

Received 15 November 2017 Accepted 15 November 2017

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; europium; pyrazolylborate; scorpionate; pyrazabole.

CCDC references: 1585878; 1585877

Supporting information: this article has supporting information at journals.iucr.org/e

Formation and structural characterization of a europium(II) mono(scorpionate) complex and a sterically crowded pyrazabole

Phil Liebing, a Marcel Kühling, b Josef Takats, c Liane Hilfert b and Frank T. Edelmann $^{\rm b\ast}$

^aETH Zürich, Laboratorium für Anorganische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland, ^bChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, and ^cDepartment of Chemistry, University of Alberta, Edmonton, Alberta, AB, Canada, T6G 2G2. *Correspondence e-mail: frank.edelmann@ovgu.de

The reaction of EuI₂(THF)₂ with potassium hydrotris(3,5-diisopropylpyrazolyl)borate (K[HB(3,5-^{*i*Pr2}pz)₃] (= KTp^{*i*Pr2}, pz = pyrazolyl) in a molar ratio of 1:1.5 resulted in extensive ligand fragmentation and formation of the europium(II) mono(scorpionate) complex bis(3,5-diisopropyl-1*H*-pyrazole)[hydrotris(3,5diisopropylpyrazolyl)borato]iodidoeuropium(II), [Eu(C₂₇H₄₆BN₆)I(C₉H₁₆N₂)₂] or (Tp^{*i*Pr2})(3,5-^{*i*Pr2}pzH)₂Eu^{II}I, **1**, in high yield (78%). As a typical by-product, small amounts of the sterically crowded pyrazabole derivative *trans*-4,8-bis(3,5diisopropylpyrazol-1-yl)-1,3,5,7-tetraisopropylpyrazabole, C₃₆H₆₂B₂H₈ or *trans*-{(3,5-^{*i*Pr2}pz)HB(μ -3,5-^{*i*Pr2}pz)}₂, **2**, were formed. Both title compounds have been structurally characterized through single-crystal X-ray diffraction. In **1**, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In **2**, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).

1. Chemical context

The organometallic chemistry of divalent lanthanides provides fascinating structures such as the sandwich complexes $Ln(C_5Me_5)_2$ (Ln = Sm, Eu, Yb; $C_5Me_5 = \eta^5$ -pentamethylcyclopentadienyl). An unusual structural feature of the unsolvated lanthanide sandwich complexes $Ln(C_5Me_5)_2$ (Fig. 1*a*, Ln = Sm, Eu, Yb) is their bent metallocene structure

OPEN 🗟 ACCESS

Figure 1 Ln = Sm, Eu, Yb, TmComparison of the molecular structures of 'bent sandwich'-like lanthanide(II) cyclopentadienides (*a*) and tris(3,5-diisopropylpyrazolyl)-borates (*b*).

research communications

in the solid state. This opens up the coordination sphere around the central divalent lanthanide ions and accounts for the very high reactivity of these compounds (Evans et al., 1983, 1988: Evans. 2007). It has been demonstrated in the past that Trofimenko's famous hydrotris(pyrazolyl)borate ligands ('scorpionates') represent useful alternatives to the ubiquitous cyclopentadienyl ligands (Pettinari, 2008; Trofimenko, 1966, 1993, 1999). Like the cyclopentadienyl ligands, these tridentate, monoanionic ligands can also be largely varied in their steric demand by introducing different substituents in the 3- and 5-positions of the pyrazolyl rings. According to Trofimenko's nomenclature, the abbreviation Tp stands for the ring-unsubstituted hydrotris(pyrazolyl)borate, whereas e.g. Tp^{Me2} denotes the sterically more demanding hydrotris(3.5dimethylpyrazolyl)borate. The homoleptic divalent lanthanide complexes $Ln(Tp^{Me2})_2$ (Ln = Sm, Eu, Yb) have been found to adopt a highly symmetrical, trigonal-antiprismatic coordination comprising an almost linear $B \cdots Ln \cdots B$ arrangement (Marques et al., 2002). Apparently, the sandwich-like structure of $Ln(Tp^{Me2})_2$ is the result of the much larger cone angle of Tp^{Me2} (239°) as compared to that of the C₅Me₅ ligand (142°) (Davies et al., 1985). More recently, these investigations have been successfully extended to the even larger hydrotris(3,5diisopropylpyrazolyl)borate ligand (Tp^{iPr2}) (Kitajima et al., 1992). Homoleptic complexes of this ligand could be isolated with the 'classical' divalent lanthanides samarium, europium, thulium and vtterbium (Momin et al., 2014; Kühling et al., 2015). Rather surprisingly, crystal structure determinations revealed a 'bent sandwich'-like molecular structure like $Ln(C_5Me_5)_2$ (Fig. 1b). Computational studies indicated that steric repulsion between the isopropyl groups forces the Tp^{iPr2} ligands apart and permits the formation of unusual interligand C-H···N hydrogen-bonding interactions that help to stabilize the structure (Momin et al., 2014). The recently reported neon-yellow divalent europium complex Eu(Tp^{iPr2})₂ also stands out due to its bright-yellow photoluminescence, which has been investigated in great detail (Kühling et al., 2015; Suta et al., 2017). Eu $(Tp^{iPr2})_2$ was easily prepared in 83% yield by treatment of the bis-THF adduct of europium(II) diiodide, $EuI_2(THF)_2$, with 2 equiv. of KTp^{iPr2} in THF solution (Kühling et al. 2015). We now report that the use of a significantly smaller amount of KTp^{/Pr2} led to extensive ligand fragmentation and formation of the first europium(II) mono(scorpionate) complex, $[HB(3,5^{-iPr2}pz)](3,5^{-iPr2}pzH)_2Eu^{II}I$ (1), in addition to a frequently observed by-product, the sterically crowded 4,8-bis(pyrazolyl)pyrazabole derivative trans- $\{(3,5^{-iPr2}pz)HB(\mu-3,5^{-iPr2}pz)\}_2$ (2). Both products have been structurally characterized through single-crystal X-ray diffraction.

The starting material $EuI_2(THF)_2$ was prepared from Eu metal and 1,2-diiodoethane using an established literature procedure (Girard *et al.*, 1980). The reaction of $EuI_2(THF)_2$ with 1.5 equiv. of KTp^{iPr2} in THF produced a fluorescent, neon-yellow solution and a white precipitate of potassium iodide. Crystallization from *n*-pentane solvent afforded bright-yellow, air-sensitive crystals, which turned out to be the unexpected europium(II) mono(scorpionate) complex

 $(Tp^{iPr2})(3,5^{-iPr2}pzH)_2Eu^{II}I$ (1). The 78% isolated yield of 1 was surprisingly high. The coordinated neutral 3,5-diisopropylyrazole ligands clearly resulted from fragmentation of the Tp^{iPr2} ligand. *Ln*-induced fragmentation of substituted Tp ligands is well documented (Domingos *et al.*, 2002, and references cited therein), but it seems to be even more prevalent in the sterically highly demanding Tp^{iPr2} system, as seen in some recently reported $Ln(Tp^{iPr2})$ -derived polysulfide complexes (Kühling *et al.*, 2016). Despite its paramagnetic nature, interpretable NMR spectra could be obtained for 1. A single resonance at δ –5.3 ppm in the ¹¹B NMR spectrum proved the presence of a single boron-containing species. A high-intensity peak at m/z 769 in the mass spectrum of 1 could be assigned to the fragment ion $[Eu(Tp^{iPr2})(^{iPr2}pz)]^+$, while a peak at m/z 616 corresponds to the ion $[Eu(Tp^{iPr2})]^+$.

Further work-up of the supernatant solution remaining after isolation of **1** by addition of a large volume of non-polar hexamethyldisiloxane (HMDSO) resulted in the formation of well-formed, colorless, cube-like crystals in low yield. These turned out to be another ligand fragmentation product typical for lanthanide Tp chemistry, namely the 4,8-bis(pyrazolyl)pyrazabole derivative *trans*-{ $(3,5^{-iPr2}pz)HB(\mu-3,5^{-iPr2}pz)$ }₂ (2). The parent pyrazabole, $\{H_2B(\mu-pz)\}_2$ has been known since 1966 when it was reported by Trofimenko contemporaneously with the discovery of Tp ligands (Trofimenko, 1966). Since then, numerous substituted pyrazaboles have been prepared and structurally investigated (Alcock & Sawyer, 1974; Cavero et al., 2008; Niedenzu & Niedenzu, 1984; Niedenzu & Nöth, 1983; Trofimenko, 1966). In a number of recent studies, it has been demonstrated that certain substituted pyrazaboles possess unique photophysical and electrochemical properties and could thus find promising applications in organic photovoltaics (OPVs) and non-linear optics (Jadhav et al., 2013, 2015; Misra et al., 2013, 2014; Patil et al., 2017). Compound 2 belongs to the rather special class of 4,8-bis(pyrazolyl)pyrazaboles in which two hydrogen atoms at boron are replaced by pyrazolyl moieties (Niedenzu & Niedenzu, 1984). Deliberate formation of the parent 4,8-bis(pyrazolyl)pyrazabole, 4,8-*trans*-{(pz)HB(μ -pz)}₂, has been achieved by thermolysis of the free acid of the hydrotris(pyrazolyl)borate anion (Kresínski, 1999). In lanthanide Tp chemistry, such 4,8-(pyrazolyl)pyrazaboles normally represent unwanted sideproducts as they frequently result from ligand fragmentation and are often the first crystalline products to come out of reaction mixtures (Kühling et al., 2015, 2016; Lobbia et al.,

The molecular structure of compound 1 in the crystal, showing orientational disorder of two isopropyl groups. Displacement ellipsoids are drawn at the 40% probability level, H atoms attached to C atoms omitted for clarity.

1992). Spectroscopic characterization of **2** was in good agreement with the results of the X-ray diffraction study. For instance, the mass spectrum of **2** showed the molecular ion at m/z 627, and the ¹¹B NMR spectrum displayed a single resonance at δ -4.3 ppm.

2. Structural commentary

Both title compounds 1 and 2 exist as well-separated molecules in the crystal. In the Eu^{II} complex 1, one molecule is present in the asymmetric unit (Fig. 2). The Tp^{iPr2} ligand is attached to Eu in a symmetric tridentate mode with an H-B···Eu angle of 179.0 (2)°. The three Eu-N bonds cover the range 2.581 (2)–2.633 (2) Å, which resembles that observed in the corresponding homoleptic Eu^{II} complex Eu(Tp^{iPr2})₂ [2.563 (5)–2.670 (5) Å; Suta et al., 2017]. The same applies to the B-N bonds, which are in the narrow range 1.547(4)-1.555 (4) Å $[Eu(Tp^{iPr2})_2: B-N = 1.531 (8)-1.559 (7) Å]$. In 1, the coordination of the iodido ligand relative to the $(Tp^{iPr2})^{-1}$ ligand is slightly tilted $[I-Eu\cdots B = 151.49 (5)^{\circ}]$, and an almost linear arrangement of the iodido ligand and one of the Tp^{iPr2} N-donor atoms is realized [I-Eu-N2 = 165.92 (5)°]. A strongly distorted octahedral coordination is completed by the two neutral (3,5-^{*i*Pr2}pzH) ligands, with coordination angles of 138.80 (7)° (N4-Eu-N8) and 137.43 (7)° (N6-Eu-N10). The corresponding Eu-N bond lengths [Eu-N8 = 2.699 (3),Eu-N10 = 2.660 (2) Å] are slightly longer than those to the $(Tp^{iPr2})^{-}$ ligand, which may be due to the absence of negative ligand charge. The NH···N distances between the two pyrazole NH moieties and potential hydrogen-acceptor atoms (N2, N4, N6) are in the range 2.512 (2)–2.610 (2) Å, but the groups are not in a proper orientation for efficient hydrogen bonding $[N-H \cdot \cdot \cdot N \ 115.0 \ (2)-122.0 \ (2)^{\circ}]$. Consequently, stabilization of the molecular structure by intramolecular hydrogen bonding is presumably of less importance.

