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Simple Summary: The gastric microbial community has been identified as a specific risk factor for
the gastric cancer (GC) risk in recent molecular epidemiology studies. The equilibrium of the gastric
microbial community and their functions are very important to keep a proper gastric related health.
However, dysbiosis where there is an imbalance of the microbiome in gastric environment leads
to several pathological conditions including GC. Thus, understanding how alterations in gastric
microbial communities are associated with GC risk in large population-based studies is needed to
implement possible preventive and curative strategies in the future. We derived a microbial dysbiosis
index to observe the association with GC risk. Further, we predicted the microbial functions that are
associated with GC risk. The findings of our study are important to understand certain pathogenic
bacteria and their functions associated with GC risk. It might be helpful to develop novel preventive
guidelines to prevent GC risk.

Abstract: Although the microbiome has a potential role in gastric cancer (GC), little is known
about microbial dysbiosis and its functions. This study aimed to observe the associations between
the alterations in gastric microbial communities and GC risk. The study participants included 268 GC
patients and 288 controls. The 16S rRNA gene sequencing was performed to characterize the microbiome.
Streptococcus_NCVM and Prevotella melaninogenica species were highly enriched in cases and controls,
respectively. Those who were in the third tertile of P. melaninogenica showed a significantly decreased
risk of GC in total (odds ratio (OR): 0.91, 95% confidence interval (CI): 0.38–0.96, p-trend = 0.071).
Class Bacilli was phylogenetically enriched in cases, while phylum Actinobacteria, class Actinobacteria
were related to the controls. The microbial dysbiosis index (MDI) was significantly higher for the cases
compared with the healthy controls in the female population (p = 0.002). Females in the third tertile
of the MDI showed a significantly increased risk of GC (OR: 2.66, 95% CI: 1.19-5.99, p-trend = 0.017).
Secondary bile acid synthesis and biosynthesis of ansamycins pathways were highly abundant in cases
and controls, respectively. Dysbiosis of gastric microbial communities is associated with an increased
risk of GC specifically in females.
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1. Introduction

According to the GLOBOCAN estimates in 2018, gastric cancer (GC) has been identified as the fifth
most common cancer type and is one of the main causes of cancer-related death in the world [1].
The GC incidence in eastern Asia, including Korea, is the highest worldwide—over four times higher
than the rates in Western Europe [2]. In 2017, according to the Korea Central Cancer Registry (KCCR),
the age-adjusted incidence rate of GC was 32.0 per 100,000 in the overall population, 46.4 per 100,000
in men, and 19.6 per 100,000 in women [3]. Various epidemiological studies have demonstrated that
smoking [4–7], alcohol consumption [4,5,8], obesity and physical inactivity [4,5,9], family history of
GC [10–14], and numerous dietary factors such as foods preserved with salts, pickled vegetables, low
fruit and vegetable consumption, low dietary vitamin C and carotenoid intake, high salt consumption,
high processed meat consumption, and high salt intake [4,5,15,16] are associated with an increased
risk of GC. In addition, some of recent epidemiological studies have suggested the involvement of
the gastric microbiome in GC occurrence by the induction of chronic inflammation or down regulation
of host immunity [17–23].

In the gastric environment, innumerable bacteria form a complex and stable bacterial community
that eventually plays an important role in the host mucosal immune response, energy and nutrient
metabolism, pathogen elimination, and the development of several diseases including GC [24–29].
Helicobacter pylori (HP) infection plays a crucial role in the initial steps of GC carcinogenesis by enhancing
inflammation [30]. It is widely implicated that GC carcinogenesis can occur because of the imbalance
of the gastric microbial community [31]. Such an imbalance of the gastric microbial community is
known as dysbiosis, which eventually leads to pathological conditions such as GC [22]. A dysbiosis
condition with an imbalance of the microbial community in the stomach can lead to the formation of
inflammatory biomarkers that can stimulate the carcinogenesis process [32,33]. Moreover, bacteria that
are prominent during gut dysbiosis can secrete toxins able to interfere with host cell growth, finally
predisposing the host organism to cancer development [34].

The microbiome is involved in metabolism and communicates with the host to proceed with
physiological functions. It releases several metabolites that are essential for our bodily functions [35].
It can be noted that there is a two-way communication between gut microbes and the human immune
system [35]. Emphasizing the metabolic functions associated with gut microbiota is important because
several possible microbial mechanisms are involved in carcinogenesis through microbiota. Dysbiosis
helps to increase the pH and innate immune response that generates changes in the acquisition of
nutrients, metabolism, and the survival of members of the normal microbiota; however, the expansion
and development of other species, such as Clostridium colicanis, Lactobacillus gasseri, Lactobacillus reuteri,
Peptostrptococcus stomatis, and Bacteroides fragilis promote carcinogenesis [36]. Thus, understanding
how dysbiosis influences metabolic reactions and inflammatory responses is critical.

In this study, we hypothesized that the alterations in gastric microbial communities are associated
with risk of GC. We conducted a case-control study to apply compositional analysis of microbiome data
to derive a microbial dysbiosis index (MDI) associated with GC risk and further identify the microbial
abundances and enriched metabolic functions associated with subsequent GC risk.

2. Results

2.1. General Characteristics

The general characteristics of the study participants are presented in the Supplementary File
(Table S1). In brief, GC cases had a higher proportion of current smokers (29.1%) than the controls
(17.7%). Higher proportions of GC cases had a family history of GC (p = 0.003), had not engaged
in regular exercise (p < 0.001), had lower education (p < 0.001), had lower employment rates (p =
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0.037), had low levels of monthly income (p < 0.001), and had an HP-positive status (p < 0.001) than
the controls. Daily energy consumption was higher in GC cases than the controls (p < 0.001).

