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A B S T R A C T

Various human pathogenic viruses employ envelope glycoproteins for host cell receptor recognition and binding,
membrane fusion and viral entry. The spike (S) glycoprotein of betacoronavirus SARS-CoV-2 is a homotrimeric
class I fusion protein that exists in a metastable conformation for cleavage by host cell proteases furin and
TMPRSS2, thereby undergoing substantial structural rearrangement for ACE2 host cell receptor binding and
subsequent viral entry by membrane fusion. The S protein is densely decorated with N-linked glycans protruding
from the trimer surface that affect S protein folding, processing by host cell proteases and the elicitation of
humoral immune response. Deep insight into the sophisticated structure of SARS-CoV-2 S protein may provide a
blueprint for vaccination strategies, as reviewed herein.

1. Introduction

Coronaviruses, such as pandemic SARS-CoV and SARS-CoV-2, are
highly pathogenic for humans and can induce a severe acute respiratory
syndrome (SARS). Infection with SARS-CoV-2 which emerged in
December 2019 in Wuhan, China, can progress to severe pneumonia,
multi organ failure and death (COVID-19 disease) [1–3]. Like other
human pathogenic enveloped viruses, coronaviruses use unique en-
velope protein complexes for host cell receptor recognition and binding,
and subsequent viral and host cell membrane fusion, leading to cell
entry [4–10]. Host cell entry of coronaviruses is mediated by a trans-
membrane homotrimeric class I fusion glycoprotein, the spike protein
(S protein), which exists in a metastable prefusion conformation and
comprises two functional subunits for binding to the host cell receptor
angiotensin-converting enzyme 2 (ACE2) (S1 subunit) and for fusion of
the viral and host cell membranes (S2 subunit) [11,12]. The S protein of
SARS-CoV is cleaved by a host cell protease, the transmembrane pro-
tease/serine subfamily member 2 (TMPRSS2), an airway and alveolar
cell serine protease preferentially expressed on epithelial cells of the
respiratory tract, such as type II pneumocytes [13–15]. TMPRSS2-
mediated cleavage and priming of SARS-CoV S protein is required for
binding to ACE2, membrane fusion and cell entry that requires a con-
certed action of a viral and host cell machinery comprising S protein,
TMPRSS2 and ACE2 [13–15]. SARS-CoV-2 also employs TMPRSS2 for
priming of its S protein (S) and S-driven cell entry via ACE2 [16–21].

Further, the S1/S2 boundary of SARS-CoV-2 S harbors multiple arginine
residues not found in SARS-CoV and SARS-CoV-related S proteins. This
S1/S2 boundary constitutes the cleavage site for the subtilisin-like host
cell protease furin, which is ubiquitously expressed in humans
[18,19,22].

The distal S1 subunit of S comprises the receptor-binding domains
(RBDs) and contributes to stabilization of the prefusion state of the
membrane-anchored S2 subunit that contains the fusion machinery
[19]. For ACE2 receptor engagement, the RBDs located at the apex of
S1 undergo hinge-like conformational movements that transiently ex-
pose (open status, “up”) or hide (closed status, “down”) the subdomains
required for receptor binding, whereby the open status allows for re-
ceptor engagement, followed by shedding of S1 and refolding of S2 for
membrane fusion [18,19]. Although the RBDs of the S1 subunit are
more exposed on the viral surface than the S2 fusion machinery and are
likely to be subject to selection pressure from immune surveillance, the
S2 fusion machinery is densely decorated with heterogeneous N-linked
glycans protruding from the S2 surface that may interfere with the
elicitation of humoral immune responses and the accessibility to neu-
tralizing antibodies [19]. In addition, the RBDs of S1 also contain N-
linked glycans and unexpected O-linked glycans attached to the surface
of S1 RBDs that also may interfere with the elicitation of neutralizing
antibodies upon immune exposure or vaccination [23,24]. In in-
dividuals convalescent from COVID-19, the adaptive immunity to
SARS-CoV-2 is largely mediated by CD4+ T cells with a T cell receptor
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repertoire specific for S epitopes, leading to the robust generation of
neutralizing IgG, IgM and IgA antibodies against the RBDs and the
ectodomain trimer of S1 [25,26]. Further, a recently designed human
monoclonal IgG1 neutralizing antibody raised against and binding to a
conserved epitope of the RBDs of S prevents infection of host cells [27],
finally underscoring that understanding the structural features of S is
key for vaccine design and development against SARS-CoV-2 infection.