The pyrazabol 2 exists as a centrosymmetric dimer in the crystal, which formally results from two $HB(3,5^{-iPr2}pz)_2$ monomers (Fig. 3). The two B atoms are interconnected by two μ -bridging (3,5-^{*i*Pr2}pz) moieties, resulting in a planar, sixmembered B_2N_4 ring. The B-N bonds within this ring are virtually equal at 1.554 (2) Å (B-N1) and 1.557 (2) Å (B-N2'), and therefore similar to that within the $(Tp^{iPr2})^{-1}$ ligand in **1**. In contrast, the B–N bond to the terminal $(3.5^{-iPr2}pz)$ moiety (B-N3) is slightly shortened to 1.532 (2) Å. The B atoms in 2 exhibit a virtually ideal tetrahedral coordination with bonding angles in the narrow range $108.3 (1)-110.7 (1)^{\circ}$. The molecular structure of 2 is very similar to that of the analog, trans-{ $(3,5-^{Me2}pz)HB(\mu-$ 3,5-dimethylpyrazolyl $3.5^{-Me^2}pz)_2$ [B-N = 1.5419(2) and 1.5486(1) Å for μ - $(3,5^{-Me2}pz)$ and 1.5257 (2) Å for terminal $3,5^{-Me2}pz$, N-B-N = $108.532 (6)-109.091 (6)^{\circ}$; Alcock & Sawyer, 1974]. In contrast, the unsubstituted pyrazabol *trans*-{(pz)HB(μ -pz)}₂ is non-centrosymmetric and features a remarkably puckered B_2N_4 ring [B-N = 1.546 (3)-1.559 (3) Å for μ -pz and 1.501 (3)–1.533 (3) Å for terminal pz, N-B-N = 105.2 (2)– 111.0 (2)°; Kresiński, 1999].

3. Supramolecular features

In both compounds 1 and 2, no unusually short intermolecular contacts have been observed. In 1, the bulky ^{*i*}Pr groups at the molecule's surface does not allow for intermolecular $N - H \cdots N$ hydrogen bonding.

4. Database survey

For selected references on the reactivity of the sandwich complexes $Ln(C_5Me_5)_2$ (Ln = Sm, Eu, Yb), see: Evans *et al.* (1983, 1988), Evans (2007).

For general information on scorpionate ligands, see: Kitajima et al. (1992), Pettinari (2008), Trofimenko (1966, 1999).

Figure 3

The molecular structure of compound **2** in the crystal, showing orientational disorder of one isopropyl group. Displacement ellipsoids drawn at the 50% probability level, H atoms attached to C atoms omitted for clarity. [Symmetry code: (') $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z.]

research communications

Table 1Experimental details.

	1	2
Crystal data		
Chemical formula	$[Eu(C_{27}H_{46}BN_6)I(C_9H_{16}N_2)_2]$	$C_{36}H_{62}B_2N_8$
М.	1048.84	628.55
Crystal system, space group	Orthorhombic, Pbca	Monoclinic, $C2/c$
Temperature (K)	153	153
a, b, c (Å)	19,5319 (4), 26,6614 (4), 19,8681 (3)	25,7646 (11), 11,2134 (3), 15,0968 (7)
α, β, γ (°)	90, 90, 90	90, 118,792 (3), 90
$V(A^3)$	10346.3 (3)	3822.4 (3)
Z	8	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1.85	0.07
Crystal size (mm)	$0.49 \times 0.27 \times 0.21$	$0.33 \times 0.29 \times 0.13$
Data collection		
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2T
Absorption correction	Numerical (X-AREA and X-RED; Stoe & Cie, 2002)	-
T_{\min}, T_{\max}	0.535, 0.716	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	43898, 10158, 8229	10509, 3367, 2594
R _{int}	0.045	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.063, 1.04	0.044, 0.104, 1.02
No. of reflections	10158	3367
No. of parameters	576	238
No. of restraints	24	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.24, -1.27	0.25, -0.21

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

For the chemistry of divalent lanthanide scorpionate complexes, see: Davies *et al.* (1985), Domingos *et al.* (2002), Hillier *et al.* (2001), Kühling *et al.* (2015, 2016), Marques *et al.* (2002), Momin *et al.* (2014), Suta *et al.* (2017).

For general information on the chemistry and structures of pyrazaboles, see: Cavero *et al.* (2008), Niedenzu & Niedenzu (1984), Niedenzu & Nöth (1983), Trofimenko (1966).

For information on practical applications of pyrazaboles, see: Jadhav *et al.* (2013, 2015), Misra *et al.* (2013, 2014), Patil *et al.* (2017).

5. Synthesis and crystallization

All operations were performed under an argon atmosphere using standard Schlenk techniques. THF, hexamethyldisiloxane (HMDSO), and *n*-pentane were distilled from sodium/benzophenone under argon prior to use. NMR spectra were recorded on a Bruker DPX400 (¹H: 400 MHz) spectrometer in THF- D_8 at 295 (2) K. The ¹¹B NMR spectra were obtained by using inverse gated decoupling on a Bruker Avance 400 NMR spectrometer, operating at 128.4 MHz. The external standard was 15 wt-% BF₃·OEt₂ in CDCl₃ ($\delta_B = 0$ ppm). IR spectra were measured on a Bruker Vertex V70 spectrometer equipped with a diamond ATR unit, electron impact mass spectra on a MAT95 spectrometer with an ionization energy of 70 eV. Elemental analyses (C, H and N) were performed using a VARIO EL cube apparatus. The starting materials $\text{EuI}_2(\text{THF})_2$ (Girard *et al.* 1980) and $\text{KTp}^{i\text{Pr}2}$ (Kitajima *et al.* 1992) were prepared according to published procedures.

Preparation of $(Tp^{iPr2})(3,5^{-iPr2}Hpz)_2Eu^{II}I$ (1) and trans- $\{(3,5^{-iPr2}pz)HB(\mu-3,5^{-iPr2}pz)\}_{2}$ (2): In a 250 mL Schlenk flask, THF (150 mL) was added to a mixture of EuI₂(THF)₂ (2.36 g, 4.29 mmol) and KTp^{iPr2} (3.20 g, 6.33 mmol), and the resulting suspension was stirred for 12 h at r.t. A white precipitate (KI) was removed by filtration and the neon-yellow, fluorescent filtrate was evaporated to dryness. The residue was extracted with *n*-pentane $(3 \times 50 \text{ mL})$, the combined extracts filtered again and concentrated in vacuo to a total volume of ca 30 mL. Cooling to 277 K afforded bright-yellow, air-sensitive crystals of 1 (3.64 g, 78%), which were suitable for X-ray diffraction. The mother liquid was taken to dryness, and the slightly sticky residue was redissolved in ca 5 mL of THF. Addition of dry hexamethyldisiloxane (ca 50 mL) followed by cooling to 277 K for several days afforded ca 0.5 g of 2 as colorless, cube-like single-crystals.

1: Analysis calculated for $C_{45}H_{78}BEuIN_{10}$, $M = 1049.86 \text{ g mol}^{-1}$: C 51.48, H 7.58, N 13.34%. Found: C 50.88, H 7.77, N 12.59%. M.p. *ca* 353 K (dec.). IR: v 3173 w, 3096 w (v C-H pyrazolyl), 2961 s, 2929 m, 2869 m (v CH₃), 2550 w (vB-H), 1565 w, 1534 m, 1460 s, 1426 m, 1379 s, 1361 s, 1295 m, 1170 vs, 1104 m, 1046 s, 1012 s, 958 w, 923 w, 878 w, 787 vs, 767 s, 716 m, 659 s, 587 w, 511 w, 462 w, 389 w, 362 w, 306 w, 258 w, 219 w, 109 s, 75 m cm^{-1.1}H NMR (400.1 MHz, THF- D_8 ,

300 K): δ 11.6 (*s br*, B–*H*), 5.70 (*s br*, 5H, C-*H* pyrazolyl), 2.88 δ 153.8 (*br*, *q*-*C* pyrazolyl), 98.7, 99.3 (*C*–H pyrazolyl), 27.9, 32.1 (*C*–H ⁱPr), 23.2 (*C*H₃ ⁱPr). ¹¹B NMR (300 K, THF-*D*₈, 128.4 MHz): δ –5.3 (*s*, *br*) ppm. MS: *m*/*z* (%) 769 (98) [Eu(TpⁱPr₂)(^{iPr₂}pz)]⁺, 616 (92) [Eu(Tp^{iPr₂})]⁺, 477 (85), 321 (100), 302 (55) [EuBH(^{iPr₂}pz-CH₃)]⁺, 152 (21) [^{iPr₂}pz]⁺, 137 (63).

2: Analysis calculated for $C_{36}H_{62}B_2N_8$, $M = 628.56 \text{ g mol}^{-1}$: C 68.79, H 9.94, N 17.83%. Found: C 68.50, H 10.10, N 17.53%. M.p. 553 K. IR: v 3176 w, 3094 w (v C-H pyrazolyl), 2966 s, 2928 m, 2869 m, 2825 w (v CH₃), 2467 w (v B-H), 1576 w, 1541 m, 1497 m, 1461 m, 1369 m, 1301 s, 1233 vs, 1169 vs, 1134 vs, 1090 s, 1063 s, 1041 m, 1015 m, 982 s, 919 w, 879 w, 832 s, 788 s, 751 m, 723 m, 675 m, 566 m, 508 m, 473 w, 365 m, 302 m, 246 m, 137 m, 106 m, 75 m cm^{-1. 1}H NMR (400.1 MHz, THF- D_{8} , 300 K): δ 11.0 (s br, 2H, B-H), 5.75 (s br, 4H, C-H pyrazolyl), 2.87–2.91 (m, 4H, C–H^{*i*}Pr), 1.15–1.27 (m, 48H, CH₃ ⁱPr) ppm. ¹³C NMR (300 K, THF-D₈, 100 MHz): δ 160.7 (br, q-C pyrazolyl), 97.5 (C-H pyrazolyl), 28.5 (C-H i Pr), 23.5 (CH₃^{*i*}Pr). ¹¹B NMR (300 K, THF-D₈, 128.4 MHz): δ -4.3 (s, br) ppm. MS: m/z (%) 627 (62) $[M]^+$, 476 (100) $[C_{27}H_{46}B_2N_6]^+$, 461 (75) $[C_{26}H_{43}B_2N_6]^+$, 325 (66) $[C_{18}H_{31}B_2N_4]^+$, 152 (74) $[C_6H_2B_2N_4]^+$, 137 (89) $[pz_2]$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were refined as riding atoms with B-H = 1.00 Å and C-H = 0.98-1.00 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) =$ $1.2U_{eq}(B,C)$ for all others. In **1**, two isopropyl groups are each disordered over two orientations with occupancy ratios of 0.574 (10):0.426 (10) and 0.719 (16):0.281 (16). In **2**, one isopropyl group is similarly disordered, occupancy ratio 0.649 (9):0.351 (9).

Funding information

General financial support of this work by the Otto-von-Guericke-Universität is gratefully acknowledged.

References

- Alcock, N. W. & Sawyer, J. F. (1974). Acta Cryst. B30, 2899-2901.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cavero, E., Giménez, R., Uriel, S., Beltrán, E., Serrano, J. L., Alkorta, I. & Elguero, J. (2008). *Cryst. Growth Des.* **8**, 838–847.