2.2. Microbial Taxa Distribution and Microbial Diversity

At the species level, HP was the most dominant species in GC cases and controls (91.57 ± 18.56
and 87.93 ± 27.18%; p = 0.065), followed by Haemophilus parahaemolyticus (0.88 ± 3.61 and 0.88 ±
3.08%; p = 0.987), Streptococcus_NCVM (0.78 ± 2.45 and 0.75 ± 2.87%; p = 0.904), Neisseria subflava
(0.49 ± 1.49 and 0.66 ± 2.56%; p = 0.356), Neisseria perflava (0.47 ± 1.85 and 1.05 ± 4.61%; p = 0.048),
Haemophilus_JUTE (0.37±0.84 and 0.51 ± 1.26%; p = 0.113), Prevotella melaninogenica (0.32 ± 1.00 and 0.71
± 2.21%; p = 0.007), Staphylococcus warneri (0.23 ± 3.49% and 0.09 ± 0.001%; p = 0.290), Prevotella pallens
(0.20 ± 0.80% and 0.40 ± 1.45%; p = 0.044), Streptococcus_PAC001345 (0.20 ± 0.66% and 0.28 ± 1.06%; p
= 0.274), and Veillonella atypica (0.19 ± 0.80% and 0.31 ± 1.15%; p = 0.148) (Figure S1).

Table 1 shows the alpha diversity indices between cases and controls. There was a significantly
higher Shannon index in the controls than GC cases (p = 0.030). A significantly higher Shannon
index was observed in controls than GC cases in females (p = 0.007). There was a significantly higher
richness in GC cases compared with controls in the total population (p = 0.009) and males (p < 0.001).
Pilou evenness based on the Shannon index was significantly higher in controls than GC cases in
the total population (p = 0.004) and in females (p = 0.004).

Table 1. Comparison of diversity measures between gastric cancer (GC) cases and controls.

Alpha Diversity Indices
All (n = 556)

p-Value
Controls (n = 288) Cases (n = 268)

Shannon index 2.06 ± 2.59 1.66 ± 1.06 0.030
Richness 32.25 ± 16.93 35.89 ± 16.00 0.009
Evenness 0.14 ± 0.06 0.15 ± 0.03 0.440

Pilou evenness 0.58 ± 0.61 0.46 ± 0.37 0.004

Male (n = 353)

Controls (n = 181) Cases (n = 172)

Shannon index 1.93 ± 2.37 1.79 ± 1.77 0.519
Richness 31.55 ± 16.44 38.26 ± 16.25 <0.001
Evenness 0.14 ± 0.07 0.15 ± 0.03 0.560

Pilou evenness 0.55 ± 0.55 0.48 ± 0.40 0.190

Female (n = 203)

Controls (n = 107) Cases (n = 96)

Shannon index 2.27 ± 2.93 1.43 ± 1.21 0.007
Richness 33.44 ± 17.76 31.66 ± 14.72 0.440
Evenness 0.14 ± 0.03 0.14 ± 0.03 0.578

Pilou evenness 0.63 ± 0.69 0.42 ± 0.28 0.004

2.3. Bacterial Community Structure

To analyze differences in microbial community structure between groups, we assessed the beta
diversity (Figure S2). The overall difference was visualized using a principal coordinate analysis
(PCoA) plot. The diversity described in the PCoA plot by the top two principal coordinates was
32.4% based on Bray–Curtis distance. The composition of the microbiota of patients with GC was
significantly different from the healty controls (analysis of similarities (ANOSIM) R = −0.00015,
p = 0.004). Nonmetric multidimensional scaling (NMDS) was performed to relate the microbial
composition with the metadata of the study population. The multidimensional space of the microbial
species level indicated an excellent representation in reduced dimensions with a stress value of 0.043.
The nonmetric correlation coefficient between observed dissimilarity and ordination distance was (R2

= 0.998). According to the NMDS results, the microbial composition of the HP-positive and -negative
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groups was significantly different (Permutational Multivariate Analysis of Variance (PERMANOVA);
p = 0.001) (Figure 1).

Figure 1. Nonmetric multidimensional scaling (NMDS) for microbial community composition based
on Helicobacter pylori (HP) infection status.

2.4. Differentially Abundant Taxa

To identify the specific bacterial taxa associated with GC, different taxonomy levels were compared
using linear discriminant analysis (LDA) and effect size (LEfSe) analysis based on the non-parametric
factorial Kruskal–Wallis (KW) sum rank test to detect bacterial taxa with significant differential
abundances between GC cases and controls. LEfSe then uses LDA to estimate the effect size of
each differentially abundant taxa with the criteria of LDA ≥ 2 and p < 0.05. At the species level,
eight species were differentially abundant in GC cases and controls among the total of 945 species.
Of them, P. melaninogenica, Prevotella nigrescens, Prevotella intermedia, Streptococcus_CP003667, Gemella
taiwanensis, and Streptococcus vestibularis were highly enriched in controls, whereas Campylobacter jejuni,
and Streptococcus_NCVM species were highly abundant in GC cases (Figure 2).
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2.5. Association between Candidate Taxa and GC Risk

Table 2 shows the association between the relative abundance of bacteria species and GC risk.
Those in the third tertile of P. melaninogenica showed a significantly decreased risk of GC compared
with the lowest tertile in total population (odds ratio (OR): 0.91, 95% confident interval (CI): 0.38–0.96,
p-trend = 0.071). Subjects carrying P. nigrescens showed a significantly decreased risk of GC compared
with those who did not (OR: 0.64, 95% CI: 0.43-0.94). In contrast, those carrying S. vestibularis showed
a significantly increased risk of GC (OR: 2.41, 95% CI: 1.63–3.56) in the total population.
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Table 2. Association between relative abundance of bacterial species and gastric cancer (GC) risk.

