 2 (11%) 0 (0%)

HER2 status
Positive 4 (13%) 2 (11%) 0 (0%)

1Negative 28 (87%) 17 (89%) 4 (100%)

Localization
Cardia 20 (63%) 14 (74%) 4 (100%) 0.54

(cardia versus others)Body 3 (9%) 1 (5%) 0 (0%)
Pyloric antrum 9 (28%) 4 (21%) 0 (0%)

MSI status
MSI-H 3 (9%) 1 (5%) 0 (0%)

1MSS 29 (91%) 18 (95%) 4 (100%)

Pathological
response
Complete 7 (22%) 4 (21%) 2 (50%)

0.18Non-complete 25 (78%) 15 (79%) 2 (50%)

Relapse
Yes 8 (25%) 7 (37%) 1 (25%)

0.52No 24 (75%) 12 (63%) 3 (75%)

Tumor staging was performed according to the 7th UICC TNM classification [21] using endoscopic ultrasound,
CT scan, PET/CT and laparoscopic staging. MSI: microsatellite instability; MSI-H: microsatellite instable; MSS:
microsatellite stable; N.S.: not significant.
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surgery; he obtained a minimal pathological response (ypT3N3) and experienced early metastatic 
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from the other four patients who experienced a later relapse (at 9.3, 10.3, 18.5 and 26 months). 
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Table 2. List of trackable mutations, mutant allelic frequency (MAF) of trackable mutations in tissue
and circulating tumor DNA according to time point.

P Gene Mutation
Tumor Analysis Circulating Tumor DNA Detection by

ddPCR

MAF
NGS

MAF
ddPCR

MAF
Before CT

MAF
After CT

MAF
After Surgery

1 TP53 c.158G>A p.W53X 26.5 26.0 0 0 NA
2 TP53 c.844C>T p.R282W 13.4 20.0 0 0 0
3 TP53 c.637C>T p.R213X 18.8 20.0 0 0 NA
4 TP53 c.817C>T p.R273C 13.3 13.5 0 0 NA
5 TP53 c.743G>A p.R248Q 11.5 16.0 2.1 0 0
6 TP53 c.743G>A p.R248Q 13.7 18.2 0 0 0.7
7 TP53 c.844C>T p.R282W 11.3 16.1 0 0 0
8 PIK3CA c.3140A>G p.H1047R 3.5 3.7 0 0 0
9 TP53 c.536A>G p.H179R 31.6 30.0 0 0 0

10 TP53 c.844C>T p.R282W 10.3 NA 1.16 0 NA
11 TP53 c.524G>A p.R175H 11.1 11.5 0 0 NA
12 KRAS c.38G>A p.G13D 12.4 12.0 0 NA 0
13 TP53 c.810T>G p.F270L 42.6 48.6 0 0 0
14 TP53 c.724T>C p.C242R 15.5 16.1 0 0 0
15 TP53 c.451C>T p.P151S 30.0 24.0 0 0 0
16 TP53 c.535C>T p.H179Y 16.1 15.7 0 0 0
17 TP53 c.733G>A p.G245S 5.6 6.2 0.8 0 0
18 TP53 c.659A>G p.Y220C 6.9 5.6 2.3 0 0

19 * ATM c.5644C>T p.R1882X 15.8 13.4 0 0 NA
19 * CTNNB1 c.110C>T p.S37F 5.3 4.0 0 0 NA

P: patient; NGS: next-generation sequencing; CT: chemotherapy; ddPCR: droplet digital PCR; NA: not available. *
Two trackable mutations were tested for patient 19. Bold highlights positive value.

At baseline, four out of 19 patients had detectable ctDNA (>0.1%); the droplet digital PCR (ddPCR)
technique displayed a sensitivity of 21% (95% CI = 8.5–43%) in this non-metastatic setting (Table 2).
ctDNA detection was not significantly associated with baseline clinical characteristics—two patients
had N+ disease (50% in ctDNA-positive versus 47% in ctDNA-negative, p = 1), none had HER2-positive
disease (0% versus 11%, p = 1). Among the four patients with detectable ctDNA, median mutant
allele frequency (MAF) was relatively low (1.6%, range: 0.8–2.3%). No correlation was observed
between baseline ctDNA detection and relapse, as only one patient in the baseline ctDNA-positive
group experienced relapse (n = 1/4, 25%) versus 6/15 patients in the ctDNA-negative group (40%), p =
0.52 (Fisher’s exact test).
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Figure 2. Circulating tumor DNA detection according to time point (baseline, before surgery, after
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After preoperative chemotherapy (i.e., before surgery), ctDNA was undetectable in all patients
(0%, n = 0/18, 95% CI = 0%–18%), including those with detectable ctDNA at baseline (Figure 2). After
surgery, ctDNA was detectable in one patient (n = 1/13, 95% CI = 1%–33%) with an MAF of 0.7%. No
ctDNA was detected in this patient at diagnosis (before preoperative chemotherapy) or before surgery;
he obtained a minimal pathological response (ypT3N3) and experienced early metastatic relapse 3
months after surgery. No ctDNA was detected after surgery in the available plasma samples from the
other four patients who experienced a later relapse (at 9.3, 10.3, 18.5 and 26 months).