- Davies, C. E., Gardiner, I. M., Green, J. C., Green, M. L. H., Hazel, N. J., Grebenik, P. D., Mtetwa, V. S. B. & Prout, H. (1985). J. Chem. Soc. Dalton Trans. pp. 669–683.
- Domingos, Â., Elsegood, M. R. J., Hillier, A. C., Lin, G., Liu, S. Y., Lopes, I., Marques, N., Maunder, G. H., McDonald, R., Sella, A., Steed, J. W. & Takats, J. (2002). *Inorg. Chem.* **41**, 6761–6768.
- Evans, W. J. (2007). Inorg. Chem. 46, 3435-3449.
- Evans, W. J., Bloom, I., Hunter, W. E. & Atwood, J. L. (1983). J. Am. Chem. Soc. 105, 1401–1403.
- Evans, W. J., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6877–6879.
- Girard, P., Namy, J. L. & Kagan, H. B. (1980). J. Am. Chem. Soc. 102, 2693–2698.
- Hillier, A. C., Zhang, X. W., Maunder, G. H., Liu, S. Y., Eberspacher, T. A., Metz, M. V., McDonald, R., Domingos, Â., Marques, N., Day, V. W., Sella, A. & Takats, J. (2001). *Inorg. Chem.* 40, 5106– 5116.
- Jadhav, T., Dhokale, B., Patil, Y. & Misra, R. (2015). *RSC Adv.* 5, 68187–68191.
- Jadhav, T., Maragani, R., Misra, R., Sreeramulu, Y., Rao, D. N. & Mobin, S. M. (2013). *Dalton Trans.* 42, 4340–4342.
- Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291.
- Kresiński, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401-406.
- Kühling, M., McDonald, R., Liebing, P., Hilfert, L., Ferguson, M. J., Takats, J. & Edelmann, F. T. (2016). *Dalton Trans.* 45, 10118– 10121.
- Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625.
- Lobbia, G. G., Bonati, F., Cecchi, P. & Pettinari, C. (1992). *Gazz. Chim. Ital.* 121, 355–358.
- Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.
- Misra, R., Jadhav, T. & Mobin, S. M. (2013). *Dalton Trans.* 42, 16614–16620.
- Misra, R., Jadhav, T. & Mobin, S. M. (2014). Dalton Trans. 43, 2013–2022.
- Momin, A., Carter, L., Yang, Y., McDonald, R., Essafi (née Labouille), S., Nief, F., Del Rosal, I., Sella, A., Maron, L. & Takats, J. (2014). *Inorg. Chem.* 53, 12066–12075.
- Niedenzu, K. & Niedenzu, P. M. (1984). Inorg. Chem. 23, 3713–3716.
- Niedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132-1153.
- Patil, Y., Jadhav, T., Dhokale, B., Butenschön, H. & Misra, R. (2017). ChemistrySelect 2, 415–420.
- Pettinari, C. (2008). Scorpionates II: Chelating Borate Ligands. Imperial College Press, London.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
- Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. (2017). J. Lumin. 187, 62–68.
- Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.
- Trofimenko, S. (1993). Chem. Rev. 93, 943-980.
- Trofimenko, S. (1999). *The Coordination Chemistry of Scorpionates Pyrazolylborate Ligands*. Imperial College Press, London.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2017). E73, 1921-1925 [https://doi.org/10.1107/S2056989017016498]

Formation and structural characterization of a europium(II) mono(scorpionate) complex and a sterically crowded pyrazabole

Phil Liebing, Marcel Kühling, Josef Takats, Liane Hilfert and Frank T. Edelmann

Computing details

For both structures, data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-AREA* and *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis(3,5-diisopropyl-1*H*-pyrazole)[hydrotris(3,5-diisopropylpyrazolyl)borato]iodidoeuropium(II) (1)

Crystal data	
$\begin{bmatrix} \text{Eu}(\text{C}_{27}\text{H}_{46}\text{BN}_6)\text{I}(\text{C}_9\text{H}_{16}\text{N}_2)_2 \end{bmatrix}$ $M_r = 1048.84$ Orthorhombic, <i>Pbca</i> a = 19.5319 (4) Å b = 26.6614 (4) Å c = 19.8681 (3) Å V = 10346.3 (3) Å ³ Z = 8 F(000) = 4312	$D_{\rm x} = 1.347 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 44511 reflections $\theta = 2.2-26.2^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 153 K Block, yellow $0.49 \times 0.27 \times 0.21 \text{ mm}$
Data collection	
Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm ⁻¹ area detector scans Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) $T_{min} = 0.535$, $T_{max} = 0.716$	43898 measured reflections 10158 independent reflections 8229 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -23 \rightarrow 24$ $k = -32 \rightarrow 32$ $l = -21 \rightarrow 24$
Refinement Refinement Refinement $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.063$ S = 1.04 10158 reflections 576 parameters 24 restraints Primary atom site location: heavy-atom method	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0226P)^2 + 10.682P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.24$ e Å ⁻³ $\Delta\rho_{min} = -1.27$ e Å ⁻³

Extinction correction: SHELXL2016 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00019 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.23921 (15)	0.19065 (10)	0.45330 (14)	0.0232 (6)	
C2	0.21068 (16)	0.19034 (11)	0.38902 (14)	0.0273 (6)	
H4	0.183276	0.215746	0.369057	0.033*	
C3	0.23046 (15)	0.14552 (10)	0.36038 (14)	0.0238 (6)	
C4	0.23355 (17)	0.23068 (11)	0.50638 (15)	0.0283 (6)	
Н5	0.263908	0.221037	0.544789	0.034*	
C5	0.25808 (19)	0.28129 (12)	0.47934 (18)	0.0384 (8)	
H8	0.255417	0.306493	0.515143	0.058*	
H6	0.228981	0.291544	0.441589	0.058*	
H7	0.305575	0.278252	0.463953	0.058*	
C6	0.16048 (18)	0.23508 (12)	0.53306 (17)	0.0381 (8)	
H10	0.158795	0.260725	0.568352	0.057*	
Н9	0.146011	0.202746	0.551724	0.057*	
H11	0.129735	0.244581	0.496224	0.057*	
C7	0.21582 (15)	0.12724 (11)	0.29037 (14)	0.0291 (6)	
H12	0.218647	0.089789	0.290276	0.035*	
C8	0.14350 (19)	0.14246 (15)	0.26872 (18)	0.0492 (9)	
H14	0.133731	0.128534	0.224096	0.074*	
H13	0.140294	0.179121	0.266970	0.074*	
H15	0.110206	0.129474	0.301242	0.074*	
C9	0.2686 (2)	0.14745 (12)	0.24108 (16)	0.0392 (8)	
H17	0.259015	0.134409	0.195949	0.059*	
H18	0.314471	0.136803	0.255155	0.059*	
H16	0.266440	0.184172	0.240395	0.059*	
C10	0.48118 (14)	0.09139 (11)	0.45682 (14)	0.0244 (6)	
C11	0.49553 (15)	0.07902 (11)	0.39050 (14)	0.0274 (6)	
H19	0.539399	0.077925	0.369911	0.033*	
C12	0.43383 (15)	0.06867 (10)	0.36050 (14)	0.0238 (6)	
C13	0.52990 (15)	0.10295 (12)	0.51323 (15)	0.0309 (7)	
H20	0.502309	0.114062	0.552928	0.037*	
C14	0.56970 (19)	0.05623 (13)	0.53359 (17)	0.0432 (8)	
H21	0.600301	0.064330	0.571137	0.065*	
H22	0.596805	0.044372	0.495250	0.065*	
H23	0.537614	0.029938	0.547469	0.065*	
C15	0.57849 (19)	0.14513 (14)	0.4948 (2)	0.0483 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H24	0.607370	0.153213	0.533668	0.073*
H25	0.552076	0.174828	0.481785	0.073*
H26	0.607449	0.134594	0.457093	0.073*
C16	0.42087 (16)	0.04955 (11)	0.29062 (14)	0.0287 (6)
H27	0.374654	0.061415	0.275938	0.034*
C17	0.4208 (2)	-0.00760(12)	0.29044 (17)	0.0436 (9)
H30	0.412317	-0.019769	0.244642	0.065*
H28	0.384677	-0.019880	0.320468	0.065*
H29	0.465295	-0.019921	0.306087	0.065*
C18	0.4739 (2)	0.06968 (17)	0.24131 (17)	0.0512 (10)
H32	0.460857	0.060380	0.195346	0.077*
H33	0.518819	0.055308	0.251868	0.077*
H31	0.476153	0.106295	0.245001	0.077*
C19	0.26615 (17)	0.00515 (11)	0.55876 (15)	0.0290 (6)
C20	0.23614 (18)	-0.02982(12)	0.51569 (17)	0.0341 (7)
H34	0.213786	-0.060076	0.528125	0.041*
C21	0.24547 (15)	-0.01156 (11)	0.45133 (16)	0.0268 (7)
C22	0.27416 (19)	0.00427 (12)	0.63403 (15)	0.0362(7)
H35	0.283022	0.039493	0.648967	0.043*
C23	0.3355 (2)	-0.02675(15)	0.65418 (18)	0.0469 (9)
H37	0.340200	-0.026421	0.703283	0.070*
H38	0.376857	-0.012635	0.633662	0.070*
H36	0.329249	-0.061345	0.638663	0.070*
C24	0.2098 (2)	-0.01320(16)	0.66876 (19)	0.0524 (10)
H39	0.217036	-0.013151	0.717576	0.079*
H41	0.198657	-0.047253	0.653800	0.079*
H40	0.172026	0.009446	0.657489	0.079*
C25	0.22093 (18)	-0.03350(12)	0.38605 (16)	0.0346 (7)
H42	0.258186	-0.029403	0.351965	0.041*
C26	0.2065 (2)	-0.08964 (13)	0.3940 (2)	0.0525 (10)
H45	0.194344	-0.103937	0.350169	0.079*
H44	0.168549	-0.094462	0.425556	0.079*
H43	0.247523	-0.106445	0.411353	0.079*
C27	0.1578 (2)	-0.00645(14)	0.36021 (19)	0.0471 (9)
H47	0.143055	-0.021654	0.317693	0.071*
H46	0.168614	0.029013	0.352819	0.071*
H48	0.120884	-0.009254	0.393429	0.071*
C28	0.17695 (16)	0.13410 (11)	0.67075 (15)	0.0291 (6)
C29	0.10972 (16)	0.11984 (13)	0.65687 (15)	0.0353 (7)
H49	0.071667	0.121593	0.686550	0.042*
C30	0.10960 (17)	0.10284 (13)	0.59193 (16)	0.0353 (7)
C31	0.20606 (18)	0.15603 (13)	0.73387 (16)	0.0373 (8)
H50	0.247595	0.136106	0.746193	0.045*
C32	0.2284 (3)	0.20987 (16)	0.7225 (2)	0.0698 (13)
Н53	0.247710	0.223405	0.764241	0.105*
H51	0.188727	0.230049	0.709049	0.105*
H52	0.263059	0.210933	0.686909	0.105*
C33	0.1558 (2)	0.15271 (18)	0.79216 (19)	0.0608 (11)
	× /	× /	× /	· · /