Candidate Species No. of Controls (%) No. of Cases (%) Model I OR (95% CI) Model II OR (95% CI)

Campylobacter jejuni
0 (Non-carriers) 288(100.0) 264(98.5) 1.00 1.00

>0 (Carriers) 0(0.0) 4(1.5) >999.99(<0.001–>999.99) >999.99(<0.001–>999.99)

Streptococcus_CP003667
0 (Non-carriers) 187(64.9) 203(75.8) 1.00 1.00
> 0 (Carriers) 101(35.1) 65(24.3) 0.59(0.41–0.86) 0.58(0.38–0.88)

Gemella taiwanensis
0 (Non-carriers) 155(53.8) 118(44.0) 1.00 1.00

>0 (Carriers) 133(46.2) 150(55.9) 1.48(1.06–2.07) 1.10(0.75–1.62)

Streptococcus_NCVM
<0.000458 95(33.0) 62(23.1) 1.00 1.00

0.000458–0.00204 96(33.3) 92(34.3) 1.47(0.96–2.26) 1.26(0.78–2.03)
≥0.00204 97(33.7) 114(42.5) 1.80(1.18–2.74) 1.37(0.85–2.21)
p-trend 0.022 0.308

Prevotella intermedia
0 (Non-carriers) 133(46.2) 144(53.7) 1.00 1.00

>0 (Carriers) 155(53.8) 124(46.3) 0.74(0.53–1.03) 0.69(0.47–1.00)

Prevotella melaninogenica
<0.000356 95(33.0) 113(42.2) 1.00 1.00

0.000356–0.00178 96(33.3) 77(28.7) 0.67(0.45–1.01) 0.68(0.43–1.07)
≥0.00178 97(33.7) 78(29.1) 0.68(0.45–1.01) 0.91(0.38–0.96)
p-trend 0.141 0.071

Prevotella nigrescens
0 (Non-carriers) 157(54.50 179(66.8) 1.00 1.00

>0 (Carriers) 1319(45.5) 89(33.2) 0.60(0.42–0.84) 0.64(0.43–0.94)

Streptococcus vestibularis
0 (Non-carriers) 153(53.1) 81(30.2) 1.00 1.00

>0 (Carriers) 135(46.9) 187(69.8) 2.62(1.85–3.71) 2.41(1.63–3.56)

Model I: Crude; Model II: Adjusted for age, family history of GC, regular exercise, education, occupation, income,
total energy intake. OR: odds ratio, CI: confidence interval.

2.6. Phylogenetic Relationships

Figure 3A represents a histogram of the LDA scores calculated for the taxa showing the significant
bacterial difference between GC cases and healthy controls. Figure 3B shows a cladogram based
on the Ezbio database. The LDA score at the log10 scale is indicated at the bottom. The greater
the LDA score, the more significant the microbial biomarker is in the comparison. The cladogram uses
the LEfSe method, and indicates the phylogenetic distribution of gastric microbes associated with
patients with GC (red indicates phylotypes statistically over-represented in GC) and in healthy subjects
(green indicates phylotypes over-represented in healthy subjects). Each filled circle in the cladogram
represents one phylotype; the phylum and class are indicated in their names on the cladogram, while
the order, family, or genera are listed in the right panel. Taxa related to phylum Actinobacteria; class
Actinobacteria were phylogenetically enriched in healthy controls, whereas taxa related to class Bacilli
were phylogenetically enriched in GC cases.
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2.7. MDI

The MDI was derived for the current study population based on a compositional data analysis of
the microbiome using the compositionality corrected by renormalization and permutation (CCREPE)
method. After selecting 64 of 73 genera based on the CCREPE method, fold change values were
calculated to identify the genera that were increased in GC and decreased in GC. Of them, 13 genera
were identified as increased in GC (fold change >1) (Table S2), while 51 genera were identified as
decreased in GC (fold change <1) (Table S3). The top 10 genera that were diverged from the segment
line to the right side (>1) and the top 10 genera that were diverged from the segment line to the left
side (<1) are represented as a diverging lollipop chart for simplicity (Figure 4).
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compositionality corrected by renormalization and permutation (CCREPE). The fold change for each
genus was calculated by dividing the mean abundance in cases by that of the controls.

The MDI was higher for the GC cases compared with the healthy controls, and the result was
marginally significant (p = 0.097) for the total population. A significantly higher MDI was observed
for the GC cases than the controls in the female population (p = 0.002) (Table 3). Table 4 shows
the association between MDI and GC risk for the total population, male and female. Even though
the subjects in the third tertile of the MDI showed an increased risk of GC, the associations were not
significant for the total and male populations. However, there was a significantly increased risk of GC
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for females with a higher MDI (OR: 2.66, 95% CI: 1.19–5.99, p-trend = 0.017) in model II. Table S4 shows
the stratified analysis of the association between MDI and GC based on lifestyle factors. Among those
who were never smokers, a significantly increased risk of GC was observed for the subjects in the third
tertile of MDI in model II (OR: 2.37, 95% CI: 1.14–4.92, p-trend = 0.019).

Table 3. Comparison of the Microbial dysbiosis index (MDI) between cases and controls.

Microbial dysbiosis index (MDI) Cases Controls p-Value

Total (N) 268 288
MDI 3.77 ± 1.94 3.45 ± 2.59 0.097

Male (N) 172 181
MDI 3.52 ± 2.04 3.58 ± 2.43 0.773

Female (N) 96 107
MDI 4.23 ± 1.65 3.22 ± 2.84 0.002

MDI: Microbial dysbiosis index.

Table 4. Association between the dysbiosis index (MDI) and gastric cancer (GC) risk.