2. Structural features of the SARS-CoV-2 S protein

Using sophisticated approaches, including high-resolution cryogenic

electron microscopy (cryo-EM) at< 4.0 Å, the labs of McLellan and
Veesler recently uncovered the structural properties of SARS-CoV-2 S
protein (S) [18,19] (Fig. 1A–C). S constitutes a tramsmembrane
homotrimeric glycoprotein of ~180 kDa that belongs to the class I of
trimeric fusion proteins found in other human pathogenic cor-
onaviruses, including MERS-CoV and SARS-CoV. S is composed of two
subunits, the apical V-shaped S1 ectotrimer subunit that harbors one
ACE2-recognition motif per monomer (the receptor binding domain,
RBD), and the S2 subunit required for fusion of the viral and cellular
membranes (Fig. 2B, left) after being processed by the host cell protease
furin at a polybasic cleavage site (with a four amino acid residue

Fig. 1. Structural features of the SARS-CoV-2 spike
(S) protein. (A) Ribbon diagram of the homotrimeric
S, adopted from [19], (with permission from Elsevier
Inc.). (B) Side view of the prefusion structure of S,
with a single RBD in open (“up”) conformation
(green), adopted from [18], (with permission from
Science.org). (C) Top view of the prefusion structure
of S, with two single RBDs in closed (“down”) con-
formation (white and grey) and one single RBD in
open (“up”) conformation (green), adopted from
[18], (with permission from Science.org). (D) Single
monomer of S, with the RBD in closed (“down”)
conformation (green), adopted from [18], (with
permission from Science.org). (E) Single monomer of
S, with the RBD in open (“up”) conformation
(green), adopted from [18], (with permission from
Science.org). (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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insertion, RRAR, at positions 681–684) that harbors multiple arginine
residues and is located at the boundary between the S1 and S2 subunit
[18,19,22]. Such polybasic cleavage sites are present in S proteins of
human low pathogenic coronaviruses OC43 and HKU1, and in the S
protein of the human high pathogenic coronavirus MERS.CoV [22], but
are not present in SARS-CoV and SARS-CoV-related group 2b betacor-
onaviruses found in humans, civets, raccoon dog, pangolin and bats that
possess a monobasic S1/S2 cleavage site processed upon entry of host
cells [14,19,22,28–32]. The polybasic cleavage site of S may contribute
to the high virulence of SARS-CoV-2, because furin and furin-like

proteases required for proteolytic activation of S are ubiquitously ex-
pressed in humans, providing expanded tissue tropism of SARS-CoV-2
[18,19,22]. All 9 N-linked glycans protruding from the surface of one
S2 monomer (Fig. 2A, right, Fig. 2B, right) are conserved among SARS-
CoV and SARS-CoV-2, and the N-linked glycosylation sequons in S2 are
mostly conserved across glycoproteins of SARS-CoV-related viruses
[19], suggesting that these structures of S2 interfere with the elicitation
of neutralizing antibodies and promote immune evasion [24].

