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ABSTRACT	 Objective: Hypoxia is a significant feature of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). It is associated with 

tumor invasion, metastasis, and drug resistance. However, the spatial distribution of hypoxia-related heterogeneity in PDAC remains 

unclear.

Methods: Spatial transcriptomics (STs), a new technique, was used to investigate the ST features of engrafted human PDAC in 

the ischemic hind limbs of nude mice. Transcriptomes from ST spots in the hypoxic tumor and the control were clustered using 

differentially-expressed genes. These data were compared to determine the spatial organization of hypoxia-induced heterogeneity in 

PDAC. Clinical relevance was validated using the Tumor Cancer Genome Atlas and KM-plotter databases. The CMAP website was 

used to identify molecules that may serve as therapeutic targets for PDAC.

Results: ST showed that the tumor cell subgroups decreased to 7 subgroups in the hypoxia group, compared to 9 subgroups in 

the control group. Different subgroups showed positional characteristics and different gene signatures. Subgroup 6 located at the 

invasive front showed a higher proliferative ability under hypoxia. Subgroup 6 had active functions including cell proliferation, 

invasion, and response to stress. Expressions of hypoxia-related genes, LDHA, TPI1, and ENO1, induced changes. CMAP analysis 

indicated that ADZ-6482, a PI3K inhibitor, was targeted by the invasive subgroup in hypoxic tumors.

Conclusions: This study is the first to describe hypoxic microenvironment-induced spatial transcriptome changes in PDAC, and 

to identify potential treatment targets for PDAC. These data will provide the basis for further investigations of the prognoses and 

treatments of hypoxic tumors.
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Introduction

Pancreatic ductal adenocarcinomas (PDACs) are leading 

causes of cancer death with a 5-year survival of < 10%1,2. 

Approximately 10%–15% of newly diagnosed patients are 

affected1,3,4. There is no efficient treatment to improve 

the prognoses of PDACs; hence, the majority of PDAC 

patients will eventually die from the disease5-7. Genomic and 

transcriptomic studies have revealed that critical gene muta-

tions or aberrant signaling pathways drive PDAC, such as 

KRAS driver mutations and frequent inactivation of tumor 

suppressors, including TP53, SMAD4, and CDKN2A8-11. 

Other rare mutations have also been identified in unbiased 

analyses of PDACs. These diverse gene mutations converge 

on specific pathways and processes, including TGF-β, Wnt, 

Notch, ROBO/SLIT signaling, and chromatin remodeling and 

DNA repair pathways12,13. Inactivating mutations of chroma-

tin modifiers have been identified in PDACs. These modi-

fiers include histone modification enzymes and SWI/SNF-

mediated chromatin remodeling complexes14. Unfortunately, 

none of them have been used as clinical targets, mainly due 

to limited understanding of their potential roles in PDAC 

progression1,15.

Hypoxia plays a key role in regulating the tumor microen-

vironment by defining the behaviors of many solid malignant 
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tumors16. It is also associated with invasion, metastasis, poor 

clinical prognosis, and resistance to therapies in many malig-

nant tumors17. The hypoxic microenvironment induces the 

expression of gene products involved in angiogenesis, meta-

bolism, invasion, and metastasis in PDACs. PDAC cell lines 

grow well in hypoxic culture conditions (0.1% O2), and 

mitochondria adapt to this situation using respiratory chain 

supercomplexes18. Thus, identifying hypoxia-regulated genes 

and the mechanisms involved are important both for under-

standing cancer evolution and for improving the prognosis or 

development of hypoxia-sensitive prodrugs for the treatment 

of PDAC patients19.

Traditional transcriptomics using RNA sequencing result in 

an averaged transcriptome and the loss of spatial information. 

Single cell genomics is a powerful tool to characterize genetic 

and functional heterogeneities, for reconstruction of evo-

lutionary lineages, and to detect rare subpopulations20. The 

scRNA-seq studies in tumors have provided new insights into 

tumor heterogeneity and the existence of different subpop-

ulations, which are pivotal concepts for identifying detailed 

tumor-related mechanisms. However, it does not reflect the 

spatial distribution of tumor tissues. The positional context of 

gene expression is of key importance for understanding tumor 

hypoxia and hypoxia-induced gene expressions. Stahl et al.21 

introduced the spatial transcriptomics (STs) method, which 

allows for quantification of the mRNA population in the spa-

tial context of intact tissues22.

