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Identification of 31 loci for mammographic density
phenotypes and their associations with breast
cancer risk
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Mammographic density (MD) phenotypes are strongly associated with breast cancer risk and

highly heritable. In this GWAS meta-analysis of 24,192 women, we identify 31 MD loci at P <

5 × 10−8, tripling the number known to 46. Seventeen identified MD loci also are associated

with breast cancer risk in an independent meta-analysis (P < 0.05). Mendelian randomization

analyses show that genetic estimates of dense area (DA), nondense area (NDA), and percent

density (PD) are all significantly associated with breast cancer risk (P < 0.05). Pathway

analyses reveal distinct biological processes involving DA, NDA and PD loci. These findings

provide additional insights into the genetic basis of MD phenotypes and their associations

with breast cancer risk.
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Percent density (PD), the percentage of the breast area that
appears radiodense or light on a mammogram, is one of the
strongest risk factors for breast cancer, but the biological

basis for this association is poorly understood1,2. Women with
≥75% density on a mammogram have a 4 to 5-fold increased risk
of breast cancer compared to women with little or no dense
tissue, independent of other known risk factors2,3. PD is a com-
posite of two phenotypes: the dense area (DA) reflecting the
amount of fibroglandular tissue in the breast, and the nondense
area (NDA) consisting of predominantly fatty tissues that appear
radiotranslucent or dark on a mammogram4. Recent studies have
shown that NDA is associated with decreased breast cancer risk
independently of DA, suggesting that breast adipose tissues play
an important role in normal mammary gland growth and
function5,6. PD, DA, and NDA each have heritability estimates of
over 50% in twin studies7–9. However, only 15 independent
genome-wide significant loci with P < 5 × 10−8 have been iden-
tified to date, together explaining less than 1-3% of the total
variance of mammographic density (MD) phenotypes10–14.

In this genome-wide association study (GWAS) meta-analysis
of 24,192 women screened with full-field digital mammography
(FFDM), we identify 31 MD loci, of which 17 also are associated
with breast cancer in an independent study of over 200,000 breast
cancer cases and controls15. These findings triple the total
number of independent genome-wide significant MD loci now
mapped to 46, enabling the first genetic pathway analyses and
Mendelian randomization analyses to evaluate the causal nature
of the association of MD phenotypes with breast cancer risk.
Pathway analyses reveal distinct biological processes involving
DA, NDA, or PD loci. Mendelian randomization analyses show
that genetic estimates of DA, NDA, and PD are all significantly
associated with breast cancer risk. These findings provide addi-
tional insights into the genetic basis of MD phenotypes and their
relationship with breast cancer risk.

Results
GWAS of MD phenotypes. This GWAS meta-analysis comprised
a total of 24,192 non-Hispanic white women with MD pheno-
types measured centrally using Cumulus software16. The first
study included 20,311 women screened using Hologic FFDM
machines, and the second study included an independent sample
of 3881 women screened using General Electric (GE) FFDM
machines. Women in the GE cohort were 2.7 years younger, had
lower BMI, and were less likely to be postmenopausal compared
with women in the Hologic cohort (Supplementary Table 1). On
average, DA was 1.1 cm2 higher, NDA 31.2 cm2 lower, and PD
4.0 percentage points higher in the GE cohort compared with the
Hologic cohort (Supplementary Fig. 1). PD, computed by DA
divided by the total breast area (DA+NDA), was strongly cor-
related with DA (R, 0.8) and NDA (R,−0.8), and DA was
moderately negatively correlated with NDA (R,−0.35) in both
cohorts, as expected.

In the Hologic study, 37 SNPs were associated with MD
phenotypes at P < 5 × 10−8. In the GE study, 3 of these SNPs
could not be confirmed and were excluded, while 18 additional
SNPs with P < 5 × 10−5 in the Hologic study reached genome-
wide significance in the combined meta-analysis. In total, 52
SNPs at 40 independent chromosomal regions (loci) were
associated with DA, NDA, and/or PD in the same directions in
both studies, and met the conventional genome-wide significance
threshold of P < 5 × 10−8 (Fig. 1). The genomic inflation factors
for the GWAS meta-analyses of DA, NDA, and PD were 1.06,
1.08, and 1.07, respectively, indicating that there was little
evidence of uncontrolled population substructure (Supplementary
Fig. 2).

We identified 39 previously unreported MD SNPs at 31
independent loci, including 16 SNPs for DA, 13 for NDA, and
12 for PD with P < 5 × 10−8 in the GWAS meta-analysis, adjusting
for ln(BMI), age at mammography, and principal components of
European ancestry (Table 1, Supplementary Table 5). A single SNP
showed the strongest association with both DA and PD at two loci
(2q35, 6p22.3). Of the 16 DA loci, one (3p25.2) was also
significantly associated with both NDA and PD, five (2p24.1,
2q35, 4q28.1, 6p22.3, 19q13.33) were also associated with PD but
not NDA, and 10 were associated with DA only. Of the 13 NDA
loci, one (3p25.2) was also significantly associated with both DA
and PD, three (2p23.3, 10q21.2(1), 11q24.3) were also associated
with PD but not DA, and nine were associated with NDA only.
Sensitivity analyses of the NDA SNPs showed that all 13 remained
significant after additional adjustment for BMI using three
polynomial terms (BMI, BMI2, and BMI3) in addition to ln
(BMI); and only 2 of the 13 NDA SNPs (rs6718628 and
rs4132228) were associated with BMI at P < 0.05 in models
unadjusted for BMI (Supplementary Table 13). Of the 12 PD loci,
nine were also significantly associated with DA and/or NDA, and
three (8p12, 13q13.3, 15q26.1) were associated with PD only.
These three SNPs had opposite directions of association with DA
and NDA that were not genome-wide significant when analyzed
separately, but reached statistical significance for the PD composite
measure of DA and NDA. Analyses stratified by menopausal status
showed that MD SNP effects were similar in premenopausal and
postmenopausal women (Supplementary Table 15).