H55	0.176796	0.167016	0.832654	0.091*	
H54	0.144132	0.117499	0.800382	0.091*	
H56	0.114222	0.171483	0.781002	0.091*	
C34A	0.0541 (2)	0.08120 (17)	0.54784 (19)	0.0532 (10)	0.574 (10)
H57A	0.013350	0.102080	0.559735	0.064*	0.574 (10)
C34B	0.0541 (2)	0.08120 (17)	0.54784 (19)	0.0532 (10)	0.426 (10)
H57B	0.066428	0.044801	0.548716	0.064*	0.426 (10)
C35	0.0648 (2)	0.09304 (16)	0.47511 (18)	0.0532 (10)	
H58	0.071183	0.129268	0.469644	0.080*	
H59	0.024658	0.082248	0.449277	0.080*	
H60	0.105487	0.075371	0.458703	0.080*	
C36A	0.0340 (5)	0.0322 (3)	0.5685 (5)	0.076 (3)	0.574 (10)
H61A	0.020303	0.033042	0.615986	0.114*	0.574 (10)
H62A	0.072501	0.009055	0.562895	0.114*	0.574 (10)
H63A	-0.004663	0.020941	0.541006	0.114*	0.574 (10)
C36B	-0.0104 (5)	0.0799 (5)	0.5750 (5)	0.063 (4)	0.426 (10)
H61B	-0.009018	0.062495	0.618433	0.095*	0.426 (10)
H62B	-0.041222	0.061930	0.544371	0.095*	0.426 (10)
H63B	-0.027094	0.114175	0.581517	0.095*	0.426 (10)
C37	0.43817 (16)	0.24760 (12)	0.54152 (15)	0.0315 (7)	
C38	0.46062 (18)	0.27479 (13)	0.48529 (16)	0.0387 (8)	
H64	0.484238	0.305937	0.485591	0.046*	
C39	0.44185 (17)	0.24765 (12)	0.43003 (15)	0.0341 (7)	
C40	0.4448 (2)	0.26136 (14)	0.61417 (16)	0.0458 (9)	
H65	0.422813	0.234499	0.641828	0.055*	
C41	0.5196 (3)	0.2646 (2)	0.6334 (2)	0.0818 (17)	
H67	0.523519	0.275708	0.680245	0.123*	
H68	0.542805	0.288635	0.603906	0.123*	
H66	0.540852	0.231495	0.628500	0.123*	
C42	0.4073 (3)	0.3109 (2)	0.6274 (2)	0.0861 (18)	
H69	0.412874	0.320390	0.674707	0.129*	
H71	0.358544	0.306816	0.617231	0.129*	
H70	0.426594	0.337220	0.598575	0.129*	
C43A	0.4504 (2)	0.25747 (16)	0.35604 (17)	0.0512 (10)	0.719 (16)
H72A	0.437857	0.293647	0.351016	0.061*	0.719 (16)
C43B	0.4504 (2)	0.25747 (16)	0.35604 (17)	0.0512 (10)	0.281 (16)
H72B	0.470887	0.291775	0.353444	0.061*	0.281 (16)
C44A	0.5189 (4)	0.2553 (5)	0.3336(3)	0.072 (3)	0.719 (16)
H73A	0.521137	0.266047	0.286454	0.108*	0.719 (16)
H74A	0.535842	0.220884	0.337503	0.108*	0.719 (16)
H75A	0.547159	0.277643	0.361229	0.108*	0.719 (16)
C44B	0.5127 (12)	0.2193 (12)	0.3331 (8)	0.071 (6)	0.281 (16)
H73B	0.551346	0.222943	0.364141	0.106*	0.281 (16)
H74B	0.527507	0.227687	0.287342	0.106*	0.281 (16)
H75B	0.496165	0.184595	0.334190	0.106*	0.281 (16)
C45A	0.3975 (4)	0.2304 (5)	0.3138 (3)	0.057 (2)	0.719 (16)
H76A	0.351629	0.237583	0.331277	0.085*	0.719 (16)
H77A	0.405947	0.194154	0.315773	0.085*	0.719 (16)

H78A	0.400717	0.241788	0.267033	0.085*	0.719 (16)
C45B	0.3905 (11)	0.2610 (10)	0.3212 (9)	0.058 (5)	0.281 (16)
H76B	0.400386	0.264898	0.273114	0.087*	0.281 (16)
H77B	0.364638	0.290208	0.337140	0.087*	0.281 (16)
H78B	0.363373	0.230557	0.328252	0.087*	0.281 (16)
В	0.30572 (17)	0.06863 (11)	0.40118 (16)	0.0217 (6)	
H1	0.295416	0.053563	0.356212	0.026*	
N1	0.26882 (12)	0.12017 (8)	0.40630 (10)	0.0207 (4)	
N2	0.27389 (12)	0.14851 (8)	0.46446 (11)	0.0224 (5)	
N3	0.38405 (12)	0.07583 (8)	0.40739 (11)	0.0217 (5)	
N4	0.41373 (12)	0.09024 (9)	0.46732 (11)	0.0234 (5)	
N5	0.27948 (12)	0.03263 (8)	0.45666 (11)	0.0223 (5)	
N6	0.29237 (12)	0.04292 (9)	0.52350 (11)	0.0250 (5)	
N7	0.17398 (13)	0.10721 (9)	0.57009 (13)	0.0310 (5)	
H2	0.187129	0.098662	0.529310	0.037*	
N8	0.21714 (13)	0.12622 (9)	0.61732 (12)	0.0298 (5)	
N9	0.41090 (14)	0.20651 (10)	0.45416 (12)	0.0306 (6)	
H3	0.394258	0.182617	0.428346	0.037*	
N10	0.40781 (13)	0.20540 (10)	0.52242 (12)	0.0289 (5)	
Ι	0.42224 (2)	0.11967 (2)	0.71250 (2)	0.04898 (7)	
EU	0.34693 (2)	0.12375 (2)	0.57077 (2)	0.02286 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0221 (14)	0.0230 (14)	0.0245 (14)	0.0014 (12)	0.0007 (11)	-0.0010 (11)
C2	0.0259 (16)	0.0254 (14)	0.0305 (15)	0.0057 (12)	-0.0045 (12)	0.0012 (11)
C3	0.0214 (14)	0.0251 (13)	0.0248 (14)	0.0008 (12)	-0.0002 (11)	0.0017 (11)
C4	0.0319 (16)	0.0263 (14)	0.0268 (15)	0.0066 (13)	-0.0006 (13)	-0.0028 (12)
C5	0.044 (2)	0.0286 (16)	0.043 (2)	-0.0008 (15)	0.0017 (15)	-0.0063 (14)
C6	0.041 (2)	0.0350 (17)	0.0383 (18)	0.0086 (15)	0.0065 (15)	-0.0033 (13)
C7	0.0332 (16)	0.0271 (14)	0.0269 (14)	0.0015 (13)	-0.0069 (12)	-0.0031 (12)
C8	0.042 (2)	0.063 (2)	0.043 (2)	0.0119 (19)	-0.0176 (16)	-0.0166 (17)
C9	0.055 (2)	0.0339 (17)	0.0287 (16)	0.0040 (17)	0.0029 (16)	-0.0004 (13)
C10	0.0183 (14)	0.0261 (14)	0.0288 (14)	-0.0018 (12)	0.0004 (11)	0.0004 (11)
C11	0.0165 (14)	0.0387 (17)	0.0270 (15)	0.0004 (13)	0.0028 (11)	-0.0005 (12)
C12	0.0208 (15)	0.0276 (14)	0.0229 (13)	0.0021 (12)	0.0041 (11)	0.0026 (11)
C13	0.0218 (15)	0.0392 (16)	0.0316 (16)	-0.0052 (13)	-0.0003 (12)	-0.0060 (13)
C14	0.042 (2)	0.050(2)	0.0380 (19)	-0.0024 (17)	-0.0161 (15)	0.0061 (15)
C15	0.037 (2)	0.049 (2)	0.059 (2)	-0.0175 (17)	-0.0167 (17)	0.0002 (17)
C16	0.0233 (15)	0.0394 (16)	0.0235 (14)	0.0020 (13)	0.0004 (12)	0.0018 (12)
C17	0.056 (2)	0.0411 (18)	0.0332 (17)	0.0113 (17)	-0.0097 (16)	-0.0104 (14)
C18	0.042 (2)	0.085 (3)	0.0259 (17)	-0.007 (2)	0.0069 (15)	0.0005 (17)
C19	0.0272 (15)	0.0295 (15)	0.0304 (16)	0.0003 (13)	0.0055 (13)	0.0063 (12)
C20	0.0340 (17)	0.0284 (16)	0.0398 (18)	-0.0063 (14)	0.0072 (15)	0.0070 (13)
C21	0.0226 (16)	0.0230 (15)	0.0348 (17)	-0.0024 (12)	0.0034 (11)	0.0012 (12)
C22	0.043 (2)	0.0365 (17)	0.0291 (16)	0.0030 (16)	0.0084 (14)	0.0101 (13)
C23	0.045 (2)	0.059 (2)	0.0371 (19)	0.0125 (19)	0.0034 (16)	0.0110 (16)

C24	0.045 (2)	0.072 (3)	0.041 (2)	0.005 (2)	0.0151 (17)	0.0221 (18)
C25	0.0351 (19)	0.0308 (16)	0.0378 (17)	-0.0121 (14)	0.0035 (14)	-0.0043 (13)
C26	0.068 (3)	0.0303 (18)	0.060 (2)	-0.0145 (19)	0.000 (2)	-0.0075 (16)
C27	0.044 (2)	0.048 (2)	0.050(2)	-0.0111 (18)	-0.0107 (17)	-0.0014 (16)
C28	0.0284 (15)	0.0262 (15)	0.0328 (15)	0.0022 (12)	0.0073 (12)	0.0018 (12)
C29	0.0278 (16)	0.0426 (18)	0.0355 (16)	-0.0032 (15)	0.0066 (13)	0.0021 (14)
C30	0.0268 (17)	0.0393 (17)	0.0398 (17)	-0.0073 (14)	0.0024 (13)	0.0068 (14)
C31	0.0373 (19)	0.0404 (18)	0.0342 (17)	0.0038 (15)	0.0001 (14)	-0.0040 (14)
C32	0.098 (4)	0.056 (3)	0.055 (3)	-0.024 (3)	-0.013 (3)	-0.012 (2)
C33	0.060 (3)	0.086 (3)	0.037 (2)	-0.006 (2)	0.0109 (19)	-0.018 (2)
C34A	0.039 (2)	0.073 (3)	0.047 (2)	-0.025 (2)	-0.0084 (17)	0.0071 (19)
C34B	0.039 (2)	0.073 (3)	0.047 (2)	-0.025 (2)	-0.0084 (17)	0.0071 (19)
C35	0.048 (2)	0.067 (3)	0.045 (2)	-0.006 (2)	-0.0090 (17)	-0.0075 (18)
C36A	0.070 (6)	0.064 (5)	0.095 (6)	-0.041 (5)	-0.037 (5)	0.019 (5)
C36B	0.025 (5)	0.103 (9)	0.061 (6)	-0.020 (5)	0.011 (4)	-0.009 (6)
C37	0.0315 (17)	0.0348 (16)	0.0281 (15)	-0.0101 (14)	0.0032 (13)	-0.0003 (12)
C38	0.045 (2)	0.0397 (18)	0.0311 (16)	-0.0199 (16)	0.0014 (15)	0.0022 (13)
C39	0.0349 (17)	0.0413 (17)	0.0261 (15)	-0.0099 (15)	0.0018 (14)	0.0075 (14)
C40	0.055 (2)	0.057 (2)	0.0251 (16)	-0.0231 (19)	0.0060 (15)	-0.0063 (15)
C41	0.072 (3)	0.141 (5)	0.033 (2)	-0.041 (3)	-0.014 (2)	0.003 (3)
C42	0.125 (5)	0.085 (4)	0.048 (3)	-0.001 (3)	0.022 (3)	-0.027 (2)
C43A	0.064 (3)	0.065 (2)	0.0245 (16)	-0.022 (2)	0.0027 (17)	0.0075 (16)
C43B	0.064 (3)	0.065 (2)	0.0245 (16)	-0.022 (2)	0.0027 (17)	0.0075 (16)
C44A	0.058 (4)	0.128 (8)	0.031 (3)	-0.041 (5)	0.004 (3)	0.004 (4)
C44B	0.074 (11)	0.118 (14)	0.021 (6)	0.022 (11)	0.018 (7)	-0.003 (9)
C45A	0.054 (4)	0.093 (6)	0.023 (3)	-0.027 (4)	-0.005 (2)	0.007 (3)
C45B	0.081 (11)	0.062 (11)	0.031 (7)	-0.019 (10)	-0.007 (7)	0.017 (8)
В	0.0184 (16)	0.0228 (15)	0.0239 (15)	-0.0031 (13)	-0.0004 (12)	-0.0019 (12)
N1	0.0199 (11)	0.0201 (11)	0.0222 (10)	0.0001 (10)	0.0009 (9)	-0.0001 (9)
N2	0.0226 (12)	0.0242 (12)	0.0204 (11)	-0.0020 (10)	0.0010 (9)	-0.0024 (9)
N3	0.0205 (12)	0.0241 (11)	0.0204 (11)	-0.0007 (10)	0.0002 (9)	0.0006 (9)
N4	0.0180 (12)	0.0269 (12)	0.0252 (12)	-0.0016 (10)	-0.0020 (9)	-0.0040 (9)
N5	0.0189 (12)	0.0236 (11)	0.0245 (11)	-0.0014 (10)	0.0008 (9)	0.0005 (9)
N6	0.0231 (13)	0.0297 (12)	0.0222 (11)	-0.0009 (10)	0.0028 (9)	0.0022 (9)
N7	0.0296 (14)	0.0359 (13)	0.0274 (12)	-0.0050 (11)	0.0033 (11)	-0.0035 (11)
N8	0.0286 (13)	0.0304 (13)	0.0303 (12)	-0.0030 (12)	0.0006 (10)	-0.0002 (11)
N9	0.0353 (15)	0.0348 (14)	0.0216 (11)	-0.0072 (12)	-0.0006 (11)	-0.0016 (10)
N10	0.0300 (14)	0.0361 (14)	0.0206 (11)	-0.0020 (11)	-0.0001 (10)	0.0026 (10)
Ι	0.04194 (13)	0.07629 (18)	0.02871 (11)	0.00290 (13)	-0.00875 (9)	0.00910 (11)
EU	0.02157 (7)	0.02746 (7)	0.01955 (7)	-0.00247 (6)	0.00070 (5)	0.00068 (6)