The S1 subunit of S is a 160-Å-long ectodomain trimer with a tri-
angular cross-section [19] (Fig. 2A, left, Fig. 2B, left). At the apex of

Fig. 2. N-linked glycosylation of S, and the RBD of S
binding to ACE2. (A) left: top view of the S1 homo-
trimer, with N-linked glycans as dark blue spheres;
(A) right: bottom view of the S2 homotrimer, with N-
linked glycans as dark blue spheres. Adopted from
[19], (with permission from Elsevier Inc.). (B) Left:
top view of the S1 homotrimer, with N-linked gly-
cans colored according to their oligomannose con-
tent (green to pink), with the ACE2 binding site in
light blue. (B) Right: side view of the S homotrimer,
with N-linked glycans colored according to their
oligomannose content (green to pink), with the
ACE2 binding site in light blue, and the S1 (light
grey) and S2 (dark grey) subunits. Adopted from
[36], (with permission from Science.org). (C) The
RBD (light blue), with its twisted five-stranded an-
tiparallel β sheet of β1, β2, β3, β4 and β7 strands,
binding to the bottom side of the small lobe of ACE2
(green helices). Adopted from [34], (with permission
from Nature.com). (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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each S1 monomer, one RBD for ACE2 engagement is located. The RBDs
undergo hinge-like conformational movements that transiently expose
(open or “up” status) (Fig. 1B, C, E) or hide (closed or “down” status)
(Fig. 1C, D) the determinants of receptor binding; the open status is
required for ACE2 engagement [18,19].

The structural features of the RBD required for binding to ACE2
were recently determined using high-resolution X-ray crystallography
[33,34] (Fig. 2C). Therefore, the RBD (residues Arg319-Phe541) and
the N-terminal peptidase domain of ACE2 (residues Ser19-Asp615)
were expressed in insect cells and subsequently purified. The structure
of the complex was determined by molecular replacements using the
RBD of SARS-CoV S and domains of ACE2 as search models, and was
refined to a resolution of 2.45 Å [33]. The final complex contained
residues Thr333-Gly526 of the RBD of SARS-CoV-2 S and residues
Ser19-Asp615 of the ACE2 N-terminal peptidase domain [33]. This
strategy revealed that the RBD of SARS-CoV-2 S contains a twisted five-
stranded antiparallel β sheet of β1, β2, β3, β4 and β7 strands with
connecting helices and loops that build the core of the RBD [33]. In the
core, between the β4 and β7 strands, there is an extended insertion
which contains short β5 and β6 strands and α4 and α5 helices and
loops. This extended insertion constitutes the receptor-binding motif
(RBM) of the RBD that contains the contacting residues that bind to
ACE2 [33]. The extended RBM contacts the bottom side of a small lobe
of ACE2, with a concave outer surface in the RBM that accommodates
the N-terminal helix of ACE2 [33,34] (Fig. 2C, blue part). Compared to
the RBM of SARS-CoV S, the RBM of SARS-CoV-2 S forms a larger
binding interface and more contacts with ACE2 as well as higher
binding affinity to ACE2 (equilibrium dissociation constant, KD, 4.7 nM
versus 31 nM, respectively) [33–35], pointing out the higher infectivity
and virulence of SARS-CoV-2 compared to SARS-CoV.

The S gene encodes 22 N-linked glycan sequons per monomer that
affect S protein folding, processing by host cell proteases, elicitation of
humoral immune response, and immune evasion [36]. Monomers of the
S1 subunit are slightly more decorated with N-linked glycans (13)
(Fig. 2A, left; Fig. B, left) than S2 monomers (9) (Fig. 2A, right; Fig. 2B,
right), finally existing 66 N-linked glycans at N-linked glycosylation
sites in one S homotrimer [19,36] (Fig. 2B, right). Compared to spike
proteins of other human pathogenic coronaviruses, including HCoV-
NL63 [37], MERS-CoV and SARS-CoV [38], and viral envelope glyco-
proteins, such as HIV-1 envelope glycoprotein [39] and Lassa virus GPC
[40], S is less densely glycosylated [36] that may limit immune evasion
and promote the elicitation of humoral immunity.