3. Discussion

In this study, we report that ctDNA can detected by customized ddPCR assays in 20% of
non-metastatic gastric cancer patients prior to the initiation of preoperative chemotherapy.

The ctDNA detection rate for gastric cancers has been reported to be around 30–50% in
non-metastatic gastric cancer patients, and the ctDNA detection rate has been correlated with the stage
of the disease [11,22–24]. Only one study analyzed the monitoring of ctDNA in gastric cancers (other
than the detection of methylation in cell-free circulating DNA (cfcDNA)), and showed that three out of
10 patients (30%) with TP53 mutations in primary tumors showed detectable TP53 mutation levels in
the preoperative setting [24]. In our study, the 20% detection rate of ctDNA before therapy appears to
be lower than that reported in other non-metastatic cancer types, despite using the same approach
and ddPCR technique as those reported in other studies from our laboratory [13,17,20,25]. The lower
detection rate in the present study could be explained by the systematic laparoscopic assessment
of peritoneal metastasis, combined with extensive imaging workup to detect metastasis. This may
increase the proportion of truly non-metastatic patients, as ctDNA detection is correlated with tumor
burden [11,22,23]. More sensitive detection techniques, such as ultra-deep next-generation sequencing
using a unique molecular identifier bar-coding strategy, may need to be used [26]. However, the
mechanisms underlying this low detection rate have yet to be determined. By using a broader panel
of genes for sequencing, such as whole-exome sequencing, more patients could have benefited from
ctDNA monitoring (12 patients in this study could not be monitored). In addition, several trackable
mutations could have been detected for each patient, which could increase the detection sensitivity.
It is nevertheless important to monitor mutations considered as drivers, because passenger mutation
evolution is less representative of tumor evolution. Also, patients with different tumor mutations
may have a different clinical course, as these mutations can be prognostic. Another approach to
ctDNA detection based on the detection of circulating tumor methylation could be of interest in this
context [27,28]. In addition to ctDNA, other circulating tumor biomarkers such as circulating tumor
cells (CTC) and exosomes might be also relevant. However, the detection rate of CTC, as reported
in multiple studies [29–32], appears low in metastatic gastric cancer patients (e.g., less than half of
106 patients with advanced gastric cancer displayed ≥2 CTCs using CellSearch [33]), and precludes any
clinical use in non-metastatic gastric cancer patients. Lastly, exosome detection has gained increasing
interest, being potentially more sensitive than ctDNA in lung cancer [34], but only a few preliminary
reports are available on gastric cancers [35,36].

The most striking results of this study are that ctDNA levels dropped markedly in most patients
during chemotherapy. This is the first study to document this fall in ctDNA levels in gastric cancer
patients, although similar ctDNA kinetics have been reported in other cancer types, such as breast [17]
and rectal cancers [37]. This study highlights that ctDNA detection is not a reliable biomarker to
predict relapse in the neoadjuvant/preoperative setting, despite the use of a highly sensitive technique
(ddPCR), as ctDNA levels generally drop dramatically during chemotherapy, even in patients who
subsequently experienced relapse. However, as demonstrated in triple-negative breast cancer in the
neoadjuvant setting, the kinetics of non-detection of ctDNA could constitute a prognostic marker, but
requires early sampling that was not performed in this study [17].

ctDNA detection after surgery has been shown to be a very useful biomarker to predict relapse
in colon cancer [14] or melanoma [19]. All of these studies [14–16] also highlighted that the serial
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monitoring of ctDNA increased the sensitivity for prediction of relapse, compared to a single assay
after surgery. However, most of these reports had a short follow-up [14–16,38] and relapse in the
ctDNA-positive group mostly occurred during the first 12 months after surgery, as observed in one
patient in this study. This limited time interval between ctDNA detection and onset of clinical relapse
suggests that patients with detectable ctDNA already harbor micrometastatic disease, while the
presence of limited minimal residual disease and/or non-proliferating disseminated tumor cells cannot
be detected by means of the current technique. The question of whether residual ctDNA levels detected
after therapy reflect the presence of metastases that are already growing (but not initially detected by
imaging) or minimal residual disease (which may be quiescent) remains unresolved.

The main limitations of our proof-of-concept study are the small number of patients analyzed
and the low rate of trackable mutations detected in the cohort due to the NGS panel available at
our institution.

4. Material and Methods

4.1. Patients and Treatments

This prospective study (NCT02220556) included plasma samples from patients with
non-metastatic gastric cancer treated at Institut Mutualiste Montsouris and Institut Curie (Paris, France).
Eligibility criteria were: Histologically-proven gastric cancer; planned perioperative chemotherapy;
absence of distant metastasis (CT scan, PET/CT and laparoscopy); no history of invasive cancer.
Written informed consent to participate was obtained from all patients. Preoperative chemotherapy
consisted of six cycles of FOLFOX (5-fluorouracil and oxaliplatin). In addition to FOLFOX, some
patients received nab-paclitaxel in the context of a clinical trial, as well as trastuzumab in HER2-positive
cancers. Surgical resection was performed after preoperative chemotherapy and consisted of complete
or partial gastrectomy (or Lewis–Santy procedure whenever required). The same chemotherapy
regimen was resumed after surgery whenever possible. Patient characteristics, treatment and outcomes
were prospectively recorded. Tumor staging was performed according to the 7th UICC TNM
classification [21] using endoscopic ultrasound, CT scan, PET/CT and laparoscopic staging. Follow-up
included clinical evaluation and chest/abdomen/pelvis CT scan every 6 months during the first 3
years of follow-up, and annually thereafter.