Geometric parameters (Å, °)

C1—N2	1.331 (4)	C30—N7	1.336 (4)	
C1—C2	1.393 (4)	C30—C34A	1.508 (5)	
C1—C4	1.504 (4)	C30—C34B	1.508 (5)	
C2—C3	1.379 (4)	C31—C32	1.517 (5)	
С2—Н4	0.9500	C31—C33	1.520 (5)	

C3—N1	1.360 (3)	С31—Н50	1.0000
C3—C7	1.501 (4)	C32—H53	0.9800
C4—C6	1.527 (4)	С32—Н51	0.9800
C4—C5	1.529 (4)	С32—Н52	0.9800
C4—H5	1.0000	С33—Н55	0.9800
С5—Н8	0.9800	С33—Н54	0.9800
С5—Н6	0.9800	С33—Н56	0.9800
С5—Н7	0.9800	C34a—C36A	1.424 (8)
C6—H10	0.9800	C34a—C35	1.494 (5)
С6—Н9	0.9800	C34a—H57A	1.0000
C6—H11	0.9800	C34b-C36B	1 371 (9)
C7—C9	1 521 (4)	C_{34b} C_{35}	1.371(5) 1 494 (5)
C7-C8	1.521(1) 1.531(4)	C34b_H57B	1.0000
C7H12	1,0000	C35_H58	0.9800
C_{8} H_{14}	0.0800	C35 H50	0.9800
C_{0} H_{12}	0.9800	C35—H60	0.9800
C ⁸ 1115	0.9800	C35—1100	0.9800
	0.9800		0.9800
C9—H17	0.9800	C36a—H62A	0.9800
C9—H18	0.9800	С36а—Н63А	0.9800
С9—Н16	0.9800	C36b—H61B	0.9800
C10—N4	1.334 (4)	C36b—H62B	0.9800
C10—C11	1.387 (4)	C36b—H63B	0.9800
C10—C13	1.502 (4)	C37—N10	1.327 (4)
C11—C12	1.372 (4)	C37—C38	1.402 (4)
С11—Н19	0.9500	C37—C40	1.495 (4)
C12—N3	1.360 (4)	C38—C39	1.365 (4)
C12—C16	1.501 (4)	С38—Н64	0.9500
C13—C15	1.516 (5)	C39—N9	1.341 (4)
C13—C14	1.523 (5)	C39—C43A	1.502 (4)
C13—H20	1.0000	C39—C43B	1.502 (4)
C14—H21	0.9800	C40—C41	1.511 (6)
C14—H22	0.9800	C40—C42	1.534 (6)
C14—H23	0.9800	C40—H65	1.0000
C15—H24	0 9800	C41—H67	0.9800
C15—H25	0.9800	C41—H68	0.9800
C15—H26	0.9800	C41—H66	0.9800
C_{16} C_{18}	1 523 (4)	C42 - H69	0.9800
$C_{10} = C_{10}$	1.525(4) 1.524(4)	$C_{42} = H_{71}$	0.9800
C_{10}	1.0000	$C_{42} = 1171$	0.9800
C17_1127	0.0200	C42—1170	1 411 (9)
C17—H30	0.9800	C43a—C44A	1.411 (8)
C17—H28	0.9800	C43a - C45A	1.514 (8)
С17—Н29	0.9800	C43a—H/2A	1.0000
С18—Н32	0.9800	C43b—C45B	1.36 (2)
С18—Н33	0.9800	C43b—C44B	1.651 (19)
С18—Н31	0.9800	C43b—H72B	1.0000
C19—N6	1.329 (4)	C44a—H73A	0.9800
C19—C20	1.395 (5)	C44a—H74A	0.9800
C19—C22	1.504 (4)	C44a—H75A	0.9800

C20—C21	1.380 (4)	C44b—H73B	0.9800
С20—Н34	0.9500	C44b—H74B	0.9800
C21—N5	1.357 (4)	C44b—H75B	0.9800
C21—C25	1.501 (4)	C45a—H76A	0.9800
C22—C24	1.507 (5)	C45a—H77A	0.9800
C22—C23	1.510 (5)	C45a—H78A	0.9800
С22—Н35	1.0000	C45b—H76B	0.9800
С23—Н37	0.9800	C45b—H77B	0.9800
С23—Н38	0.9800	C45b—H78B	0.9800
С23—Н36	0.9800	B—N3	1.547 (4)
C24—H39	0.9800	B—N5	1.549 (4)
C24—H41	0.9800	B—N1	1.555 (4)
C24—H40	0.9800	B—H1	1.0000
C25—C27	1.518 (5)	N1—N2	1.384 (3)
C25—C26	1.531 (4)	N2—EU	2.633 (2)
C25—H42	1.0000	N3—N4	1.379 (3)
C26—H45	0.9800	N4—EU	2.593 (2)
C26—H44	0.9800	N5—N6	1.379 (3)
C26—H43	0.9800	N6—EU	2.581 (2)
C27—H47	0.9800	N7—N8	1.359 (3)
C27—H46	0.9800	N7—H2	0.8800
С27—Н48	0.9800	N8—EU	2.699 (2)
C28—N8	1.337 (4)	N9—N10	1.358 (3)
C28—C29	1.395 (4)	N9—H3	0.8800
C28—C31	1.496 (4)	N10—EU	2.660 (2)
C29—C30	1.367 (4)	I—EU	3.1788 (2)
С29—Н49	0.9500		
N2—C1—C2	110.6 (2)	C31—C32—H52	109.5
N2—C1—C4	121.3 (3)	H53—C32—H52	109.5
C2—C1—C4	128.1 (3)	H51—C32—H52	109.5
C3—C2—C1	105.7 (3)	C31—C33—H55	109.5
С3—С2—Н4	127.1	C31—C33—H54	109.5
C1—C2—H4	127.1	H55—C33—H54	109.5
N1—C3—C2	108.0 (2)	C31—C33—H56	109.5
N1—C3—C7	124.4 (2)	H55—C33—H56	109.5
C2—C3—C7	127.6 (3)	H54—C33—H56	109.5
C1—C4—C6	111.5 (3)	C36a—C34a—C35	120.8 (5)
C1—C4—C5	110.9 (3)	C36a—C34a—C30	112.4 (4)
C6—C4—C5	110.3 (3)	C35—C34a—C30	112.4 (3)
C1—C4—H5	108.0	C36a—C34a—H57A	102.8
С6—С4—Н5	108.0	C35—C34a—H57A	102.8
С5—С4—Н5	108.0	C30—C34a—H57A	102.8
С4—С5—Н8	109.5	C36b—C34b—C35	120.9 (6)
С4—С5—Н6	109.5	C36b—C34b—C30	116.2 (5)
Н8—С5—Н6	109.5	C35—C34b—C30	112.4 (3)
С4—С5—Н7	109.5	C36b—C34b—H57B	100.9
Н8—С5—Н7	109.5	C35—C34b—H57B	100.9

Н6—С5—Н7	109.5	C30—C34b—H57B	100.9
C4—C6—H10	109.5	C34a—C35—H58	109.5
С4—С6—Н9	109.5	C34a—C35—H59	109.5
Н10—С6—Н9	109.5	Н58—С35—Н59	109.5
C4—C6—H11	109.5	C34a - C35 - H60	109.5
H10-C6-H11	109.5	H58—C35—H60	109.5
H9-C6-H11	109.5	H59—C35—H60	109.5
$C_3 - C_7 - C_9$	109.5	$C_{342} - C_{362} - H_{61A}$	109.5
$C_{3} - C_{7} - C_{8}$	110.0(2) 110.5(3)	C342 - C362 - H62A	109.5
$C_{9} - C_{7} - C_{8}$	110.5(3)	$H61_{2}$ $C36_{2}$ $H62A$	109.5
$C_3 C_7 H_{12}$	108.4	C_{342} C_{362} H_{63A}	109.5
C_{9} C_{7} H_{12}	108.4	$H61_2$ C36 ₂ H63A	109.5
$C_{3} - C_{7} - H_{12}$	108.4	H62a $C36a$ $H63A$	109.5
$C_{0} - C_{1} - H_{12}$	108.4	C_{24} C_{26} H_{61} H_{61}	109.5
$C_{7} = C_{8} = H_{12}$	109.5	$C_{24b} = C_{36b} = H_{62B}$	109.5
$C/-C_{0}$	109.5	$C_{340} - C_{300} - \pi_{02B}$	109.5
	109.5	1010 - C300 - 102B	109.5
	109.5	C340—C300—H03B	109.5
H14-C8-H15	109.5	H61b-C36b-H63B	109.5
H13-C8-H15	109.5	H62b-C36b-H63B	109.5
C/C9H17	109.5	N10 - C37 - C38	110.5 (3)
С/—С9—Н18	109.5	N10—C37—C40	121.5 (3)
H17—C9—H18	109.5	C38—C37—C40	128.0 (3)
С7—С9—Н16	109.5	C39—C38—C37	106.4 (3)
Н17—С9—Н16	109.5	С39—С38—Н64	126.8
H18—C9—H16	109.5	С37—С38—Н64	126.8
N4—C10—C11	110.0 (2)	N9—C39—C38	105.5 (3)
N4—C10—C13	120.9 (3)	N9—C39—C43A	122.8 (3)
C11—C10—C13	129.0 (3)	C38—C39—C43A	131.7 (3)
C12—C11—C10	106.4 (3)	N9—C39—C43B	122.8 (3)
C12—C11—H19	126.8	C38—C39—C43B	131.7 (3)
C10—C11—H19	126.8	C37—C40—C41	110.0 (3)
N3-C12-C11	107.6 (2)	C37—C40—C42	109.6 (3)
N3-C12-C16	124.1 (3)	C41—C40—C42	111.7 (4)
C11—C12—C16	128.2 (3)	С37—С40—Н65	108.5
C10-C13-C15	111.6 (3)	C41—C40—H65	108.5
C10-C13-C14	110.7 (3)	C42—C40—H65	108.5
C15—C13—C14	110.5 (3)	C40—C41—H67	109.5
C10-C13-H20	107.9	C40—C41—H68	109.5
C15—C13—H20	107.9	H67—C41—H68	109.5
C14—C13—H20	107.9	C40—C41—H66	109.5
C13—C14—H21	109.5	H67—C41—H66	109.5
C13—C14—H22	109.5	H68—C41—H66	109.5
H21—C14—H22	109.5	C40—C42—H69	109.5
C13—C14—H23	109.5	C40—C42—H71	109.5
H21—C14—H23	109.5	H69—C42—H71	109.5
H22—C14—H23	109.5	C40—C42—H70	109.5
С13—С15—Н24	109.5	H69—C42—H70	109.5
С13—С15—Н25	109.5	H71—C42—H70	109.5