3. Humoral immunity against S

Extensive coronavirus S protein glycan shielding that obstructs the
protein surface contributes to epitope masking and immune evasion by
hiding specific epitopes from antibody neutralization [36–38]. Since S
is less densely decorated with N-linked glycans compared to S proteins
of other human pathogenic coronaviruses [36–38], S is likely to be
highly immunogenic and a major target of neutralizing antibodies.
Despite the high degree of structural homology between the S protein
RBD of SARS-CoV and SARS-CoV-2, certain existing monoclonal anti-
bodies raised against the SARS-CoV RBD (S230, m396, and 80R) failed
to bind the RBD of SARS-CoV-2 S [18,33], suggesting that antibody
cross-reactivity may be limited between the RBD of SARS-CoV and
SARS-CoV-2. In contrast, sera obtained from patients convalescent from
SARS-CoV infection, and rabbit sera raised against the S1 subunit of
SARS-CoV S protein inhibited S-driven entry into simian Vero target
cells [16]. Sera from mice immunized with a stabilized SARS-CoV S
protein also significantly inhibited cell entry of SARS-CoV-2 into target
cells [19], indicating that cross-neutralizing antibodies targeting con-
served epitope of S proteins can be elicited upon vaccination. This is in
line with the recent finding that CR3022, a human antibody isolated
from a convalescent SARS-CoV patient and targeting the RBD of SARS-
CoV S protein, binds to a highly conserved epitope distal from the ACE2

receptor binding site that enables cross-reactive binding between SARS-
CoV-2 and SARS-CoV S proteins. Structural modeling approaches fur-
ther demonstrate that the binding epitope can only be accessed by
CR3022 when at least two RBDs of S protein are in the open con-
formation and slightly rotated [41]. Similar and extended results were
obtained using a monoclonal antibody (S309) isolated from a con-
valescent SARS-CoV individual that potently neutralizes SARS-CoV-2 by
engaging the RBD of S [42], indicating cross-neutralization by anti-
bodies obtained from convalescent SARS-CoV individuals on SARS-
CoV-2 by engagement of conserved S protein epitopes.

Consequently, monoclonal antibodies obtained from convalescent
SARS-CoV-2 (COVID-19) individuals display neutralization activities
against SARS-CoV-2 by targeting highly immunogenic epitopes of S,
such as the RBD. In individuals convalescent from COVID-19, adaptive
immune responses to SARS-CoV-2 are mediated by CD4+ T cells with a
T cell receptor repertoire specific for S epitopes, leading to the robust
generation of neutralizing IgG, IgM and IgA antibodies against the RBD
and the ectodomain trimer of S [25,26]. By high-throughput single-cell
RNA and VDJ sequencing of antigen-enriched B cells from 60 con-
valescent patients, various potent neutralizing antibodies were identi-
fied with the most potent one, BD-368-2, exhibiting strong neutralizing
activity against SARS-CoV-2 [26]. Other monoclonal antibodies, B38
and H4, isolated from an individual convalescent from COVID-19 dis-
play neutralizing activity against SARS-CoV-2 by binding to the RBD-
ACE2 interface [43], and RBD-specific monoclonal antibodies derived
from single B cells of SARS-CoV-2 infected individuals exhibit potent
neutralization activity that correlates with their competitive capacity
with ACE2 for RBD binding [44]. Surprisingly, these monoclonal anti-
bodies failed to bind the RBD of SARS-CoV and MERS-CoV S proteins
[44], pointing out their specificity to the RBD of S.