4.2. Next-Generation Sequencing on Tumor Sample

Targeted next-generation sequencing was performed based on biopsy or gastrectomy, with a panel
of 39 cancer-related genes (see Table S1) using an Illumina HiSeq 2500 system. Library preparation
was performed as reported previously [25]. A depth of coverage of >50 reads was required for variant
calling, with thresholds of 1% for the alternate allele for the calling of SNVs/mutations, and 5% for
indels. Raw reads were aligned on the reference human genome hg19 using the TMAP aligner (v0.3.7
Life Technologies). The variants were annotated using ANNOVAR and the following databases:
COSMIC68, dbSNP137, 1000 genomes, ESP6500 and RefGene annotations. Only non-synonymous
variants not observed in >0.1% of the population (1000 genomes and ESP6500) were identified as
possible trackable somatic mutations. A trackable mutation in plasma was defined as a pathogenic
variant in a driver gene, with an MAF greater than 1% in the tumor and coverage of at least 300×.

4.3. ctDNA Detection

In this study, blood samples were collected before the initiation of preoperative chemotherapy,
before surgery and after surgery (<1 month). At each time point, 21 mL of blood was drawn in EDTA
tubes (three tubes) and processed within 1 h to obtain 6–8 mL of plasma after centrifuging blood at
820× g for 10 min. Plasma was transferred to 2 mL tubes and centrifuged at 16,000× g for 10 min to
remove debris, then stored at −80 ◦C until needed. Cell-free circulating DNA (cfcDNA) extraction
was performed on 4 mL of plasma using the QiaSymphony SP instrument and the QIAsymphony
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Circulating DNA kit (Qiagen), an automated technique, according to the manufacturer’s protocol.
cfcDNA was eluted into 60 µL of elution buffer and stored at −20 ◦C. cfcDNA was then subjected to
ctDNA detection by ddPCR (droplet digital PCR), using the cfcDNA equivalent to 2 mL of plasma.
Briefly, ddPCR assays matching the trackable somatic mutations found in tumor tissue were purchased
from Bio-Rad () and the analysis was performed using the dedicated platform develop by Bio-Rad
according to the manufacturer’s protocol. Briefly, for each sample, a total volume of 20 µL PCR reaction
mixture was prepared with 10 µL 2× Supermix for Probes without dUTP (Bio-Rad), 1 µL 20× target
primers/probe (Bio-Rad), 1 µL 20× wild-type primers/probe (Bio-Rad) and DNA sample/water qsp
20 µL. The PCR reaction mixture was portioned into droplets using the QX-100 Droplet Generator
(Bio-Rad) according to the manufacturer’s instruction. The droplets were then transferred to a 96-well
PCR plate and ddPCR was conducted using a C1000 Thermal Cycler (Bio-Rad) as follows: 95 ◦C for
10 min, 40 cycles of 94 ◦C for 30 s, 55 ◦C for 60 s and 10 min at 98 ◦C. The samples were then transferred
to a Bio-Rad QX-100 droplet reader and analyzed based on fluorescence intensity. The mutant allele
frequency (MAF) was calculated for each sample using QuantaSoft v1.7.4 software (Bio-Rad). Each
test contained at least one negative control well with no DNA and the corresponding tumor. The
performance and detection threshold of the ddPCR assays used in this study have been either reported
elsewhere [17,25] or validated by the manufacturer (Bio-Rad).

All ddPCR probes were therefore tested on primary tumor biopsy, and all trackable somatic
mutations identified by NGS were detectable with >1% MAF in all primary tumors with
ddPCR (Table 2).

4.4. Statistical Analyses

This hypothesis-generating study had no prespecified power. For nonparametric analysis,
chi-square or Fisher’s exact test were used for categorical variables, using GraphPad Prism.

4.5. Compliance with Ethical Standards

All applicable international, national, and/or institutional guidelines for the care and use of
animals were followed. All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and national research committee (ethical
approval: Comité protection des personnes, CPP, approval 04/01/2018 N◦29-15, study approval:
Agence Nationale de Sécurité du Médicament et des produits de santé (ANSM) approval 03/04/2015
N◦150221B-12) and with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. Informed consent was obtained from all individual participants included in the study.

5. Conclusions

In conclusion, ctDNA monitoring during preoperative chemotherapy and after surgery does not
appear to be a useful tool in clinical practice for non-metastatic gastric cancer to predict the efficacy
of chemotherapy and subsequent relapse, essentially due to the poor sensitivity of ctDNA detection,
despite using a highly sensitive method of ctDNA detection (MAF > 0.1%).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/396/s1,
Table S1: Targeted NGS panel genes.
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