		a a a	
H24—C15—H25	109.5	C44a—C43a—C39	114.0 (4)
C13—C15—H26	109.5	C44a—C43a—C45A	116.9 (5)
H24—C15—H26	109.5	C39—C43a—C45A	112.6 (4)
H25—C15—H26	109.5	C44a—C43a—H72A	103.8
C12—C16—C18	111.1 (3)	C39—C43a—H72A	103.8
C12—C16—C17	110.0 (2)	C45a—C43a—H72A	103.8
C18—C16—C17	110.6 (3)	C45b—C43b—C39	114.5 (8)
C12—C16—H27	108.3	C45b—C43b—C44B	122.4 (12)
C18—C16—H27	108.3	C39—C43b—C44B	104.1 (7)
C17—C16—H27	108.3	C45b—C43b—H72B	104.7
C16-C17-H30	109.5	C_{39} C_{43b} H_{72B}	104 7
C16—C17—H28	109.5	C44b— $C43b$ — $H72B$	104 7
$H_{30} = C_{17} = H_{28}$	109.5	C_{432} C_{432} H_{73A}	109.5
1130 - C17 - 1128	109.5	$C_{43a} = C_{44a} = H_{74A}$	109.5
$H_{20} = C_{17} = H_{20}$	109.5	$L_{Ja} = C_{Ja} = H_{Ja}$	109.5
$H_{20} = C_{17} = H_{20}$	109.5	$\Pi/3a$ C44a $\Pi/4A$	109.5
$H_{20} = C_{17} = H_{20}$	109.5	$C43a - C44a - \Pi/3A$	109.5
C16—C18—H32	109.5	H/3a - C44a - H/5A	109.5
С16—С18—Н33	109.5	H/4a—C44a—H/5A	109.5
H32—C18—H33	109.5	C43b—C44b—H73B	109.5
C16—C18—H31	109.5	C43b—C44b—H74B	109.5
H32—C18—H31	109.5	H73b—C44b—H74B	109.5
H33—C18—H31	109.5	C43b—C44b—H75B	109.5
N6—C19—C20	110.2 (3)	H73b—C44b—H75B	109.5
N6—C19—C22	119.7 (3)	H74b—C44b—H75B	109.5
C20—C19—C22	130.1 (3)	C43a—C45a—H76A	109.5
C21—C20—C19	106.1 (3)	C43a—C45a—H77A	109.5
С21—С20—Н34	127.0	H76a—C45a—H77A	109.5
С19—С20—Н34	127.0	C43a—C45a—H78A	109.5
N5—C21—C20	107.4 (3)	H76a—C45a—H78A	109.5
N5—C21—C25	124.2 (3)	H77a—C45a—H78A	109.5
C20—C21—C25	128.4 (3)	C43b—C45b—H76B	109.5
C19—C22—C24	111.9 (3)	C43b—C45b—H77B	109.5
C19 - C22 - C23	110.8 (3)	H76b-C45b-H77B	109.5
C_{24} C_{22} C_{23}	111.8 (3)	C43b-C45b-H78B	109.5
C19 - C22 - H35	107.4	H76b-C45b-H78B	109.5
C_{24} C_{22} H_{35}	107.4	H77b $C45b$ $H78B$	109.5
$C_{24} = C_{22} = H_{35}$	107.4	N3 B N5	109.3 110.3(2)
$C_{23} = C_{22} = H_{33}$	107.4	$N_2 = N_1$	110.3(2)
$C_{22} = C_{23} = H_{28}$	109.5	$N_{J} = D = N_{I}$	110.1(2)
	109.5	NJ-D-NI	110.3(2)
H3/-C23-H38	109.5	N3—B—HI	108.7
С22—С23—Н36	109.5	N5—B—HI	108.7
H3/—C23—H36	109.5	NI-B-HI	108.7
H38—C23—H36	109.5	C3—N1—N2	109.2 (2)
C22—C24—H39	109.5	C3—N1—B	130.6 (2)
C22—C24—H41	109.5	N2—N1—B	120.2 (2)
H39—C24—H41	109.5	C1—N2—N1	106.6 (2)
C22—C24—H40	109.5	C1—N2—EU	128.40 (18)
H39—C24—H40	109.5	N1—N2—EU	124.87 (16)

H41—C24—H40	109.5	C12—N3—N4	109.3 (2)
C21—C25—C27	111.5 (3)	C12—N3—B	129.4 (2)
C21—C25—C26	110.5 (3)	N4—N3—B	121.3 (2)
C27—C25—C26	110.5 (3)	C10—N4—N3	106.6 (2)
C21—C25—H42	108.1	C10—N4—EU	127.79 (18)
C27—C25—H42	108.1	N3—N4—EU	124.67 (17)
C_{26} C_{25} H_{42}	108.1	$C_{21} - N_{5} - N_{6}$	109.7 (2)
C25—C26—H45	109.5	C21—N5—B	130.1(2)
C25—C26—H44	109.5	N6—N5—B	120.1(2)
H45-C26-H44	109.5	C19 - N6 - N5	126.1(2) 106.6(2)
C_{25} C_{26} H_{43}	109.5	C19 - N6 - FU	126.86(19)
H45 - C26 - H43	109.5	N5—N6—FU	126.00 (19)
H44 - C26 - H43	109.5	C_{30} N7 N8	120.29(10)
C_{25} C_{27} H_{47}	109.5	C_{30} N7 H2	123.5
$C_{25} = C_{27} = H_{46}$	109.5	N8 N7 H2	123.5
$H_{47} = C_{27} = H_{46}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.3 104.0 (2)
$C_{25} C_{27} H_{48}$	109.5	$C_{20} = 100 = 107$	104.0(2)
$C_{23} - C_{27} - H_{48}$	109.5	N7 N8 EU	143.8(2)
H4/-C2/-H48	109.5	$N = N \delta = E U$	109.08(17)
H40-C2/-H48	109.5	C_{39} No H_{2}	113.3 (2)
$N_{0} = C_{20} = C_{20}^{21}$	110.7 (3)	C39—N9—H3	123.4
N8 - C28 - C31	120.3 (3)	N10 - N9 - H3	123.4
$C_{29} = C_{28} = C_{31}$	129.1 (3)	$C_3/$ —N10—N9	104.3 (2)
$C_{30} = C_{29} = C_{28}$	106.2 (3)	C37—N10—EU	142.21 (19)
С30—С29—Н49	126.9	N9—N10—EU	113.47 (18)
C28—C29—H49	126.9	N6—EU—N4	68.39 (7)
N7—C30—C29	106.0 (3)	N6—EU—N2	72.16 (7)
N7—C30—C34A	121.4 (3)	N4—EU—N2	73.92 (7)
C29—C30—C34A	132.6 (3)	N6—EU—N10	137.43 (7)
N7—C30—C34B	121.4 (3)	N4—EU—N10	76.75 (7)
C29—C30—C34B	132.6 (3)	N2—EU—N10	75.37 (7)
C28—C31—C32	110.7 (3)	N6—EU—N8	75.95 (7)
C28—C31—C33	111.8 (3)	N4—EU—N8	138.80 (7)
C32—C31—C33	110.7 (3)	N2—EU—N8	76.11 (7)
C28—C31—H50	107.8	N10—EU—N8	121.58 (8)
С32—С31—Н50	107.8	N6—EU—I	119.00 (5)
С33—С31—Н50	107.8	N4—EU—I	117.23 (5)
С31—С32—Н53	109.5	N2—EU—I	165.92 (5)
C31—C32—H51	109.5	N10—EU—I	98.11 (5)
H53—C32—H51	109.5	N8—EU—I	97.58 (5)
N2—C1—C2—C3	-0.7 (3)	N9—C39—C43b—C44b	-75.4 (13)
C4—C1—C2—C3	-179.8 (3)	C38—C39—C43b—C44b	105.1 (13)
C1—C2—C3—N1	0.4 (3)	C2—C3—N1—N2	0.0 (3)
C1—C2—C3—C7	-177.4 (3)	C7—C3—N1—N2	177.9 (3)
N2-C1-C4-C6	-111.6 (3)	C2—C3—N1—B	-178.4 (3)
C2-C1-C4-C6	67.4 (4)	C7—C3—N1—B	-0.5(5)
N2-C1-C4-C5	125.1 (3)	N3—B—N1—C3	116.0 (3)
C_{2} C_{1} C_{4} C_{5}	-55 9 (4)	N5-B-N1-C3	-1219(3)
			121.7 (3)

$\mathbf{N}1$ $\mathbf{C}2$ $\mathbf{C}7$ $\mathbf{C}0$	$02 \in (2)$	N2 D N1 N2	(2, 2, (2))
N1 - C3 - C7 - C9	-92.0(3)	N5 = N1 = N2	-62.2(3)
$V_2 = C_3 = C_7 = C_9$	144.6(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7(3)
$C_{2} = C_{3} = C_{7} = C_{8}$	-37.0(3)	$C_2 = C_1 = N_2 = N_1$	170.8(3)
$V_2 = C_3 = C_1 = C_8$	-17(3)	$C_{1} = C_{1} = N_{2} = N_{1}$	175.8(3) 176.38(10)
114 - 010 - 011 - 012	1.7(3) 175 0 (2)	$C_2 = C_1 = N_2 = E_U$	-4.5(4)
C13 - C10 - C11 - C12	1/3.9(3)	C4 - C1 - N2 - EU	-4.3(4)
C10-C11-C12-N3	1.5(5)	C_{3} NI N2 CI	-0.4(3)
C10-C11-C12-C10	-1/4.9(3)	B = NI = N2 = CI	1/8.2(2)
N4—C10—C13—C15	-127.3(3)	C_3 —NI—N2—EU	-1/6.29 (1/)
	55.3 (4)	B—NI—N2—EU	2.3 (3)
N4—C10—C13—C14	109.1 (3)	C11—C12—N3—N4	-0.6 (3)
C11—C10—C13—C14	-68.3 (4)	C16—C12—N3—N4	175.8 (2)
N3—C12—C16—C18	150.9 (3)	C11—C12—N3—B	-178.8(3)
C11—C12—C16—C18	-33.5 (4)	C16—C12—N3—B	-2.4 (4)
N3—C12—C16—C17	-86.3 (4)	N5—B—N3—C12	125.1 (3)
C11—C12—C16—C17	89.4 (4)	N1—B—N3—C12	-112.9 (3)
N6-C19-C20-C21	0.2 (4)	N5—B—N3—N4	-52.9 (3)
C22-C19-C20-C21	-177.3 (3)	N1—B—N3—N4	69.1 (3)
C19—C20—C21—N5	-0.3 (4)	C11—C10—N4—N3	1.3 (3)
C19—C20—C21—C25	-177.6 (3)	C13—C10—N4—N3	-176.5 (2)
N6-C19-C22-C24	139.4 (3)	C11—C10—N4—EU	-168.18 (19)
C20-C19-C22-C24	-43.4 (5)	C13—C10—N4—EU	14.0 (4)
N6-C19-C22-C23	-95.2 (4)	C12—N3—N4—C10	-0.5(3)
C20—C19—C22—C23	82.1 (5)	B—N3—N4—C10	177.9 (2)
N5-C21-C25-C27	-75.4 (4)	C12—N3—N4—EU	169.45 (17)
C20—C21—C25—C27	101.5 (4)	B—N3—N4—EU	-12.2 (3)
N5—C21—C25—C26	161.3 (3)	C20-C21-N5-N6	0.2 (3)
C20—C21—C25—C26	-21.8(5)	C25—C21—N5—N6	177.7 (3)
N8—C28—C29—C30	-0.3 (4)	C20—C21—N5—B	177.7 (3)
C31—C28—C29—C30	179.0 (3)	C25—C21—N5—B	-4.8(5)
C28—C29—C30—N7	0.1 (4)	N3 - B - N5 - C21	-121.5(3)
C28—C29—C30—C34a	178.3 (4)	N1 - B - N5 - C21	116.6 (3)
C_{28} C_{29} C_{30} C_{34b}	178.3 (4)	N3 B N5 N6	55.8 (3)
N8-C28-C31-C32	66 9 (4)	N1 - B - N5 - N6	-661(3)
$C_{29} = C_{28} = C_{31} = C_{32}$	-112.3(4)	C_{20} C_{19} N_{6} N_{5}	0.0(3)
N8-C28-C31-C33	-1691(3)	$C_{22} - C_{19} - N_{6} - N_{5}$	1777(3)
C_{29} C_{28} C_{31} C_{33}	11 6 (5)	C_{20} C_{19} N_{6} E_{11}	1749(2)
N7 - C30 - C342 - C362	107.3 (6)	$C_{20} = C_{10} = N_{0} = E_{10}$	-7.3(4)
C_{29} C_{30} C_{342} C_{362}	-70.6(7)	$C_{22} = C_{13} = N_0 = L_0$	-0.1(3)
$N7 C_{20} C_{340} C_{350}$	-32.0(5)	$\frac{1}{10} \frac{1}{10} \frac$	-177.0(2)
117 - 050 - 054a - 055	32.9(3)	$\frac{1}{10000000000000000000000000000000000$	177.9(2) -175.07(18)
$V_{29} = C_{30} = C_{34a} = C_{35}$	-178.2(7)	$C_2I - IN_3 - IN_0 - EU$	-1/3.0/(10)
117 - 0.50 - 0.540 - 0.500	1/0.2(1)	D = 1 N J = 1 N U = E U $C 20 C 20 N T = N U$	(.1(3))
$U_{29} = U_{30} = U_{340} = U_{300}$	3.0(9) -22.0(5)	$C_{27} = C_{30} = IN / - IN\delta$	0.1(4)
1N / - C 3U - C 34D - C 35	-32.9(3)	$C_{24h} = C_{20} = N_{7} = N_{8}$	-1/8.3(3)
$U_{29} - U_{30} - U_{34b} - U_{35}$	149.1 (4)	$C_{34}D - C_{30} - N/ - N\delta$	-1/8.3(3)
N10-C3/-C38-C39	0.8 (4)	C_{29} C_{28} N_8 N_7	0.4 (3)
C40—C37—C38—C39	-1/8.8(4)	C31—C28—N8—N7	-179.0 (3)
C37—C38—C39—N9	-0.8 (4)	C29—C28—N8—EU	-170.2(3)