We confirmed associations with SNPs at 13 of 15 previously
identified MD loci10–14 at P < 0.05, nine of which reached
genome-wide significance in this study (Supplementary Table 7).
Of the two remaining prior loci, rs7289126 at the TMEM184B
locus on 22q13.1 had suggestive associations with DA (P= 0.085)
and PD (P= 0.083) in the same directions as previously
reported13. However, rs3817198 at the LSP1 locus on
11p15.5 showed no evidence of association, although the
imputation accuracy was relatively low for this SNP (imputation
r2= 0.55). We also report new MD phenotype associations at P <
5 × 10−8 with SNPs at five prior loci. At the MTMR11 locus on
1q21.1 previously associated with PD12, we found that
rs11205303 was associated with both DA (P= 6.8 × 10−20) and
PD (P= 1.5 × 10−11). At the RALB/INHBB locus on 2q14.2
recently associated with absolute dense volume10, we found that
rs4849864 was associated with NDA (P= 2.6 × 10−13) and
rs17625845 was associated with DA (P= 2.8 × 10−9). At the
AREG locus on 4q13.3 previously associated with DA13, we found
that rs71219402 was associated with NDA (P= 1.4 × 10−8) while
rs149689338 was the lead SNP for DA (P= 8.2 × 10−10). At the
PRDM6 locus on 5q23.2 previously associated with PD13, we
found that rs335160 was associated with DA (P= 6.7 × 10−14)
while rs335143 was the lead SNP for PD (P= 1.0 × 10−8). At the
MRTFA (or MKL1) locus on 22q13.1-22q13.2 previously
associated with DA13, we found that rs73169057 was associated
with NDA (P= 9.6 × 10−9) while rs6001984 was the lead SNP for
DA (P= 8.3 × 10−11).

Conditional analyses adjusting for the lead MD SNP in each
region identified two independent subregions within three different
chromosomal locations. At 1p12, two conditionally independent
NDA SNPs, rs10802015 and rs1779445 (r2= 0.02), attained P
values of 1.4 × 10−10 and 7.6 × 10−9, respectively, in a linear
regression model that included both SNPs. rs10802015 near
SPAG17 (sperm associated antigen 17) is located 726 kb away from
rs1779445, an intronic variant of TBX15 (T-box 15) that was also a
significant eQTL for WARS2 (mitochondrial tryptophanyl tRNA
synthetase 2) in mammary tissue. At 2q14.2, we found an NDA
SNP rs11123556 at the INHBB/GLI2 locus that was conditionally
independent from the strongest NDA SNP rs4849864 (r2= 0.002)
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at the RALB/INHBB locus previously associated only with absolute
dense volume;10 the two NDA SNPs attained p values of 1.9 × 10−14

and 4.7 × 10−13, respectively, in a linear regression model that
included both SNPs. Finally, at the ZNF365 locus on 10q21.2, we
found a NDA SNP rs1949355 that was uncorrelated with
rs10995190 (r2= 0.07) previously associated only with DA and
PD (Supplementary Fig. 4I, Supplementary Table 7)13,17. rs1949355
remained significantly associated with NDA (P= 6.7 × 10−13) after
adjusting for rs10995190, which was associated with DA (P= 9.4 ×
10−27) and PD (P= 1.6 × 10−12) but not NDA (P= 0.12) in single-
SNP models.

Associations with breast cancer risk. We evaluated whether the
newly identified MD loci were also associated with breast cancer
risk using data from an independent sample of 122,977 cases and
105,974 controls of European ancestry from the Breast Cancer
Association Consortium (BCAC) and Discovery, Biology and Risk
of Inherited Variants in Breast Cancer Consortium (DRIVE)15.
We found that 24 MD SNPs at 17 loci were associated with breast
cancer risk at P < 0.05 (Table 2, Supplementary Table 6). Of these
SNPs, 15 MD SNPs at 10 loci were in linkage disequilibrium with
previously reported breast cancer susceptibility alleles15, and 9
SNPs at 7 loci (3p25.2, 5q23.2(2), 10p12.1, 10q21.1, 11p15.4,
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19q13.33, 20q13.13) were associated with both MD and breast
cancer risk.

To explore the extent to which DA, NDA, and PD may be
associated with breast cancer through shared underlying genetic
factors and biologic pathways4, we performed Mendelian
randomization analyses using the weighted median method18

and summary statistics for all prior and new MD loci from this
study and BCAC/DRIVE15. For each standard deviation (SD)
increment in DA, NDA, and PD, the estimated odds ratios (95%
confidence interval) for breast cancer were: 1.45 (1.30–1.61; P <
0.001), 0.84 (0.73–0.98; P= 0.029), and 1.68 (1.44–1.96; P <
0.001), respectively. Sensitivity analyses using mode-based
estimates that are also robust to violations of the instrumental
variable assumptions, but less powerful than the weighted median
method showed similar results (Supplementary Table 14)19.
These estimates were remarkably similar to a meta-analysis of 13
observational studies that reported adjusted odds ratios of breast
cancer associated with each SD increment of DA, NDA, and PD
of: 1.37 (1.29–1.47), 0.78 (0.71–0.86), and 1.52 (1.39–1.66) in
premenopausal women; and 1.38 (1.31–1.44), 0.79 (0.73–0.85),
and 1.53 (1.44–1.64) in post-menopausal women6. These findings
support a biological basis for the positive association of DA and
PD with breast cancer risk, and inverse association of NDA with
breast cancer risk, in observational studies.