Microbial dysbiosis index (MDI) No. of Controls (%) No. of Cases (%) Model I Model II

Total
T1(<3.18) 96(33.3) 91(33.9) 1.00 1.00

T2(3.18–4.52) 97(33.7) 75(27.9) 0.82(0.54–1.24) 0.97(0.60–1.57)
T3(≥4.52) 95(33.0) 102(38.1) 1.13(0.76–1.69) 1.37(0.86–2.17)
p for trend 0.561 0.179

Male
T1(<3.25) 60(33.2) 74(43.0) 1.00 1.00

T2(3.25–4.48) 60(33.2) 42(24.4) 0.57(0.34–0.96) 0.80(0.43–1.52)
T3(≥4.48) 61(33.7) 56(32.6) 0.74(0.45–1.22) 1.15(0.63–2.11)
p for trend 0.225 0.657

Female
T1(<3.04) 36(33.6) 18(18.8) 1.00 1.00

T2(3.04–4.52) 36(33.6) 31(32.3) 1.72(0.82–3.62) 1.69(0.71–4.02)
T3(≥4.52) 35(32.7) 47(48.9) 2.69(1.31–5.49) 2.66(1.19–5.99)
p for trend 0.006 0.017

Model I: Crude; Model II: Adjusted for age, family history of GC, regular exercise, education, occupation, income,
total energy intake.

2.8. Microbial Prediction Functions

LEfSe analysis was performed to distinguish the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways between GC cases and controls. Fourteen pathways presented significant difference
between GC cases and control groups (Figure 5). Seven pathways were differentially abundant in
the healthy controls whereas eight pathways were differentially abundant in GC cases (LDA score > 2
at 5% significance). Biosynthesis of ansamycins pathway was identified as one of the critical bacterial
metabolic functions that was highly enriched in healthy controls.
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T2(3.25–4.48) 60(33.2) 42(24.4) 0.57(0.34–0.96) 0.80(0.43–1.52) 
T3(≥4.48) 61(33.7) 56(32.6) 0.74(0.45–1.22) 1.15(0.63–2.11) 

p for trend   0.225 0.657 
Female     

T1(<3.04) 36(33.6) 18(18.8) 1.00 1.00 
T2(3.04–4.52) 36(33.6) 31(32.3) 1.72(0.82–3.62) 1.69(0.71–4.02) 

T3(≥4.52) 35(32.7) 47(48.9) 2.69(1.31–5.49) 2.66(1.19–5.99) 
p for trend   0.006 0.017 
Model I: Crude; Model II: Adjusted for age, family history of GC, regular exercise, education, 
occupation, income, total energy intake. 
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LEfSe analysis was performed to distinguish the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways between GC cases and controls. Fourteen pathways presented significant 
difference between GC cases and control groups (Figure 5). Seven pathways were differentially 
abundant in the healthy controls whereas eight pathways were differentially abundant in GC cases 
(LDA score > 2 at 5% significance). Biosynthesis of ansamycins pathway was identified as one of the 
critical bacterial metabolic functions that was highly enriched in healthy controls. 

 
Figure 5. Comparison of microbial functional pathways between cases and controls. Figure 5. Comparison of microbial functional pathways between cases and controls.

The KEGG pathway of biosynthesis of ansamycins (ko01051, p < 0.001), one carbon pool by folate
(ko00670, p < 0.001), peptidoglycan biosynthesis (ko00550, p < 0.001), lipopolysaccharide biosynthesis
(ko00540, p = 0.028), RNA polymerase (ko03020, p < 0.001), nicotinate and nicotinamide metabolism
(ko00760, p < 0.001), and homologous recombination (ko03440, p < 0.001) were enriched in healthy
controls, whereas secondary bile acid biosynthesis (ko00121, p < 0.001), endocytosis (ko04144, p = 0.019),
Vibrio cholera pathogenic cycle (ko05111, p < 0.001), dioxin degradation (ko00621, p<0.001), cyanoamino
acid metabolism (ko00460, p < 0.001), beta-alanine metabolism (ko00410, p = 0.002), toluene degradation
(ko00623, p = 0.012), and atrazine degradation (ko00791, p = 0.007) were abundant in GC cases (Table S5).
Several metabolites that were involved in the KEGG pathways were identified based on the KEGG
orthology (Table S5). Particularly, transketolase enzyme (K00615, p = 0.004), which is involved in
the biosynthesis of ansamycins (ko01051) pathway was significantly enriched in healthy controls
compared with GC cases. Formamidase (K01455, p < 0.001) and L-asparaginase (K13051, p = 0.033)
enzymes, which are involved in the cyanoamino acid metabolism (ko00460) pathway, were highly
enriched in GC cases compared with controls. Secondary bile acid biosynthesis (ko00121) pathway
exhibited choloylglycine hydrolase (K01442) orthology, which was highly enriched in GC cases
compared with the controls.

3. Discussion

In this study, the gastric microbiota composition was characterized between GC cases and controls.
Calculation of the MDI by applying compositional analysis of microbiome data was used as
a novel approach to identify gastric dysbiosis and further observe the associations with GC risk.
Moreover, metagenomics functions were predicted to identify the pathways associated with GC risk.
The NMDS results indicated that the microbial composition structures of HP-positive and -negative
groups were significantly different (PERMANOVA; p = 0.001). The MDI was higher for GC cases
than healthy controls for the total population. A significantly higher MDI was observed for GC cases
than controls in the female population (p = 0.002). In females, those who were in the third tertile of
the MDI showed a significantly increased risk of GC (OR: 2.66, 95% CI: 1.19-5.99, p-trend = 0.017; model
II). Regarding KEGG pathways, the biosynthesis of ansamycins pathway was identified as a critical
pathway that was differentially abundant in healthy controls.