A recently developed hybridoma-derived humanized monoclonal
IgG1 neutralizing antibody (47D11) binds to the receptor-binding
subdomain (residues 438–498) of S that loops out from the antiparallel
β sheet core domain structure of the RBM of S that directly engages the
binding domain of ACE2 [27]. Infection of simian VeroE6 cells with
SARS-CoV-2 was effectively inhibited and neutralized at an IC50 value
of 0.57 μg/ml [27], demonstrating high neutralizing activity of 47D11.
Immunization of llama camelids, which are able to produce heavy-
chain-only antibodies with a single variable domain (VHH) instead of
two variable domains (VH and VL) that make up the equivalent antigen-
binding fragment (Fab) of conventional immunoglobulin G (IgG) anti-
bodies, with prefusion-stabilized SARS-CoV-1 S protein and MERS-CoV
S protein in an alternating mode, resulted in the obtainment of cross-
neutralizing VHHs targeting the RBD of S [45]. After engineering the
VHH antibody into a bivalent Fc-fusion, the antibody construct was
able to neutralize SARS-CoV-2 S pseudoviruses [45], revealing that S
proteins of various coronaviruses including SARS-CoV-2 are highly
immunogenic and can elicit effective humoral immune responses across
mammalian species.

Recent work describes detection and isolation of potent neutralizing
monoclonal antibodies from humans convalescent from SARS-CoV-2
infection and COVID-19 disease that may be engineered and used for
passive immunization and therapeutic intervention [44,46–49]. For
instance, monoclonal antibodies derived from single B cells of SARS-
CoV-2 infected individuals showed potent anti-SARS-CoV-2 neu-
tralization activity that correlated with their competitive capacity with
ACE2 for RDB binding [44]. SARS-CoV-2-neutralizing monoclonal an-
tibodies isolated from infected patients hospitalized with severe COVID-
19 disease displayed strong binding to the RBD and the N-terminal
domain (NTD) of S, indicating that both of these S epitopes at the apex
of S are highly immunogenic [46]. Another recent study demonstrated
exclusive NTD specificity (epitope 4A8 of NTD) of neutralizing mono-
clonal antibodies isolated from convalescent COVID-19 patients [47],
whereas predominant molecular targets of neutralizing monoclonal
antibodies isolated from convalescent COVID-19 patients seem to be
epitopes of the RBD of S [48,49] that correlates with the adaptive
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CD4+ T cell-mediated immune response to the RBD of S [25].

4. Vaccination strategies using S

Outbreak and pandemic of the betacoronaviruses SARS-CoV (2002/
2003 in China) and MERS-CoV (2012 in Saudi Arabia) has led to the
design and development of vaccination strategies mainly using re-
combinant viral S proteins as antigen [50–52].

Due to its high antigenicity and its proven ability to elicit robust
humoral immune responses and neutralizing antibodies in individuals
convalescent from SARS-CoV-2 infection and COVID-19 disease
[25,26,43,44], S appears as an ideal candidate for vaccination against
SARS-CoV-2 infection [53–56], and constitutes an improved im-
munogen when stabilized in its prefusion conformation [18]. In a high-
yield production approach, more than 100 structure-guided S variants
based upon a previously determined cryo-EM structure of the prefusion
S were designed, expressed and produced in Chinese hamster ExpiCHO
cells [57]. The best prefusion S variant, termed HexaPro, was extremely
stable in the prefusion state, retained the S2 subunit conformation and
preserved its high antigenicity due to its stable prefusion conformation
[57].