To complement the Mendelian randomization analyses, we
estimated the genetic correlation between each MD phenotype
and breast cancer based on all SNPs genome-wide. LD Score
regression20,21 of 779,828 SNPs using summary statistics from
this study and the BCAC/DRIVE breast cancer GWAS15 yielded
estimates of 0.27 (P= 5.5 × 10−6), −0.14 (P= 0.014), and 0.27
(P= 7.7 × 10−10) for the genetic correlations of DA, NDA, and
PD, respectively, with breast cancer. The significant positive
genetic correlations of DA and PD with breast cancer, and
significant inverse association of NDA with breast cancer were
consistent with the Mendelian randomization results, as well as
evidence from observational studies6, supporting the shared
genetic bases of all three MD phenotypes and breast cancer.

Functional analyses. To identify potentially functional variants at
the 31 MD loci, we examined whether any of the lead SNPs were
associated with: protein-coding variants (Supplementary Table 2);
gene expression levels in mammary tissue, primary fibroblast
cells, subcutaneous fat, visceral fat, or whole blood (Supplemen-
tary Table 3); or promoter and enhancer regions in mammary
epithelial cells or mammary fibroblasts (Supplementary Table 4).
Regional association plots showed the nearby genes and linkage
disequilibrium patterns in Europeans for each of the newly
identified loci for DA, NDA, and PD (Supplementary Figs. 3–5).

MD SNPs at three loci (2p23.3, 15q25.2, 19q13.33) were
strongly correlated (r2 ≥ 0.80) with nonsynonymous mutations,
and all of these SNPs were also significant (FDR < 0.05)
expression quantitative trait loci (eQTLs) (Supplementary
Tables 2 and 3). SNPs on 2p23.3 were associated with NDA
and PD. The lead PD SNP rs11676272 encoded the S107P
missense mutation in ADCY3 (adenylate cyclase 3), which
catalyzes the formation of the secondary messenger cyclic
adenosine monophosphate involved in signal transduction and
metabolic processes. The lead SNPs for NDA rs6718628 and PD
rs11676272 were also significant eQTLs associated with increased
ADCY3 expression in subcutaneous and visceral fat, and whole
blood. On 15q25.2, the lead NDA SNP rs1812707 was strongly
correlated (r2= 0.88) with the V661L missense mutation variant
in ADAMTSL3, involved in protein glycosylation and catabolism,
and was also a significant eQTL in fibroblasts and subcutaneous
fat for the GOLGA6L5P pseudogene, about which little is known.

On 19q13.33, the lead SNPs for DA rs492602 (r2= 0.99) and
PD rs1704773 (r2= 0.89) were tightly linked with the W154X
nonsense mutation in FUT2 (fucosyltransferase 2) resulting in a
truncated protein. FUT2 is involved in the production of histo-
blood group antigens, and exhibits the non-secretor phenotype
(lack of antigens in epithelial mucosa and exocrine secretions)
when inactivating mutations are present. The lead DA and PD
SNPs were also significantly associated with decreased expression
of FUT2 in mammary tissue and fibroblasts, and increased
expression in fibroblasts of the nearbyMAMSTR gene, encoding a
transcriptional regulator. This regulatory activity may be
mediated in part by strong correlation (r2 ≥ 0.80) with an intronic
variant of MAMSTR within a promoter and enhancer-like region
in mammary epithelial cells and mammary fibroblasts (Supple-
mentary Table 4).

The lead MD SNPs at 13 loci were significantly associated
(FDR < 0.05) with gene expression levels in normal human
mammary tissue, primary fibroblast cells, subcutaneous fat,
visceral fat, or whole blood, which were the tissues most closely
related to cell types in the breast available in GTEx22,23

(Supplementary Table 3). Target genes regulated by new DA
SNPs at 4 loci (2p13.1, 10p12.1, 19q13.33, 20q13.13) included
FNBP1P1, FUT2, MAMSTR, MKX, NTN5, RASIP1, SEC1P, and
SMIM25. Target genes regulated by new NDA SNPs at 7 loci
(1p12(2), 2p23.3, 3p14.1, 11p15.2, 11q24.3, 12q22, 15q25.2)
included ADAMTS8, ADAMTS9-AS2, ADCY3, ARNTL, CENPO,
DNAJC27, GOLGA6L5P, NCOA1, NTN4, and WARS2. Target
genes regulated by PD SNPs at 5 loci overlapped with those for
DA (19q13.33) or NDA (2p23.3, 11q24.3), except for DUSP4
(8p12) and LINC00445 (13q13.3), which were regulated by PD
SNPs only.

MD SNPs at 13 loci, or strongly correlated (r2 ≥ 0.80) variants
nearby, were located within regions with promoter or enhancer
activity in normal human mammary epithelial cells or mammary
fibroblasts using data from ENCODE24,25 (Supplementary
Table 4). On 10q21.2, the new NDA SNP in an intron of
ZNF365 was perfectly linked (r2= 1.0) with an enhancer-region
variant in mammary fibroblasts. ZNF365 is involved in regulating
neuronal growth and DNA repair. On 14q24.1 the lead DA SNP
was an intronic variant in RAD51B located within an enhancer-
like region in mammary fibroblasts. The RAD51 protein family is
essential for DNA repair by homologous recombination, and
interacts with the major breast and ovarian cancer susceptibility
genes BRCA1 and BRCA2. On 18q21.33 the lead DA SNP was an
intronic variant in BCL2 located within an enhancer-like region
in mammary fibroblasts. BCL2 suppresses apoptosis and
constitutive expression is thought to cause follicular lymphoma.