C37—C38—C39—C43a	178.8 (4)	C31—C28—N8—EU	10.4 (5)
C37—C38—C39—C43b	178.8 (4)	C30—N7—N8—C28	-0.3 (3)
N10-C37-C40-C41	117.8 (4)	C30—N7—N8—EU	174.1 (2)
C38—C37—C40—C41	-62.6 (5)	C38—C39—N9—N10	0.6 (4)
N10-C37-C40-C42	-119.1 (4)	C43a—C39—N9—N10	-179.1 (3)
C38—C37—C40—C42	60.5 (5)	C43b-C39-N9-N10	-179.1 (3)
N9—C39—C43a—C44a	-111.9 (7)	C38—C37—N10—N9	-0.5 (4)
C38—C39—C43a—C44a	68.5 (8)	C40—C37—N10—N9	179.2 (3)
N9—C39—C43a—C45a	24.2 (7)	C38—C37—N10—EU	179.1 (2)
C38—C39—C43a—C45a	-155.3 (6)	C40—C37—N10—EU	-1.2 (6)
N9—C39—C43b—C45b	60.8 (14)	C39—N9—N10—C37	-0.1 (4)
C38—C39—C43b—C45b	-118.7 (13)	C39—N9—N10—EU	-179.8 (2)

trans-4,8-Bis(3,5-diisopropylpyrazol-1-yl)-1,3,5,7-tetraisopropylpyrazabole (2)

Crystal data

 $\begin{array}{l} C_{36}H_{62}B_2N_8\\ M_r = 628.55\\ \text{Monoclinic, } C2/c\\ a = 25.7646 \ (11) \text{ Å}\\ b = 11.2134 \ (3) \text{ Å}\\ c = 15.0968 \ (7) \text{ Å}\\ \beta = 118.792 \ (3)^\circ\\ V = 3822.4 \ (3) \text{ Å}^3\\ Z = 4 \end{array}$

Data collection

Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm⁻¹ area detector scans 10509 measured reflections 3367 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.104$ S = 1.023367 reflections 238 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1376 $D_x = 1.092 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11890 reflections $\theta = 2.0-26.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 153 KPlate, colorless $0.33 \times 0.29 \times 0.13 \text{ mm}$

2594 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -30 \rightarrow 29$ $k = -12 \rightarrow 13$ $l = -17 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 1.3932P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³ Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0022 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.32091 (7)	0.43231 (14)	0.12232 (11)	0.0228 (3)	
C2	0.31092 (7)	0.42821 (15)	0.20414 (12)	0.0275 (4)	
H2	0.328176	0.478383	0.261967	0.033*	
C3	0.27098 (7)	0.33708 (14)	0.18577 (11)	0.0239 (3)	
C4	0.36140 (7)	0.51263 (14)	0.10426 (12)	0.0255 (4)	
H3	0.350866	0.506956	0.031400	0.031*	
C5	0.42566 (7)	0.47407 (17)	0.16846 (13)	0.0361 (4)	
Н5	0.451450	0.527573	0.155810	0.054*	
H6	0.430455	0.392253	0.150739	0.054*	
H4	0.436389	0.477573	0.240128	0.054*	
C6	0.35282 (9)	0.64149 (16)	0.12723 (15)	0.0390 (4)	
Н9	0.378721	0.693891	0.113901	0.059*	
H8	0.362781	0.648366	0.198397	0.059*	
H7	0.311453	0.664942	0.084152	0.059*	
C7	0.24394 (7)	0.29648 (16)	0.24900 (12)	0.0302 (4)	
H10	0.223957	0.218098	0.222317	0.036*	
C8	0.29206 (10)	0.2793 (2)	0.35783 (14)	0.0543 (6)	
H11	0.274068	0.253611	0.398945	0.081*	
H12	0.313065	0.354794	0.384237	0.081*	
H13	0.320074	0.218456	0.360467	0.081*	
C9	0.19746 (9)	0.38648 (18)	0.24156 (16)	0.0451 (5)	
H15	0.179127	0.358161	0.281449	0.068*	
H14	0.167006	0.395218	0.170735	0.068*	
H16	0.216435	0.463780	0.267740	0.068*	
C10	0.06813 (7)	0.23099 (14)	0.02850 (12)	0.0257 (4)	
C11	0.06359 (7)	0.32593 (15)	-0.03555 (13)	0.0290 (4)	
H17	0.031464	0.379970	-0.068315	0.035*	
C12	0.11522 (7)	0.32426 (14)	-0.04087 (11)	0.0242 (3)	
C13	0.02374 (7)	0.19290 (17)	0.06011 (13)	0.0322 (4)	
H18	0.039684	0.120355	0.103467	0.039*	
C14	0.01516 (10)	0.2889 (2)	0.12299 (18)	0.0527 (6)	
H20	-0.011435	0.259168	0.147452	0.079*	
H19	-0.002167	0.359966	0.081317	0.079*	
H21	0.053547	0.309303	0.180752	0.079*	
C15	-0.03477 (8)	0.1591 (2)	-0.03071 (16)	0.0520 (6)	
H24	-0.061559	0.126983	-0.007583	0.078*	
H23	-0.027873	0.098683	-0.070761	0.078*	
H22	-0.052662	0.229990	-0.072424	0.078*	
C16A	0.13485 (7)	0.40591 (15)	-0.09797 (13)	0.0292 (4)	0.649 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25A	0.168807	0.367438	-0.101562	0.035*	0.649 (9)
C17A	0.1569 (3)	0.5251 (3)	-0.0392 (4)	0.0435 (11)	0.649 (9)
H26A	0.171675	0.577049	-0.074376	0.065*	0.649 (9)
H27A	0.188876	0.508864	0.029262	0.065*	0.649 (9)
H28A	0.124079	0.564576	-0.035502	0.065*	0.649 (9)
C18A	0.0865 (2)	0.4274 (6)	-0.2035 (3)	0.0535 (14)	0.649 (9)
H29A	0.101968	0.474541	-0.240313	0.080*	0.649 (9)
H30A	0.054076	0.470950	-0.201581	0.080*	0.649 (9)
H31A	0.071760	0.350805	-0.237778	0.080*	0.649 (9)
C16B	0.13485 (7)	0.40591 (15)	-0.09797 (13)	0.0292 (4)	0.351 (9)
H25B	0.178789	0.399759	-0.068850	0.035*	0.351 (9)
C17B	0.1037 (4)	0.3646 (8)	-0.2133 (5)	0.045 (2)	0.351 (9)
H26B	0.115240	0.418278	-0.251917	0.067*	0.351 (9)
H27B	0.060562	0.366928	-0.241231	0.067*	0.351 (9)
H28B	0.116013	0.283030	-0.217459	0.067*	0.351 (9)
C18B	0.1187 (6)	0.5326 (6)	-0.0920 (9)	0.053 (3)	0.351 (9)
H29B	0.132204	0.583712	-0.129447	0.079*	0.351 (9)
H30B	0.137625	0.557807	-0.021063	0.079*	0.351 (9)
H31B	0.075580	0.539310	-0.121428	0.079*	0.351 (9)
В	0.21039 (7)	0.18853 (16)	0.04185 (12)	0.0209 (4)	
H1	0.220947	0.117181	0.086985	0.025*	
N1	0.25728 (5)	0.28776 (11)	0.09607 (9)	0.0205 (3)	
N2	0.28824 (5)	0.34639 (11)	0.05681 (9)	0.0198 (3)	
N3	0.14859 (5)	0.23196 (11)	0.01778 (9)	0.0207 (3)	
N4	0.11934 (6)	0.17386 (12)	0.06116 (9)	0.0235 (3)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0190 (8)	0.0221 (8)	0.0248 (8)	-0.0002 (6)	0.0085 (6)	-0.0021 (6)
C2	0.0270 (9)	0.0295 (9)	0.0254 (8)	-0.0041 (7)	0.0121 (7)	-0.0077 (7)
C3	0.0220 (8)	0.0275 (8)	0.0210 (7)	-0.0009 (7)	0.0095 (6)	-0.0027 (6)
C4	0.0244 (8)	0.0246 (8)	0.0256 (8)	-0.0043 (7)	0.0105 (7)	-0.0019 (7)
C5	0.0250 (9)	0.0431 (10)	0.0374 (10)	-0.0067 (8)	0.0128 (8)	-0.0010 (8)
C6	0.0451 (11)	0.0273 (9)	0.0485 (11)	-0.0060 (8)	0.0255 (10)	-0.0046 (8)
C7	0.0306 (9)	0.0372 (10)	0.0262 (8)	-0.0092 (8)	0.0165 (7)	-0.0063 (7)
C8	0.0474 (12)	0.0863 (17)	0.0293 (10)	-0.0183 (12)	0.0185 (9)	0.0022 (10)
C9	0.0496 (12)	0.0469 (12)	0.0550 (12)	-0.0104 (10)	0.0382 (10)	-0.0136 (10)
C10	0.0213 (8)	0.0295 (9)	0.0277 (8)	-0.0015 (7)	0.0130 (7)	-0.0006 (7)
C11	0.0234 (8)	0.0294 (9)	0.0350 (9)	0.0046 (7)	0.0147 (7)	0.0040 (7)
C12	0.0234 (8)	0.0229 (8)	0.0265 (8)	0.0023 (7)	0.0122 (7)	0.0009 (6)
C13	0.0262 (9)	0.0385 (10)	0.0368 (9)	-0.0005 (8)	0.0190 (8)	0.0045 (8)
C14	0.0529 (13)	0.0612 (14)	0.0649 (14)	-0.0020 (11)	0.0450 (12)	-0.0062 (11)
C15	0.0312 (10)	0.0748 (15)	0.0488 (12)	-0.0145 (10)	0.0184 (9)	0.0055 (11)
C16A	0.0271 (9)	0.0287 (9)	0.0360 (9)	0.0053 (7)	0.0183 (8)	0.0086 (7)
C17A	0.054 (3)	0.0287 (17)	0.056 (2)	-0.0048 (18)	0.033 (2)	0.0051 (16)
C18A	0.045 (2)	0.067 (3)	0.0401 (19)	-0.010 (2)	0.0142 (17)	0.020 (2)
C16B	0.0271 (9)	0.0287 (9)	0.0360 (9)	0.0053 (7)	0.0183 (8)	0.0086 (7)