In our study, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacterium were the most dominant
phyla in case and control groups. Previous research findings have reported that Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria are the most dominant phyla in the gastric
environment, which is consistent with the current study [19,22,37–39]. We observed that HP was
the most dominant species in both the GC cases and controls based on the mean proportion of relative
abundance data. This finding is similar to the HP infection status results where 93.4% of controls
and 99.6% of GC cases were positive for HP infection based on rapid urease test results. A possible
reason for having a higher prevalence of HP infection specifically in healthy controls in our study
population needs to be noted. It is generally believed that HP prefers a healthy gastric mucosa,
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and that as the steps from early stages to late stage of GC progress, HP also gradually fades until
it disappears [40]. Furthermore, a multicenter nationwide study conducted using asymptomatic
Korean adults between 2015 and 2016 showed that although there was a decreasing trend of HP
seropositivity from 1998 to 2015, the HP seroprevalence was still higher than 50% of the population [41].
Thus, it is possible that the HP prevalence might have been remarkably higher both in healthy controls
and also the early GC cases in our study. A study conducted using Chinese and Mexican populations
revealed that HP was the predominant member of the microbiota in the gastric environment [40].
A study aimed to evaluate the microbial composition of gastric mucosa found that the gastric microbial
composition of patients with non-atrophic gastritis, intestinal metaplasia, and GC of the intestinal
type harbored Firmicutes and Proteobacteria phyla, accounting for 70% of in each sample [42]. A
similar result was observed in our study, indicating that Bacteroidetes, Firmicutes, and Proteobacteria
are dominant phyla in the gastric environment in GC cases and controls. Another study evaluating
the gastric microbiota in individuals based on different histopathological stages of GC reported that
there were 19 genera with average relative abundances >0.5% across 60 samples at the genus level,
where the high-abundance genera were Helicobacter, Flavobacterium, Haemophilus, and Serratia [38].
The finding of this study related to the Helicobacter, Haemophilus, and Neisseria genera are consistent
with our findings indicating that those three genera are most dominant in both GC cases and control
groups. A Korean study observed that the Epsilonproteobacteria class corresponding to HP species was
predominant, but the abundance of the Bacilli class was relatively increased in the GC group, which is
consistent with our findings [43]. Thus, our results suggest that, in addition to HP, the endogenous
bacterial community might play a major role in the occurrence of GC. An exponential growth of
opportunistic bacteria is possible after HP damage to the gastric environment where there is a decrease
in acidity of the stomach. Such a disturbance of the microbial community equilibrium can subsequently
progress towards GC [44].

A study observed a higher evenness and diversity of the gastric microbiota in the GC group in
comparison to chronic gastritis and intestinal metaplasia groups [43]. We observed that the evenness
was more or less similar in both GC cases and controls. Interestingly, richness was significantly
higher in GC cases in the current study population. A similar finding has been reported in a study
comparing cancer tissues with non-cancer tissues, where a high microbial richness was observed in
GC tissues [21]. Moreover, we observed a higher Shannon index in the controls compared with the GC
group. Another study comparing the chronic gastritis group with the GC group observed a higher
Shannon index in the chronic gastritis group compared with the GC group [22]. A study focusing on
the relationship between gastric dysbiosis and GC development found an increased richness, although
the Shannon index was lower in the GC group compared with the controls, which is similar to our
findings [45]. In contrast, a study examining microbiota in gastric mucosa in GC tissues compared with
non-cancer tissues revealed a significantly higher Shannon index in the cancer group compared with
the healthy controls [21]. Our findings revealed significant microbial community diversity in healthy
controls, where the Shannon index of the microbial communities increased significantly. Since gastric
carcinoma dysbiosis is generally characterized by reduced microbial diversity, our results demonstrated
that the gastric microbiota composition in GC patients was significantly different from healthy controls.
It has been further reported that the reduced microbial diversity has now been recognized as a feature
of inflammatory-related diseases and several cancers [22]. Thus, our findings for microbial diversity are
consistent and validate the results of previously published findings. A study reported that 75.86% of
variation in microbiome was captured by the first two principal coordinates in the PCoA beta diversity
plot according to the weighted UniFrac phylogenetic distance measure. They observed a significant
divergence between non-cancer and cancer samples, since those samples were clustered separately [21].
In a study conducted in Mexico, an ordination analysis of the 44 taxa between non-atrophic gastritis
and GC was performed based on the weighted-UniFrac distance measure, and the results showed
a significant separation of the microbiota composition between the two groups [42]. These results
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support our finding that the microbial community structure is different in GC patients compared with
healthy controls.

At the species level, Streptococcus_NCVM and C. jejuni were differentially abundant in the GC
cases, while P. melaninogenica was differentially abundant in the controls based on the LEfSe analysis.
Although the evidence related to the effects of those bacterial species in GC occurrence is limited,
a study has reported a remarkable effect of the metabolic products produced by those Prevotella species,
such as lactic acid, acetic acid, butane diacid, isovaleric acid, and isobutyric acid, to the human gastric
cell physiology [46]. Furthermore, P. melaninogenica enrichment can create a gastric environment that is
more likely to be acidic by lowering the pH than non-atrophic gastritis, where there is a restriction to
colonize by other harmful bacterial species [46]. A study evaluated the composition of the microbiota
in advanced gastric adenocarcinoma through the shotgun metagenomics approach and reported that
the cladogram of the gastric microbiome was phylogenetically associated with GC and superficial
gastritis. Family Porphyromonadaceae, genus Porphyromonas, and genus Alloprevotella were enriched
in the GC group, whereas genus Actinomyces and genus Atopobium were enriched in the superficial
gastritis group. However, compared with our study, this study did not have similar taxa that were
highly enriched, specifically in the GC case group [47]. Based on the cladogram, the Bacilli class was
phylogenetically related in GC cases in the current study, which is similar to the findings observed
by Liu et al. [17]. This finding in our study demonstrates that class Bacilli has a potential role in GC
carcinogenesis, specifically in Koreans, as another Korean population-based study obtained similar
findings [43]. Further, class Bacilli plausibly contributes to the production of various metabolic products
that can serve as a fuel for the cellular environment to induce angiogenesis [48].