Enrichment of MD loci in fibroblast regulatory regions. To
identify cell types through which DA, NDA, and PD loci influ-
ence their respective phenotypes, we tested for the enrichment of
all independent prior or new loci for each MD phenotype in the
regulatory regions of 125 diverse human cell and tissue types
using the Uncovering Enrichment through Simulation (UES)
method26 (Supplementary Table 9). Regulatory regions were
defined by DNase I hypersensitive sites sequencing (DNase-seq)
experiments available from the ENCODE and Roadmap Epige-
nomic consortia27. We found that NDA loci (n= 17) were sig-
nificantly enriched in the open chromatin regions of fibroblast
cell lines derived from three different normal human tissues at the
Bonferroni threshold of P < 0.0004 accounting for 125 tests. NDA
loci were observed within regulatory regions more often than
expected under the null distribution in fibroblasts isolated from
the lung (3.6-fold; P < 0.0001), skin (3.8-fold; P= 0.0001), and
heart (3.2-fold; P= 0.0003). Suggestive enrichment of NDA loci

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18883-x

6 NATURE COMMUNICATIONS |         (2020) 11:5116 | https://doi.org/10.1038/s41467-020-18883-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


at P < 0.01 was also found in the regulatory regions of 13 addi-
tional fibroblast cell lines from different tissues, including
mammary fibroblasts (2.7-fold; P= 0.0066). The regulatory
activity of NDA loci in mammary fibroblasts was further sup-
ported by our functional analyses showing that 6 of 13 new NDA
loci were associated with promoter or enhancer regions in
mammary fibroblasts (Supplementary Table 4). DA (n= 28) and
PD (n= 20) loci were not significantly enriched in the regulatory
regions of any normal human cell types. However, suggestive
evidence of enrichment (P < 0.01) was found specifically in 6
fibroblast cell lines for DA loci, and 2 fibroblast cell lines for PD
loci, and not in any other normal human cell type (Supplemen-
tary Table 9).

Biological pathways. We identified distinct biological pathways
significantly enriched (FDR < 0.05) for DA, NDA, and PD loci
using DAVID28,29 to perform gene set enrichment analyses of all
prior and new genome-wide significant loci. We found that NDA
loci (n= 17) were significantly enriched by over ninefold for
genes involved in mammary gland development (Supplementary
Table 11). Other NDA pathways were related to metabolism, cell
differentiation, and reproduction. DA loci (n= 28) were sig-
nificantly enriched for genes involved in reproduction, apoptosis,
metabolism, and signaling (Supplementary Table 10). PD loci
(n= 20) were significantly enriched for genes involved in ana-
tomical structure development and metabolism (Supplementary
Table 12). Additional pathways implicated by combining all MD
loci (n= 46) were involved in regulation of gene expression,
nucleic acid binding and metabolism, and cell proliferation
(Supplementary Data 1).

Heritability. The proportion of phenotypic variance explained by
all genotyped SNPs estimated using GCTA30,31 was 0.30 (SE=
0.02), 0.34 (SE= 0.02), and 0.31 (SE= 0.02) for DA, NDA, and
PD, respectively. These results were comparable to a previous
GWAS that reported estimates of 0.31 (SE= 0.07), 0.25 (SE=
0.07), and 0.29 (SE= 0.07) for absolute dense volume, nondense
volume, and percent dense volume, respectively10. SNP-based
heritability estimates represent the upper bound on the total
proportion of phenotypic variance that could be explained by
GWAS of common variants, and the lower bound for narrow-
sense heritability estimated from twin studies because they do not
account for rare variants that are not in linkage disequilibrium
with the genotyped SNPs32. Heritability estimates from twin
studies can also be influenced by nonadditive genetic effects and
shared environmental effects32. Altogether, the newly identified
and previously known MD loci explained 12.3%, 9.1%, and 8.7%
of the SNP-based heritability for DA, NDA, and PD, respectively,
compared with 3.3%, 2.1%, and 3.2% explained by previously
known MD loci.

Discussion
High MD is one of the strongest and most common risk factors
for breast cancer, and has been estimated to account for up to
one-third of all breast cancers4. PD, DA, and NDA are all highly
heritable and significantly associated with breast cancer risk in
observational studies6. However, the biological bases for how
these breast tissue phenotypes are related to breast cancer
development are poorly understood. In this GWAS meta-analysis,
we identified 31 loci for MD phenotypes, tripling the total
number of genome-wide significant loci from 15 previously to 46
presently. Seventeen of the MD loci also were associated with
breast cancer risk in an independent large meta-analysis, identi-
fying potential new breast cancer susceptibility alleles at seven
loci. Mendelian randomization and genetic correlation analyses

provided further evidence of the shared genetic etiology of all
three MD phenotypes with breast cancer.

Among the seven loci newly associated with both MD and
breast cancer risk, one locus on 3p25.2 was significantly (P < 5 ×
10−8) associated with all three MD phenotypes. Intronic variants
in PPARG (peroxisome proliferator activated receptor gamma)
were associated with DA, PD, and breast cancer risk in the same
direction, and with NDA and breast cancer risk in the opposite
direction, as expected. PPARG is a member of the nuclear
receptor family of ligand-activated transcription factors, and a
regulator of adipocyte differentiation33. PPARG has been shown
to inhibit transcription of aromatase, the rate-limiting enzyme in
estrogen biosynthesis, in primary breast adipocytes34. Higher
aromatase expression has been observed in dense breast tissue35,
and treatment with aromatase inhibitors lowers breast cancer risk
although associations with MD changes have been less con-
sistent36. Estrogen may influence breast cancer risk as well as
breast tissue composition through its proliferative effects on
mammary cells37. PPARG is therefore plausibly involved in the
development of DA, NDA, and PD, as well as breast cancer.