Recently, two synthetic DNA-based vaccine candidates expressing
different forms of S were developed and investigated in rhesus maca-
ques [58], and mice and guinea pigs [59]. A series of prototype DNA
vaccines expressing six variants of the S: 1) full-length S, 2) deletion of
the cytoplasmic tail of S, 3) deletion of the transmembrane domain and
cytoplasmic tail reflecting the soluble ectodomain of S, 4) S1 domain
with a foldon trimerization tag, 5) RBD of S with a foldon trimerization
tag, and 6) a prefusion stabilized soluble ectodomain of S with deletion
of the furin cleavage site, two proline mutations and a foldon trimer-
ization tag, were produced [58]. Adult rhesus macaques in groups of 4
animals were immunized with one of the six prototype DNA vaccines,
respectively, and each animal received 5 mg DNA vaccine by the in-
tramuscular route without adjuvant at week 0 and week 3; ten animals
not vaccinated served as control group [58]. After a boost immuniza-
tion at week 5, S-specific binding antibodies and neutralizing antibodies
(NAb) could be obtained from the animals, with median titers of the
NAb comparable in the magnitude to NAb titers in a cohort of 9 con-
valescent macaques and in a cohort of 27 humans convalescent from
SARS-CoV-2 infection [58]. Further, a Th1-biased cellular immune re-
sponse of S-specific IFN-γ + CD4+ T cells to pooled S peptides was
detected in the majority of vaccinated animals at week 5 [58]. Three
weeks after the boost immunization, animals of the vaccine group and
the control group were challenged with SARS-CoV-2, administered by
the intranasal and the intratracheal route. In the broncho-alveolar la-
vage (BAL) and nasal swabs (NS) of the control group, high levels of
viral RNA could be detected as compared to significant lower viral RNA
levels in the vaccine group, and 8 of 25 vaccinated animals exhibited no
detectable viral RNA in BAL and NS at any timepoint following the
challenge [58], demonstrating high protective efficacy of the S-ex-
pressing DNA vaccine against intranasal and intratracheal SARS-CoV-2
infection in rhesus macaques.

In a similar study, a synthetic DNA plasmid, termed pGX9501/INO-
4800, was designed to encode S that matches with> 99.9% amino acid
sequence identity of the recently published S sequences [59]. In-
tramuscular administration of INO-4800 in Balb/c mice on days 0 and
14 resulted in the elicitation of neutralizing IgG antibodies at day 21
that bind to S protein antigens, including S1 and S2 subunits, and RBD,
as well as to the S-ACE2 interface, with limited cross-reactivity to SARS-
CoV S protein antigens [59]. Similar results were obtained with INO-
4800 in Hartley guinea pigs. Neutralizing antibodies were found in the
BAL fluids of the animals at day 28 after vaccination, revealing strong
lung tropism [56]. Moreover, a cellular immune response against S
epitopes mediated by CD4+ and CD8+ IFN-γ + T cells was detected
on day 14 after vaccination [59].

Furthermore, a vaccine candidate consisting in chimpanzee-derived

adenoviral vector (ChAdOx1), expressing full-length S (GenBank ac-
cession number YP_009724390.1) and termed ChAdOx1 nCoV-19, has
been shown to induce a robust humoral and cellular immune response
in rhesus macaques after a single vaccination [60]. S-specific neu-
tralizing antibodies and T-cell responses against full-length S could be
detected 14 days post vaccination. A significantly reduced viral load in
broncho-alveolar lavage fluid and respiratory tract tissue of vaccinated
animals challenged with SARS-CoV-2 compared with control animals,
and no pneumonia was observed in vaccinated rhesus macaques [60].
ChAdOx1 nCoV-19 is currently under investigation in a phase II/III
clinical trial in the UK [60].

In a dose-escalation, open label, non-randomized, first-in-human
trial, 108 healthy humans with mean age of 36 years received single
low dose (n = 36), middle dose (n = 36) and high dose (n = 36) of a
recombinant replication-defective adenovirus type-5 (Ad5) vectored
vaccine expressing S, with full-length S gene based on Wuhan-Hu-1
strain (GenBank accession number YP_009724390) [61]. This resulted
in the occurrence of frequent (in more than 80% of the participants)
adverse reactions within the first 7 days after vaccination, including
fever, fatigue, headache and muscle pain, but elicited robust cellular
and humoral immune responses, with neutralizing antibodies binding
to the RBD of S (from day 14, peaking at 28 after vaccination), and
CD4+ and CD8+ T cells specific for S epitopes (from day 14 after
vaccination) [61]. These inaugural results suggest that vaccination of
humans using S as antigen will be successful. Consequently, a phase II
clinical trial with Ad5 at low or middle dose has started in China [62],
and Canada has approved a phase I/II clinical trial in humans with Ad5
[63]. However, pre-existing immunity against the Ad5 vector could
reduce immunogenicity, potentially limiting efficacy in populations in
which adenovirus type-5 is endemic, with a reported seroprevalence of
30–80% [64,65].