Based on a compositional analysis of microbiome data at the genus level, there was a higher
MDI in GC cases than controls that was marginally significant for the total population (p = 0.097)
and statistically significant for females (p = 0.002). Furthermore, the higher MDI showed a significantly
increased risk of GC in females (OR: 2.66, 95% CI: 1.19–5.99, p-trend = 0.017; model II). A study
conducted to observe the association between gastric dysbiosis of the gastric microbiome and GC risk
concluded that there is a higher MDI in GC patients than those with chronic gastritis (p < 0.0001) [22].
A study conducted to characterize the changes in the microbiome associated with the histopathological
stages of gastric tumorigenesis observed significant microbial dysbiosis of the gastric mucosa in GC
patients, with a significant overrepresentation of 21 and a reduction of 10 bacterial taxa in GC compared
with superficial gastritis (p < 0.05) [49].

To derive MDI based on the fold changes in selected genera, Lactobacillus, Diaphorobacter, Acinetobacter,
Atopobium, Actinobacillus, and Rhizobium genera were the top six of 13 genera enriched in GC cases in
the current study population. Particularly, Lactobacillus has a critical role in carcinogenesis because
of N-nitroso compounds derived from the metabolism of nitrate/nitrite [28]. In fact, several previous
microbiome studies have reported an increase in the abundance of Lactobacillus in GC patients [42,43,45].
MDI was significantly positively associated with the risk of GC specifically in females in the current
study. As a plausible biological mechanism, it has been reported that the gut microbiome is a principal
regulator of circulating estrogen in females [50]. The gut microbiota secretes β-glucuronidase, an enzyme
that deconjugates estrogens into their active forms where there is a direct regulation of estrogens by
the gut microbiota. Once the dysbiosis of the microbiota has occurred, which is characterized by lower
microbial diversity, it can impair the above-mentioned deconjugation process where there is a reduction
of the circulating estrogens. The alterations of circulating estrogens may facilitate the development of
several pathological conditions, particularly GC, in females [50]. Three possible mechanisms have been
proposed for the carcinogenesis resulting from microbial dysbiosis [26].

The first mechanism is related to bacterial-induced chronic inflammation. The inflammatory
mediators produced due to chronic inflammation have harmful effects on epithelial and endothelial
cells and extracellular matrix compounds. During this inflammatory process, epithelial and immune
cells trigger reactive oxygen species (ROSs) and reactive nitrogen species (RNSs) due to the direct
influence of TNF-α, IL-6, and TGF-β [51]. Production of ROSs and RNSs occurs via induction of
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NADPH oxidase and nitric oxide synthase. NADPH oxidase catalyzes the superoxide anion, leading
to superoxide dismutase mediated hydrogen peroxide H2O2 production. Simultaneously, nitric oxide
synthase generates nitric oxide (NO), which can be converted into nitrogen dioxide (NO2), peroxinitrite,
and dinitrogen trioxide (N2O3), to produce their ROSs and RNSs. Interestingly, increased expression
of NADPH oxidase, nitric oxide synthase, and their ROS and RNS species has been identified in
the tumor microenvironment [52]. Additionally, cell proliferation, mutagenesis, oncogene activation,
and angiogenesis can be facilitated by the inflammatory mediators produced by the above mechanism.

In the second mechanism, NF-κB can be activated, and cellular apoptosis can be inhibited. Activation
of the NF-κB pathway that is related to oncogenic cell signaling in epithelial cells has been identified as
a critical pathway for TNF-α-induced tumor growth. NF-κB signaling can be categorized into a “classical”
pathway and “alternative” pathway. In the classical pathway, IκB kinase β (IKKβ) phosphorylates IκBα,
whereas in the alternative pathway, IKKα phosphorylates the p100 precursor of the NF-κB p52 subunit.
There is an accumulation of the heterodimeric NF-κB transcription factors in the nucleus as a result
of the above signaling events. The classical pathway regulates mainly p50/p65 and p50/c-Rel dimers,
and the alternative pathway regulates the p52/relB dimers. Other kinases including the unconventional
IKK family members IKKε and TBK1 can also activate the NF-κB pathway. Several signaling pathways
converging on the NF-κB regulators provide significant evidence of the ability for cancers to aberrantly
stimulate NF-κB [53]. Further, there is an effect on the activation of pro-inflammatory cytokines
and oncogenes, including cancer cell proliferation. In the third mechanism, bacterial materials can
act as carcinogenic substances that induce the carcinogenesis process [26]. The integration of those
mechanisms can potentially stimulate the carcinogenesis process with the involvement of microbial
dysbiosis. Particularly, the local concentration of various cytokines, including interleukin-1β (IL-1β),
IL-6, and tumor necrosis factor-α (TNF-α) can be increased due to microbial dysbiosis. Endothelial
cells can be activated by IL-1β to produce vascular endothelial growth factor (VEGF). VEGF eventually
generates an inflammatory microenvironment that is helpful for angiogenesis and tumor progression [54].
Additionally, TNF-α has an ability to produce ROSs that can induce DNA damages. A study focused on
the relationship between the tumor-immune environment associated with GC microbiota in patients
with GC identified a correlation between regulatory T cells and plasmacytoid dendritic cells in the tumor
microenvironment that was further associated with dysbiosis of the gastric microbiota [24].