Five additional loci were newly associated with both DA and
breast cancer risk in the same direction, identifying LMNB1,
MKX, PRKG1, MRPL17, and SMIM25 as candidate genes for both
DA and breast cancer risk. On 5q23.2, rs6885843 was positively
associated with DA and breast cancer risk, and located 44 kb
upstream of LMNB1 (lamin B1) involved in autosomal dominant
adult-onset leukodystrophy33. On 10p12.1, rs2642278 was posi-
tively associated with DA and breast cancer risk, and an eQTL for
MKX (mohawk homeobox), which plays a role in cell adhesion33.
On 10q21.1, rs1892368 is an intronic variant in PRKG1 (protein
kinase cGMP-dependent 1) that was inversely associated with
both DA and breast cancer risk (P= 4.8 × 10−7). PRKG1 is a key
mediator of the nitric oxide/cGMP signaling pathway important
in many signal transduction processes33. On 11p15.4, rs11040963
was inversely associated with both DA and breast cancer risk
(P= 4.5 × 10−4), and located 8 kb upstream of MRPL17 (mito-
chondrial ribosomal protein L17) involved in protein synthesis in
mitochondria33. On 20q13.13, rs17196752 was positively asso-
ciated with DA and breast cancer risk, and uncorrelated (r2=
0.0001) with the closest known breast cancer risk allele
rs612290615. rs17196752 is an intronic eQTL within an enhancer-
like region in mammary fibroblasts that down-regulated the
mammary tissue expression of SMIM25 (Small Integral Mem-
brane Protein 25). While little is known about SMIM25 function,
rs17196752 has been associated with white blood cell traits that
have been linked to cancer and other systemic diseases38.

Finally, on 19q13.33, SNPs for DA (rs492602) and PD
(rs1704773) were tightly linked with a FUT2 protein-truncating
mutation associated with the nonsecretor phenotype for histo-
blood group antigens. Both SNPs also were associated with
increased expression of the MAMSTR transcriptional regulator in
fibroblasts, and a MAMSTR regulatory region in mammary epi-
thelial cells and mammary fibroblasts. rs492602 has been asso-
ciated with serum lipid levels39 but not breast cancer, and
rs1704773 was associated with PD and breast cancer (P < 0.05) in
opposite directions, indicating that FUT2 and MAMSTR are
candidate genes for DA and PD but may not be directly asso-
ciated with breast cancer risk.

Among the ten new MD loci associated with known breast
cancer susceptibility alleles, all but one were associated with MD
phenotypes and breast cancer risk in consistent directions. SNPs
on 2p24.1 were associated with both DA and PD in directions
opposite to their known associations with breast cancer risk15.
The DA SNP rs11684853 was tightly linked (r2= 0.99) with
variants in an enhancer element with strong activity in mammary
epithelial cells and mammary fibroblasts. The PD SNP
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rs34331777 was about 100 kb away from the tumor suppressor
gene OSR1 (Odd-skipped related 1) encoding a zinc-finger tran-
scription factor that acts on the p53 and Wnt/β-catenin signaling
pathways40, and theMIR4757 microRNA that could influence the
translation of multiple target mRNAs with different effects on
MD and breast cancer risk.

There are several potential biological mechanisms through
which higher DA and PD may increase breast cancer risk. Dense
areas of the breast contain more epithelial cells, fibroblasts, and
collagen than nondense areas that contain more adipocytes41.
Increased collagen alignment and stiffness of the extracellular
matrix (ECM), associated with dense breast tissue, have been
shown to induce malignant phenotypes in normal mammary
epithelial cells42. Fibroblasts produce collagen and other ECM
components, as well as proteases involved in ECM remodeling. In
addition, fibroblast signaling is a critical determinant of normal
mammary epithelial and adipocyte cell development and differ-
entiation43, and cancer-associated fibroblasts can stimulate breast
tumor progression44. Our finding that loci for all three MD
phenotypes were enriched in the regulatory regions of fibroblasts
more than in any other cell type is consistent with a key role of
fibroblasts in regulating the stromal environment and normal
breast tissue composition, as well as aberrant growth in breast
tumors.

Mammary epithelial cells from high density tissues also have
been shown to have greater DNA damage response signaling and
shorter telomeres compared with mammary epithelial cells from
low density tissues45. DNA damage may increase DA and PD,
and decrease NDA, by repressing CD36 expression in mammary
fibroblasts, which induces increased ECM deposition and
decreased lipid storage in nonmalignant breast tissue44. CD36 is a
widely expressed glycoprotein receptor that binds to a broad
range of ligands, including ECM proteins and lipids, and mod-
ulates adipocyte differentiation, lipid metabolism, angiogenesis,
apoptosis, cell-ECM interactions, and immune signaling44,45.
Importantly, CD36 expression is primarily controlled by the
PPARG transcription factor45, which we found to be associated
with all three MD phenotypes and breast cancer risk. The etio-
logic role of DNA repair and apoptosis genes in dense breast
tissue is further supported by our findings that variants in the
RAD51B (14q24.1) DNA repair gene, and FAF1 (1p32.3) and
BCL2 (18q21.33) apoptosis genes are significantly associated with
DA, and that DA loci are enriched for genes in the apoptosis
pathway.

NDA has been inversely associated with breast cancer risk
independently of DA in observational studies5,6, but the etiologic
nature of this association and underlying mechanisms are
uncertain. Our findings demonstrating a significant inverse
association of genetically estimated NDA and breast cancer risk
in both Mendelian randomization and genetic correlation ana-
lyses provide strong evidence that this association is caused by
shared underlying genetic and biological pathways. A limitation
of this study is that relatively few women were diagnosed with
breast cancer following the mammogram, precluding mediation
analyses of the extent to which SNP associations with breast
cancer risk are explained by MD phenotypes. A limitation of
Mendelian randomization studies generally is the potential for
bias due to horizontal pleiotropy, although the weighted median
method is a relatively robust and statistically powerful
approach18,19. While NDA and BMI effects are difficult to dis-
entangle, the adipose tissues within the breast may play a more
direct role in breast cancer etiology than distant adipose tissues.
Mammary adipocytes secrete adipokines that modulate the stro-
mal environment, and constitute a local source of lipids and
metabolites that influence mammary epithelial cell growth and
function46. In vivo models have shown that the mammary

adipose environment is critical for mammary gland growth and
development46.