Currently, other vaccine candidates based on S or its RBD are in
rapid development (Table 1), and different antigen delivery platforms,
including recombinant protein vaccines, replicating or non-replicating
viral-vector-based vaccines, and DNA or mRNA vaccines are under in-
vestigation [53–56,66–69]. An overview of the current status of the
pipeline of COVID-19 vaccine candidates is provided in Ref. [55] and
Refs. [66–69]. For example, phase I/II clinical first-in-humans trials
using m-RNA vaccines encoding full-length S, the RBD of S [70–72] or a
recombinant trimeric S subunit for vaccination [73] have been started
recently (Table 1), pointing out a pivotal role of S and its RBD for
vaccination against SARS-CoV-2.

5. Conclusion

The outbreak of coronavirus SARS-CoV-2 in Wuhan, China, in
December 2019, the cause of COVID-19 disease, represents a pandemic
threat to global health and has major consequences on global economy
if SARS-CoV-2 spread and virulence is not contained, or effective
treatments are not developed [74]. The pandemic has spread to more
than 188 countries with more than 10,000,000 confirmed cases, more
than 500,000 confirmed deaths and more than 5,000,000 total re-
coveries worldwide as of June 30th 2020 [75]. Since no specific drug
against SARS-CoV-2 infection or COVID-19 disease is available or ap-
proved to date [76,77], it is mandatory to rapidly develop and provide
successful vaccines against SARS-CoV-2 that should be available soon
for large populations. Usually, it takes 10–15 years of vaccine devel-
opment by the classical way, using inactivated or live attenuated vac-
cines after the generation of long-term safety and efficacy data [78–80].
Clinical development of vaccines begins with phase I trials to evaluate
the safety of vaccine candidates, followed by phase II trials to establish
doses and formulations to prove efficacy, and finally followed by phase
III trials to prove and demonstrate safety and efficacy in larger human
cohorts [53]. In an extraordinary situation like the COVID-19 pan-
demic, this procedure should be compressed, and an accelerated reg-
ulatory approval pathway might be developed [53].
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The spike protein of SARS-CoV-2 (S) is a homotrimeric class I fusion
protein protruding from the viral surface that is required for host cell
receptor (ACE2) recognition and binding, and fusion of the viral and
cellular membrane, leading to viral cell entry. Since S is highly exposed
on the viral surface, it is likely to be subject to immune surveillance by
T cells and professional antigen-presenting cells, leading to the elici-
tation of neutralizing antibodies against specific epitopes and domains
of S. This is finally not surprising, because the human cellular and
humoral immune system is capable of generating a response very spe-
cific to the structure of a foreign invading virus or protein, and the
general adaptive immune response consisting of antigen capture and
presentation by professional antigen-presenting cells, followed by T cell
receptor-mediated antigen recognition and B cell-driven production of
antibodies specific for the given antigen, is fortunately also operative in
SARS-CoV-2 infection, obviously by choosing S epitopes as major an-
tigens [25,81,82].

S is less densely decorated with N-linked glycans compared to S
proteins of other human pathogenic coronaviruses, which display ex-
tensive S protein glycan shielding that obstructs the protein surface and
thereby contributes to epitope masking and immune evasion.
Therefore, S appears highly immunogenic and as a target for vaccina-
tion. In fact, a considerable number of recent studies discussed herein
have demonstrated high immunogenicity of S and its RBD, leading to
adaptive T cell-mediated immune responses and, finally, to the elici-
tation of neutralizing antibodies in humans and various mammals that
can prevent SARS-CoV-2 infection and rechallenge.

In conclusion, deep understanding of the structural features of S will
facilitate the design and development of successful vaccines against
coronavirus SARS-CoV-2 for large populations.
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