Regarding the metagenomics functional pathway results, the biosynthesis of ansamycins pathway
was highly enriched in controls. It has been reported that ansamycins are groups of antibiotics produced
by strains of several Actinomycetes. Ansamycins are very potent molecules displaying anticancer,
antibacterial, and antiviral activities [55]. The one-carbon pool via the folate pathway was highly
enriched in controls compared with GC cases. One-carbon metabolism mediated by folate cofactor
supports multiple physiological processes, including the biosynthesis of purines and thymidine,
amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance, and redox defense.
While most gut bacteria can synthesize folate, humans require dietary folate intake to maintain
physiological processes [56], as it has an essential role in the nucleic acid synthesis. It has been noted
that an adequate folate level over the long term may support genome integrity. Based on the evidence of
experimental and epidemiological studies, there is a protective effect of folate against colorectal cancer,
breast cancer, and pancreatic cancer, while inconsistent results have been reported for GC [57–59].
The secondary bile acid biosynthesis pathway was also highly enriched in GC cases compared
with controls. Secondary bile acids can induce ROS production, genomic destabilization, apoptosis
resistance, and cancer stem cell-like formation. Diverse signals are involved in the carcinogenesis
mechanism of bile acids, with a major role of epidermal growth factor receptor and its downstream
signaling involving mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear
factor kappa-light-chain-enhancer of activated B cells. Bile acids regulate numerous genes including
the human leukocyte antigen class I gene, p53, matrix metalloprotease, urokinase plasminogen activator
receptor, cyclin D1, cyclooxygenase-2, interleukin-8, and miRNAs of cancer cells [60].
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There are several strengths of our study. To the best of our knowledge, this is the first study
associated with a methodological approach employing the compositional analysis of microbiome
data to derive a MDI for a Korean population (using a novel statistical approach termed “CCREPE”).
The main strength of this approach is that it abrogates spurious correlations when determining
the significance of a similarity measure. Second, the sample size of the current microbiome-related
study is comparatively large relative to previous microbiome studies, with 268 GC cases and 288
healthy subjects improving the power of the statistical analysis to observe the relevant associations
between the microbiome and the risk of GC. Third, several potential covariates were considered in
a multivariate analysis that are established risk factors for GC development. Those confounding
variables were age, smoking, family history of GC, regular exercise, education, occupation, income,
and total energy intake throughout the analysis.

There are potential limitations associated with the current study. Generally, selection bias
and recall bias need to be raised since this is a hospital-based case-control study. Selection bias might
have occurred because healthy subjects were selected from the participants who attended the health
screening. They may have had a healthier lifestyle due to health concerns, as compared with individuals
who did not participate in screening. Therefore, healthy subjects might be less representative of
the general population. Second, the current study was not a follow-up study. Thus, associations
between the gastric microbiome and GC risk could have occurred without having a causal relation, as
patients with early GC could have changed their microbial profile due to premalignant lesions that had
already progressed or because of changes in their dietary habits. However, cases in this study included
only patients diagnosed with early GC; thus, the influence of the dietary changes on GC symptoms
would have been slight. Third, MDI was not validated, although it was applied in an epidemiological
case-control study. Furthermore, since a single sample was measured for the microbial measurements
in the current study, the results related to microbial exposure may have had less accuracy compared
with the microbiome measurements at multiple time points [61]. In spite of this it is important to note
that repeating biopsies with those having a normal gastric histology is associated with ethical issues.

4. Materials and Methods

4.1. Study Population

Participants were recruited at the National Cancer Center Hospital in Korea between March
2011 and December 2014. Individuals with histologically confirmed early GC within the preceding
three months at the Center for Gastric Cancer were included in the case group. Early GC was
defined as an invasive carcinoma confined to the mucosa and/or submucosa, regardless of lymph node
metastasis status. Patients diagnosed with diabetes mellitus, a history of cancer within the past five
years, advanced GC, or severe systemic or mental disease, as well as women who were pregnant or
breastfeeding, were excluded. The control group was selected from health-screening examinations
at the Center for Cancer Prevention and Detection at the same hospital. Individuals with a history
of cancer, diabetes mellitus, gastric ulcers, and HP treatment in the control group were excluded.
The final sample of 556 participants was composed of 268 patients and 288 controls (men, 353; women,
203). This study was approved by the Institutional Review Board of the National Cancer Center [IRB
Number: NCCNCS-11-438]. Written informed consent was obtained from all participants.

4.2. Data Collection

Five gastric mucosa biopsy samples were collected from each study participant following
the Sydney system after endoscopy and examination of the stomach. A biopsy sample in the greater
curvature, at least 3 cm away from each tumor, was used for the metagenomics analysis. The HP
infection status was determined by a rapid urease test, a serological test, and histological evaluation.
Regarding the rapid urease test, one biopsy sample was taken from the greater curvature of the corpus.
Four biopsy samples were collected from the lesser curvature of the corpus and antrum for histological
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evaluation. The HP status was determined via Wright–Giemsa staining of the biopsy specimens
by a pathologist who specialized in GC. A current infection was defined as at least one positive
test result in the rapid urease test or histological evaluation of four biopsy sites [62]. Participants
were asked to complete a self-administered questionnaire. Demographic, lifestyle, physical activity,
and medical history data were collected from the participants. Total energy intake was obtained from
the semi-quantitative food frequency questionnaire (SQFFQ), which has been previously reported as
a reliable and valid questionnaire [63].

4.3. DNA Extraction

DNA was extracted from the biopsy samples using the MagAttract DNA Blood M48 kit
(Qiagen, Hilden, Germany) and BioRobot M48 automatic extraction equipment (Qiagen), according to
the manufacturers’ instructions.

4.4. Metagenomics 16S rRNA Gene Sequencing

Input gDNA (12.5 ng) was amplified with 16S rRNA gene V3-V4 primers, and a subsequent
limited cycle amplification step was performed to add multiplexing indices and Illumina sequencing
adapters. The final products were normalized and pooled using PicoGreen, and the library sizes were
verified using the LabChip GX HT DNA High Sensitivity Kit (PerkinElmer, Boston, MA, USA). Then,
sequencing was performed using the MiSeq platform (Illumina, San Diego, CA, USA). Each sequenced
sample was prepared according to the Illumina 16S rRNA gene Metagenomic Sequencing Library
protocols. DNA quantification and quality were measured by PicoGreen and Nanodrop analyses,
respectively. The 16S rRNA genes were amplified using 16S rRNA gene V3-V4 primers for the 288
control samples and the 268 GC patient samples. The primer sequences were as follows: 16S rRNA
gene V3-V4 primer.

16S rRNA gene Amplicon PCR Forward Primer.
5′ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG.
16S rRNA gene Amplicon PCR Reverse Primer.
5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC.