The finding that NDA loci, but not DA or PD loci, are sig-
nificantly enriched for genes involved in mammary gland devel-
opment supports a key role of the nondense fatty tissues in breast
health. Three of the four new NDA loci enriched for genes
involved in mammary gland development were associated with
NDA and breast cancer risk15 in opposite directions, implicating
GLI2, NCOA1, and NTN4 as candidate genes for both NDA and
breast cancer. GLI2 at 2q14.2 encodes a zinc finger transcription
factor that mediates hedgehog signaling33. NCOA1 expression
was upregulated in mammary tissue by the NDA SNP at 2p23.3,
and encodes a transcriptional coactivator for steroid and nuclear
hormone receptors that stimulates transcriptional activity in a
hormone-dependent fashion33. NTN4 expression was upregulated
in mammary tissue by the NDA SNP at 12q22, and encodes a
member of the netrin protein family involved in neuronal growth,
angiogenesis, and tumorigenesis33. Netrin 4 has been implicated
in controlling epithelial cell branching morphogenesis in the
breast47. These findings provide insights into the genetic basis for
the inverse association of NDA with breast cancer risk.

In summary, this GWAS of 24,192 women from two inde-
pendent population-based cohorts screened using Hologic or GE
digital mammography, and MD phenotypes measured centrally
using Cumulus, identified 31 MD loci, and new candidate genes
for MD and breast cancer risk. The study findings support the
etiologic role of NDA as well as DA and PD as modifiable risk
factors for breast cancer that provide potential for intervention.
With this study, all 46 genome-wide significant loci identified to
date explain 12.3%, 9.1%, and 8.7% of the SNP-based heritability
for DA, NDA, and PD. Future studies are needed to discover
additional MD loci and to elucidate the different roles that the
fatty and dense breast tissue components play in breast health
and cancer risk.

Methods
Study design. We conducted a GWAS meta-analysis within the Research Program
on Genes, Environment and Health (RPGEH) administered by Kaiser Permanente
Northern California (KPNC) Division of Research48,49. RPGEH is population-
based and participants were not selected based on any disease phenotype. All
participants completed a health survey, and over 100,000 individuals provided a
DNA sample that was genotyped genome-wide; this sample constitutes the Genetic
Epidemiology Research on Adult Health and Aging (GERA) study49. Written
informed consent was obtained from all participants. Institutional Review Board
approvals for this study were obtained from KPNC, Stanford University, and the
Icahn School of Medicine at Mount Sinai.

Hologic study: The first GWAS included 20,311 non-Hispanic white women
who underwent bilateral screening mammography at age 39–80 years during
2004–2013 at one of 36 KPNC clinics using Hologic FFDM machines. Processed
(for presentation) images were retrieved from the KPNC imaging archive. Hologic
images were downsampled from a pixel size of 70 microns to 200 microns. The
resulting image resolution exceeded that of the computer monitors used to view the
images, and was therefore unlikely to influence the density measurements. A
median filter with a 3-pixel radius was applied to the downsampled Hologic images
to reduce digital noise and make the images appear more like screen film
mammograms, which we found to improve the reproducibility of density
measurements50. Hologic images were randomly assembled into 23 batches of up
to 1100 images each, including randomly selected replicates for quality control.

GE study: The second GWAS included an independent sample of 3881 non-
Hispanic white women who underwent bilateral screening mammography at age
38–77 years during 2004–2013 at one of 11 KPNC clinics using GE FFDM
machines. GE images processed using Tissue Equalization software were retrieved
from the KPNC imaging archive, and downsampled from a pixel size of 94 microns
to 200 microns. We found that denoising of the GE images did not improve the
reproducibility of the density measurements and therefore did not denoise the
downsampled images51. GE images were randomly assembled into 6 batches of up
to 700 images each, including randomly selected replicates for quality control.

Density assessments. Women were excluded if their mammograms contained
breast implants (3.6%), did not contain the entire breast (1%), or were unreadable/
unavailable (2.6%)51. Women with a history of bilateral breast cancer (0.06%) were
also excluded. For women with a history of unilateral breast cancer, we measured
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MD phenotypes using the contralateral (unaffected) breast image from the closest
prediagnostic exam following the RPGEH survey when available, or prior to the
survey otherwise50. For women with no history of breast cancer, we used the left
breast image from the closest post-survey exam, except for a random 10% subset of
women for whom the right breast image was used to blind the reader to cancer
history. All density measurements were performed using a single craniocaudal view.

MD phenotypes were measured centrally using Cumulus616 (provided by
M.J.Y.), a computer-assisted method that requires the reader to select the pixel
intensity threshold for distinguishing the dense and nondense portions of the
breast image. The reader must also define the pectoral muscle boundary, whereas
Cumulus6 detects the outer edge of the breast automatically for most FFDM
images. Cumulus computes the PD as the DA divided by the total breast area. The
NDA is equal to the total area minus the DA. All Cumulus measurements were
performed by a single radiological technologist (R.Y.L.) trained by the software
developer (M.J.Y.) and a breast imaging specialist (J.A.L.), who was certified in the
Cumulus method and provided the gold standard measurements used for training
and longitudinal evaluation.