C17B	0.048 (4)	0.053 (5)	0.036 (3)	0.001 (3)	0.022 (3)	0.012 (3)
C18B	0.079 (7)	0.030 (3)	0.075 (6)	0.009 (4)	0.058 (6)	0.013 (3)
В	0.0200 (9)	0.0204 (9)	0.0215 (8)	-0.0001 (7)	0.0093 (7)	0.0012 (7)
N1	0.0186 (6)	0.0228 (7)	0.0205 (6)	-0.0007 (5)	0.0098 (5)	-0.0005 (5)
N2	0.0167 (6)	0.0214 (7)	0.0215 (6)	-0.0011 (5)	0.0095 (5)	0.0001 (5)
N3	0.0199 (7)	0.0215 (7)	0.0226 (6)	-0.0008 (5)	0.0117 (5)	0.0009 (5)
N4	0.0224 (7)	0.0261 (7)	0.0250 (7)	-0.0028 (6)	0.0138 (6)	-0.0002 (5)

Geometric parameters (Å, °)

C1—N2	1.3464 (19)	C13—C14	1.520 (3)
C1—C2	1.379 (2)	C13—H18	1.0000
C1—C4	1.499 (2)	C14—H20	0.9800
C2—C3	1.380 (2)	C14—H19	0.9800
C2—H2	0.9500	C14—H21	0.9800
C3—N1	1.3431 (19)	C15—H24	0.9800
C3—C7	1.498 (2)	С15—Н23	0.9800
C4—C5	1.524 (2)	С15—Н22	0.9800
C4—C6	1.527 (2)	C16a—C18A	1.496 (4)
С4—Н3	1.0000	C16a—C17A	1.552 (4)
С5—Н5	0.9800	C16a—H25A	1.0000
С5—Н6	0.9800	C17a—H26A	0.9800
С5—Н4	0.9800	C17a—H27A	0.9800
С6—Н9	0.9800	C17a—H28A	0.9800
С6—Н8	0.9800	C18a—H29A	0.9800
С6—Н7	0.9800	C18a—H30A	0.9800
C7—C8	1.520 (3)	C18a—H31A	0.9800
С7—С9	1.528 (3)	C16b—C18B	1.496 (7)
C7—H10	1.0000	C16b—C17B	1.595 (7)
C8—H11	0.9800	C16b—H25B	1.0000
C8—H12	0.9800	C17b—H26B	0.9800
C8—H13	0.9800	C17b—H27B	0.9800
С9—Н15	0.9800	C17b—H28B	0.9800
C9—H14	0.9800	C18b—H29B	0.9800
С9—Н16	0.9800	C18b—H30B	0.9800
C10—N4	1.330 (2)	C18b—H31B	0.9800
C10-C11	1.405 (2)	B—N3	1.532 (2)
C10—C13	1.498 (2)	B—N1	1.554 (2)
C11—C12	1.371 (2)	B—N2 ⁱ	1.557 (2)
С11—Н17	0.9500	B—H1	1.0000
C12—N3	1.364 (2)	N1—N2	1.3693 (16)
C12—C16A	1.502 (2)	N2—B ⁱ	1.557 (2)
C12—C16B	1.502 (2)	N3—N4	1.3772 (17)
C13—C15	1.518 (3)		
N2—C1—C2	108.29 (13)	C13—C14—H19	109.5
N2—C1—C4	122.67 (13)	H20—C14—H19	109.5
C2—C1—C4	129.02 (14)	C13—C14—H21	109.5

C1—C2—C3	106.71 (14)	H20—C14—H21	109.5
С1—С2—Н2	126.6	H19—C14—H21	109.5
С3—С2—Н2	126.6	C13—C15—H24	109.5
N1—C3—C2	108.41 (13)	C13—C15—H23	109.5
N1—C3—C7	122.71 (14)	H24—C15—H23	109.5
C2—C3—C7	128.86 (14)	C13—C15—H22	109.5
C1—C4—C5	110.60 (13)	H24—C15—H22	109.5
C1-C4-C6	109 73 (13)	H23—C15—H22	109.5
$C_{5}-C_{4}-C_{6}$	110 85 (14)	C18a - C16a - C12	111 80 (19)
C1-C4-H3	108 5	C18a - C16a - C17A	111.00(1)
C5-C4-H3	108.5	C_{12} C_{162} C_{17A}	109.18(17)
C6-C4-H3	108.5	$C18_{2}$ $C16_{2}$ $H25_{4}$	109.10 (17)
C_{4} C_{5} H_{5}	100.5	$C_{10a} = C_{10a} = H_{25A}$	108.3
C4 = C5 = H6	109.5	C12— $C16a$ — $H25A$	108.3
	109.5	C1/a $-C10a$ $-H25A$	100.5
	109.5	C16a - C17a - H27A	109.5
C4—C5—H4	109.5	C16a - C1/a - H2/A	109.5
H5—C5—H4	109.5	H26a—C17a—H27A	109.5
H6—C5—H4	109.5	C16a—C17a—H28A	109.5
С4—С6—Н9	109.5	H26a—C17a—H28A	109.5
С4—С6—Н8	109.5	H27a—C17a—H28A	109.5
Н9—С6—Н8	109.5	C16a—C18a—H29A	109.5
С4—С6—Н7	109.5	C16a—C18a—H30A	109.5
Н9—С6—Н7	109.5	H29a—C18a—H30A	109.5
H8—C6—H7	109.5	C16a—C18a—H31A	109.5
C3—C7—C8	109.85 (14)	H29a—C18a—H31A	109.5
С3—С7—С9	109.93 (14)	H30a—C18a—H31A	109.5
C8—C7—C9	111.42 (16)	C18b—C16b—C12	111.3 (3)
С3—С7—Н10	108.5	C18b—C16b—C17B	109.5 (5)
C8—C7—H10	108.5	C12—C16b—C17B	108.5 (3)
С9—С7—Н10	108.5	C18b—C16b—H25B	109.2
C7—C8—H11	109.5	C12—C16b—H25B	109.2
C7—C8—H12	109.5	C17b—C16b—H25B	109.2
H11—C8—H12	109.5	C16b—C17b—H26B	109.5
C7—C8—H13	109.5	C16b—C17b—H27B	109.5
H11—C8—H13	109.5	H26b-C17b-H27B	109.5
H12—C8—H13	109.5	C16b—C17b—H28B	109.5
C7-C9-H15	109.5	H_{26b} C_{17b} H_{28B}	109.5
C7 - C9 - H14	109.5	H27b-C17b-H28B	109.5
H15_C9_H14	109.5	C16b-C18b-H29B	109.5
C7 - C9 - H16	109.5	C16b $C18b$ $H30B$	109.5
$H_{15} = C_0 + H_16$	109.5	H20b C18b H30B	109.5
H14_C9_H16	109.5	C16h C18h H31B	109.5
$M = C_{10} = C_{11}$	111.05 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_{4} = C_{10} = C_{11}$	111.05 (15)	$H_{20} = C_{100} = H_{21D}$	107.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.20(14) 127.74(15)	$11500 - C100 - \Pi 31D$ $N2 = D = N1$	109.3
C12 C11 C10	127.74(13) 105 58 (14)	INJ = D = INI $NI2 = D = NI2i$	110.00(12)
$C_{12} = C_{11} = U_{17}$	105.38 (14)	$INJ = D = INZ^{T}$	110.07(12)
C12—C11—H17	127.2	N1 - B - N2	108.29 (12)
C10-C11-H1/	127.2	NJ-B-HI	109.1

N3 - C12 - C11	107 36 (13)	N1—B—H1	109.1
N3-C12-C16A	123 61 (13)	$N2^{i}$ B H1	109.1
$C_{11} - C_{12} - C_{16A}$	129.03(15)	$C_3 - N_1 - N_2$	108 29 (12)
N3-C12-C16B	123.61 (13)	$C_3 - N_1 - B_1$	125.87(12)
$C_{11} - C_{12} - C_{16B}$	129.01(15) 129.03(15)	N2—N1—B	125.67 (12)
C10-C13-C15	111 21 (14)	C1 - N2 - N1	129.00(11) 108.30(11)
C10 - C13 - C14	111.21(14) 111.11(15)	$C1 - N2 - B^i$	126.05(12)
C15 - C13 - C14	111.11 (13)	$N1 - N2 - B^{i}$	125.03(12) 125.43(12)
C10-C13-H18	107.7	C12 - N3 - N4	120.15(12) 110.45(12)
C15-C13-H18	107.7	C12 = N3 = B	130.79(12)
C_{14} C_{13} H_{18}	107.7	N4—N3—B	130.75(12) 118.75(12)
C13 - C14 - H20	109.5	C10 N4 N3	105.56(12)
	107.5		105.50 (12)
N2—C1—C2—C3	-0.15 (18)	C7—C3—N1—N2	178.58 (14)
C4—C1—C2—C3	-178.52 (15)	C2—C3—N1—B	-175.10 (14)
C1—C2—C3—N1	0.01 (18)	C7—C3—N1—B	3.3 (2)
C1—C2—C3—C7	-178.32 (16)	N3—B—N1—C3	61.64 (19)
N2—C1—C4—C5	-103.02 (17)	$N2^{i}$ —B—N1—C3	-176.89 (13)
C2-C1-C4-C5	75.1 (2)	N3—B—N1—N2	-112.79 (14)
N2-C1-C4-C6	134.38 (16)	$N2^{i}$ —B—N1—N2	8.7 (2)
C2-C1-C4-C6	-47.5 (2)	C2-C1-N2-N1	0.23 (16)
N1—C3—C7—C8	132.58 (18)	C4—C1—N2—N1	178.73 (13)
C2—C3—C7—C8	-49.3 (2)	$C2-C1-N2-B^{i}$	-174.58 (14)
N1—C3—C7—C9	-104.46 (18)	C4—C1—N2— B^i	3.9 (2)
C2—C3—C7—C9	73.6 (2)	C3—N1—N2—C1	-0.23 (16)
N4—C10—C11—C12	0.08 (19)	B—N1—N2—C1	175.02 (13)
C13—C10—C11—C12	179.94 (16)	$C3$ — $N1$ — $N2$ — B^{i}	174.62 (13)
C10-C11-C12-N3	0.00 (18)	$B - N1 - N2 - B^{i}$	-10.1 (2)
C10-C11-C12-C16a	-179.54 (16)	C11—C12—N3—N4	-0.08 (17)
C10-C11-C12-C16b	-179.54 (16)	C16a—C12—N3—N4	179.49 (14)
N4—C10—C13—C15	-120.42 (18)	C16b-C12-N3-N4	179.49 (14)
C11—C10—C13—C15	59.7 (2)	C11—C12—N3—B	-178.88 (14)
N4—C10—C13—C14	115.21 (18)	C16a—C12—N3—B	0.7 (2)
C11—C10—C13—C14	-64.6 (2)	C16b—C12—N3—B	0.7 (2)
N3—C12—C16a—C18a	135.3 (3)	N1—B—N3—C12	60.88 (19)
C11—C12—C16a—C18a	-45.3 (4)	N2 ⁱ —B—N3—C12	-59.2 (2)
N3—C12—C16a—C17a	-101.6 (3)	N1—B—N3—N4	-117.84 (14)
C11—C12—C16a—C17a	77.9 (3)	N2 ⁱ —B—N3—N4	122.10 (13)
N3—C12—C16b—C18b	-139.2 (6)	C11—C10—N4—N3	-0.13 (17)
C11—C12—C16b—C18b	40.3 (6)	C13—C10—N4—N3	-179.99 (14)
N3—C12—C16b—C17b	100.3 (4)	C12—N3—N4—C10	0.13 (16)
C11—C12—C16b—C17b	-80.2 (5)	B—N3—N4—C10	179.09 (13)
C2—C3—N1—N2	0.14 (17)		

Symmetry code: (i) -x+1/2, -y+1/2, -z.