The paired-end FASTQ files that had already been demultiplexed were imported to make QIIME2
artifact files. After removing the barcodes/adaptors using Cutadapt, the DADA2 pipeline was applied to
remove noisy reads, dereplicate sequences, cluster sequences, and chimeras using QIIME v2.2019.7 [64].
An amplicon sequence variants (ASVs) table was obtained as the end product. Taxonomic abundance
was counted with the Ezbio database [65]. Host mitochondrial and chloroplast, archaea, eukaryote,
and unassigned reads were filtered before calculating relative abundance. The microbial composition
was normalized using the values calculated from the taxonomic abundance count divided by the number
of preprocessed reads for each sample to obtain the relative abundance.

4.5. Statistical Analysis

4.5.1. Descriptive Statistics

To compare the demographic and lifestyle characteristics between the cases and controls, a chi-square
test and Student’s t-test were performed for categorical and continuous variables, respectively.

4.5.2. Nonmetric Multidimensional Scaling (NMDS)

NMDS was performed to relate the microbial composition with the metadata of the study
population. Ordination distances were calculated based on a Bray–Curtis distance measurement
with 10,000 iterations by using metaMDS function of the “vegan” package in R. The Shepard plot
was drawn to observe the correlation between observed dissimilarity and the ordination distance.
The corresponding stress value was obtained to indicate the goodness of fit for two-dimensional
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representations of multidimensional space for microbial species. NMDS plots were drawn to observe
the difference of microbial composition based on metadata of the study population. The PERMANOVA;
adonis function, vegan package in R was used to check the significance of the microbial composition
difference based on selected covariates. All statistical analyses were carried out using SAS version 9.4
software (SAS Inc., Cary, NC, USA) and the R platform (version 3.5.1) (R Foundation for Statistical
Computing, Vienna, Austria).

4.5.3. Linear Discriminant Analysis of Effect Size (LEfSe) and Cladogram

LEfSe analysis [66] was used to estimate microbiome attributes that differed significantly by
cancer status for six taxonomy levels, namely, phylum, class, order, family, genus, and species. LEfSe
couples a univariate nonparametric test for statistically significant phenotypic segregation with post
hoc prioritization by the size of the effect as determined by LDA. Galaxy implementation of LEfSe [67]
with default options was used. Differences were evaluated via a threshold for the logarithmic LDA
score for discriminate features for 2.0. An Ezbio feature table was prepared using the Ezbio database to
plot the cladogram.

4.5.4. Deriving the MDI

Compositional analysis of microbiome data was performed using CCREPE. This is a novel
statistical methodology for co-variation analysis in compositional data [68]. It allows the derivation
of accurate significance values for arbitrary association measures (correlation or other similarity
scores) when applied to compositional data. It consists of an R package (publicly available through
R/Bioconductor–(http://huttenhower.org/ccrepe) and N-dimensional checkerboard score (NC-score),
a novel similarity measure specifically designed to detect association patterns in the human microbiome
and other microbial communities. This NC-score is an extension of the arbitrary nominal categories
of the classical checkerboard score for ecological species co-occurrence. For each pair of microbe m1

and m2, the NC-score counts the normalized number of co-variation and co-exclusion over all pairs of
samples s1 and s2. The CCREPE method was applied with the relative abundance data set containing 73
genera. CCREPE results were obtained with four matrices (P-values, Z-stat values, NC score, and false
discovery rate (FDR) corrected Q values). The sub-correlation matrix of the NC score was extracted
according to the two following criteria; FDR corrected Q-values <0.05 and pairs of genera NC score
|>0.30|. Finally, 64 genera were selected for further analysis. The fold change of selected genera was
calculated by dividing the mean abundance in the cases by that of the controls to identify the genera
increased in GC (fold change>1) and decreased in GC (fold change <1), which were presented in
a diverging lollipop chart using the R package “ggplot2”. The MDI was calculated as the log of [total
abundance in genera increased in GC] over [total abundance in genera decreased in GC].

4.5.5. Association between Gastric Microbiome and GC Risk

The relative abundance of the candidate taxa was categorized into tertiles based on the relative
abundance in the control group. Exceptionally, if more than one-third of the subjects had a relative
abundance of zero, those bacterial species were categorized into two groups (non-carriers and carriers)
based on the median distribution of the controls. Non-carriers were defined as subjects who
had a relative abundance of zero. The group with the lowest relative abundance was used as
the reference group. The ORs and 95% CIs were estimated using unconditional logistic regression
models. The median values of relative abundance in each tertile category were used as continuous
variables to test for trends. The OR estimates were calculated for the crude model (model I) and model
II. Model II was adjusted for age, smoking, first-degree family history of GC, regular exercise, education,
occupation, monthly income, and total energy intake.

http://huttenhower.org/ccrepe


Cancers 2020, 12, 2619 15 of 19

4.5.6. Metagenomics Functional Analysis

The gastric microbial functional gene contents were predicted using Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt v2) [69,70]. In brief, the paired-end
FASTQ files that were already being demultiplexed were imported to make QIIME2 artifact files.
After removing the barcodes/adaptors using Cutadapt, the DADA2 pipeline was applied to remove
noisy reads, dereplicate sequences, cluster sequences, and chimeras using QIIME v2.2019.7 [64].
An amplicon sequence variant (ASV) table was obtained as the end product. It was normalized, and the
metagenome functional predictions were predicted via PICRUSt v2 [71].

5. Conclusions

The current results show that specific bacterial pathogens may play a role in GC risk, whereas
other bacterial types may be associated with reduced risk. Moreover, a significantly higher MDI was
observed in GC cases compared with controls, and MDI was significantly positively associated with
GC risk in the female population. Microbial composition was significantly different based on HP
infection status. Particularly, microbial metabolic pathways in the gastric microbiota were associated
with GC. Specifically, the biosynthesis of ansamycins pathway was highly enriched in the GC cases.
Evaluating the gastric microbial composition associated with GC will be beneficial to developing novel
preventive guidelines to prevent GC risk based on the individual microbiome profiles of Koreans in
the future.
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