In the first study, 23 batches of up to 1100 Hologic images were read
consecutively over a period of eight months. Each batch contained 10% quality
control images, including random replicates used to assess reader reproducibility
and images with gold standard measurements by JAL used for calibration and
periodic retraining. The batch-adjusted Pearson R for PD, DA, and NDA were:
0.952, 0.925, and 0.996 in the Hologic cohort. Following the completion of all
Hologic density assessments, the reader underwent a training period to attain high
reproducibility on GE images. Then, in the second study, 6 batches of up to 700 GE
images were read consecutively over a period of 3 months. The batch-adjusted
Pearson R for PD, DA, and NDA were: 0.961, 0.941, and 0.995 in the GE cohort.
When multiple measurements were obtained per image, the mean values were used
in subsequent analyses.

Genotyping, quality control, and imputation. Over 650,000 SNPs were genotyped
at the UCSF Institute for Human Genetics, Genomics Core Facility using a custom
Affymetrix array optimized for individuals of European ancestry48,52. This array is
estimated to report on 93% of common variants with minor allele frequency
(MAF) > 0.05, and 73% of less common variants (MAF between 0.01 and 0.05) at
r2 > 0.80, based on the 1000 Genomes Project (http://1000genomes.org) European
population. Arrays were processed using the Affymetrix Axiom reagent kit 1.0
(96.7%) or 2.0 (3.3%). Genotype quality control procedures have been described
previously49. Samples were excluded if the genotyping call rate was <0.97, or if
there was evidence of trisomy, monosomy, male or ambiguous sex (PLINK v1.0753

X chromosome F-statistic >0.2), or excess heterozygosity (PLINK53 F-statistic <
−0.03). Among first-degree female relatives (457 pairs and 14 trios), only the
youngest woman was retained for analysis. Principal components of ancestry were
computed for the genotyped SNPs using EIGENSOFT4.254, and women were
excluded if their principal components were not consistent with European
ancestry48. Over 30 million variants were imputed from the 1000 Genomes Project
reference panel using IMPUTE2.2.255–57, after pre-phasing the genotyped SNPs
using SHAPEIT v2.r64458. After excluding variants with MAF < 0.01 or imputation
r2 ≤ 0.359, there remained 9,906,178 variants available for analysis.

GWAS meta-analysis. The MD phenotypes for each study cohort were trans-
formed separately to attain standard normal distributions with mean 0 and var-
iance 1, to facilitate estimation of the combined meta-analytic effects and enable
interpretation of effect sizes in SD units. The distributions of MD phenotypes
differed between women in the two cohorts and required different transformations
(Supplementary Fig. 1). The optimal power transformations determined using the
R boxcox package for DA, NDA, and PD, respectively, were: fifth-root, cube-root,
and cube-root for the Hologic cohort; and cube-root, cube-root, and square-root
for the GE cohort. For computational efficiency, each phenotype was pre-adjusted
for image batch using linear regression, and the residuals were used in GWAS
analyses.

Separate GWAS analyses of each standardized MD phenotype in the Hologic
cohort (n= 20,311) and GE cohort (n= 3881) were performed with PLINK53

using linear regression models of each SNP as an additive dosage effect60, adjusted
for ln(BMI), age at mammography, genotyping reagent kit, and the first ten
principal components of European ancestry48,49. BMI was determined from
electronic health records for the patient visit closest to the date of mammography.
There was a linear relationship of age (Supplementary Fig. 6) and ln(BMI) with the
normalized density phenotypes, except in the extreme tails of the BMI distribution
where the data were sparse (Supplementary Fig. 7). GWAS meta-analyses were
conducted using an inverse-variance weighted fixed-effects model implemented in
METAL61. To be considered statistically significant, we required SNPs to: meet the
conventional genome-wide significance threshold of P < 5 × 10−8 in the meta-
analysis of the Hologic and GE studies combined; and have the same direction of
association in both studies. A single genotyped SNP rs3819405 on 6p22.3 that was
significantly associated with DA and PD had low levels of LD with all nearby SNPs
(Supplementary Figs. 3H and 5F); rs3819405 had a high call rate of 99.89%, and the
MAF of 0.33 was similar to the MAF of 0.34 among individuals of European
ancestry in the 1000 Genomes Project.

Conditionally independent SNPs within the same chromosomal region were
identified by conditional analyses adjusting for the lead SNP. To be considered
statistically significant, both SNPs were required to have: meta-analytic P < 5 × 10−8

in the conditional analysis; the same direction of associations in both studies; and
low linkage disequilibrium (LD; r2 < 0.10). Novel loci were identified by conditional
analyses adjusting for the nearest known SNP for any MD phenotype. To be
considered novel, SNPs were required to meet the genome-wide significance
threshold of P < 5 × 10−8 in conditional analyses adjusting for the nearest known
MD SNP, and to have low LD (r2 < 0.10) with previously reported genome-wide
significant SNPs for any MD phenotype on the same chromosome.

Quantile-quantile plots and genomic inflation factors62 were used to assess the
presence of inflated significance levels due to uncontrolled population substructure.
LocusZoom v1.363 plots of the 400 kb region centered around each novel lead SNP
were used to visualize the GWAS meta-analysis significance levels, linkage
disequilibrium with the lead SNP, local recombination rates from HapMap, and
nearby genes.

Associations with breast cancer. We evaluated associations of newly identified
MD SNPs with breast cancer risk in 122,977 cases and 105,974 controls of Eur-
opean ancestry from the BCAC and Discovery, Biology and Risk of Inherited
Variants in Breast Cancer Consortium (DRIVE)15. Associations of MD SNPs with
risk of estrogen receptor (ER)-negative breast cancer were evaluated in a subset of
21,468 cases and 100,594 controls15,64. Summary statistics were obtained from:
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/. MD SNPs were considered to be
potentially novel breast cancer loci if they were associated with breast cancer with
P < 0.05 and P > 5 × 10−8 in the BCAC/DRIVE data, and were uncorrelated (r2 ≤
0.01) with previously reported genome-wide significant breast cancer SNP in the
NHGRI-EBI GWAS catalog65 (https://www.ebi.ac.uk/gwas/).

Mendelian randomization and genetic correlation of MD and breast cancer.
Mendelian randomization analyses were performed to evaluate the potential causal
associations of MD phenotypes with breast cancer risk. We used the weighted
median method to estimate the causal effect because it is more efficient and robust
to violations of instrumental variable assumptions than other Mendelian rando-
mization methods for summary statistics, and provides consistent estimates even
when up to half of the information comes from invalid instrumental variables18.
We considered the first reported SNP at all independent prior and new genome-
wide significant loci (Table 1 and Supplementary Table 7) for DA (n= 28), NDA
(n= 17), and PD (n= 20), and estimated their associations with the relevant MD
phenotype in the GWAS meta-analysis. Summary statistics for SNP associations
with breast cancer in 122,977 cases and 105,974 controls of European ancestry were
obtained from BCAC/DRIVE15.

LD Score regression was performed to estimate the genetic correlation between
MD phenotypes and breast cancer from GWAS summary statistics using the LDSC
v1.0.1 software20,21. We used the LD scores for the European ancestry population
from the 1000 Genomes Project provided by the software developers20,21. A total of
779,828 SNPs were included that had available LD scores and summary statistics
from this MD GWAS and the BCAC/DRIVE breast cancer GWAS15.

Regulatory function of MD SNPs. We evaluated whether MD SNPs were asso-
ciated with gene expression levels in: human mammary tissue (n= 251), primary
fibroblast cells (n= 300), subcutaneous fat (n= 385), visceral fat (n= 313), and
whole blood cells (n= 369) using data from the Genome-Tissue Expression
(GTEx) project version 7 (https://gtexportal.org/)22,23. Significant cis-eQTLs within
1 Mb of the gene transcription start site were identified by computing q-values for
SNP-gene pairs involving one of the lead MD SNPs using the R qvalue package,
and controlling for a false discovery rate (FDR) of 0.05. We also assessed whether
lead MD SNPs or nearby proxies (r2 ≥ 0.80 in Europeans from the 1000 Genomes
Project) were located within promoter or enhancer regions in human primary
mammary epithelial cells and human primary mammary fibroblasts using data
from the ENCODE and Roadmap Epigenomic consortia (https://www.
encodeproject.org/)24,25. Promoter-like regions were identified by combining
DNase hypersensitivity and histone modification H3K4me3 signals in the same cell
type24,25. Enhancer-like regions were identified based on DNase hypersensitivity
and histone modification H3K27ac signals in mammary epithelial cells, and DNAse
hypersensitivity only in mammary fibroblasts24,25.

Tissue enrichment of MD SNPs in regulatory regions. We tested whether
previously identified and new loci for each MD phenotype were enriched in reg-
ulatory regions in 125 diverse human cell and tissue types using the UES method
(https://github.com/robertkleinlab/uesEnrichment)26. Open chromatin regions
were defined using DNase I hypersensitive sites sequencing data from the
ENCODE and Roadmap Epigenomic consortia27. The empirical P value for the
observed enrichment of independent MD SNPs in the regulatory regions of each
cell line was computed by generating 10,000 sets of randomly selected SNPs that
were matched to MD SNPs by the distance to the nearest transcription start site
and number of correlated SNPs. We applied a Bonferroni correction for the 125
cell lines tested to determine the significance threshold of P < 0.0004.
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Pathway analysis. We performed gene set enrichment analyses to identify bio-
logical pathways implicated by prior and new MD loci using DAVID v6.828,29. For
each MD locus, we included the nearest flanking protein-coding genes within 500
kb of the lead SNP, as well as target genes whose expression levels were associated
with the lead MD SNP (cis-eQTL) in mammary tissue, primary fibroblast cells,
subcutaneous fat, visceral fat, or whole blood (Table 1 and Supplementary Tables 3,
7, and 8). We estimated the fold enrichment of MD genes among gene sets or
pathways with FDR < 0.05 from the Gene Ontology, KEGG, Reactome, and Bio-
carta databases, and identified the responsible genes using DAVID28,29.

Heritability. We estimated the proportion of phenotypic variance explained by the
additive genetic effects of all genotyped SNPs using GCTA v1.0231. Array-based
heritability was estimated separately for the Hologic and GE study cohorts, and the
resulting estimates were then combined using inverse-variance weighting. We also
estimated the proportion of phenotypic variance explained by all independent prior
and new genome-wide significant MD loci. For each MD phenotype, the residual
variance of linear regression models were estimated using 100-fold cross-valida-
tion, where model 1 included all independent genome-wide significant loci in
addition to the adjustment variables in the GWAS model, and model 2 included
only the non-SNP covariates. In both models, the SNP effects and covariates were
nested within the Hologic or GE studies to account for differences across studies.
The proportion of variance explained by the genome-wide significant loci for each
MD phenotype was computed by 1−V1/V2, where V1 and V2 represent the
estimated residual variances of models 1 and 2 respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genotype data of RPGEH GERA participants are available from the database of
Genotypes and Phenotypes (dbGaP) under accession phs000674.v3.p3. This includes
individuals who consented to having their data shared with dbGaP. The complete GERA
data are available upon application to the KP Research Bank (https://researchbank.
kaiserpermanente.org/our-research/for-researchers). Breast cancer summary statistics are
available at http://bcac.ccge.medschl.cam.ac.uk/bcacdata/. All remaining relevant data are
available in the article, Supplementary Information, or from the corresponding author
upon reasonable request.
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