In this study, we established human PDAC engrafts in mice 

ischemic hind limbs and used ST tissue to investigate ST 

changes in PDAC in a hypoxic microenvironment. Together, 

these results identified hypoxia-induced spatial heterogene-

ity and its related clinical significance in PDAC. This study 

will provide the basis for further investigations of molecular 

tumor signatures for the prognosis and treatment of PDAC 

patients.

Materials and methods

Cells and tumors engrafted in the ischemic 
hind limbs of nude mice

Animal experiments were approved by the ethics committee 

of Tianjin Medical University (Approval No. 8207110937). All 

steps were carefully administered to protect the welfare of the 

animals and to minimize suffering. Details are provided in the 

Supplementary information.

Spatial transcriptomics

Slide preparation
ST slides were printed with four capture areas (6.5 × 6.5 mm), 

each with 4,999 capture spots of barcoded primers (10× 

Genomics, Pleasanton, CA, USA). The spots had a diameter 

of 100 μm and were arranged in a centered rectangular lattice 

pattern. Each spot contained millions of oligonucleotides with 

the following features: a 30 nucleotide poly(dT) sequence for 

the capture of polyadenylated mRNA molecules, a 12 nucleo-

tide unique molecular identifier (UMI) for the identification 

of duplicate molecules that arose during the library prepara-

tion and sequencing process; a 16 nucleotide spatial barcode 

that was shared by all oligonucleotides within each individual 

gene expression spot; and a partial TruSeq Read 1 sequence, 

for use during the library preparation and sequencing steps of 

the workflow.

Tissue preparation
The ST protocol was optimized for Panc-1 engrafted tissue 

according to 10× Genomics. Briefly, tumors were harvested, 

cut into 5 mm-thickness tissue blocks and immediately fro-

zen on dry ice. Tumor blocks embedded with optimal cutting 

temperature reagent were cryosectioned at a thickness of 10 

μm and attached to the capture areas before proceeding to the 

next step.

Fixation, staining, and imaging
Sectioned slides were incubated at 37 °C for 1 min and fixed 

in methanol for 10 min at −20 °C. For staining, the sections 

were incubated in isopropanol (MilliporeSigma, Burlington, 

MA, USA) for 6 min, Mayer’s hematoxylin (Agilent, Santa 

Clara, CA, USA) for 7 min, Bluing Buffer (Dako) for 1 min, 

and eosin (Sigma-Aldrich, St. Louis, MO, USA) diluted 1:5 in 

Tris-base (0.45 M Tris, 0.5 M acetic acid, pH 6.0) for 1 min. 

The slides were washed with deionized water after each of the 

staining steps. After air-drying, the slides were mounted with 

85% glycerol and coverslips. Hematoxylin and eosin-stained 

images were recorded at 40× magnification using a digital slice 

scanner (Hamamatsu, San Jose, CA, USA). The coverslip was 

removed after imaging by immersing the slides in RNase-and 

DNase-free water.

Tissue permeabilization
The slides were inserted into slide cassettes to separate the 

tissue sections into individual reaction chambers (wells). For 

pre-permeabilization, the sections were incubated at 37 °C for 
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18 min with 70 μL permeabilization enzyme. The wells were 

washed with 0.1 × saline sodium citrate (SSC) (Sigma-Aldrich).

Reverse transcription, spatial library preparation, 
and sequencing

SSC was removed, and 75 µL reverse transcription Master Mix 

(Sigma-Aldrich) was added to each well. Reverse transcrip-

tion was conducted according to the manufacturer’s protocol. 

After reverse transcription, the wells were washed with 0.1× 

SSC. Sections were then incubated in 75 µL 0.08 M KOH for 

5 min at room temperature, and then were incubated in 75 

µL Second Strand Mix (Thermo Fisher Scientific, Waltham, 

MA, USA) for 15 min at 65 °C. After removal of the Second 

Strand Mix, 100 µL Buffer EB were added, and sections were 

placed in 35 µL 0.08 M KOH for 10 min at room temperature. 

The samples were then transferred from each well to a corre-

sponding tube containing Tris-HCl (1 M, pH 7.0). Next, 1 µL 

of the sample was added to the qPCR plate well containing 

the KAPA SYBR FAST qPCR Master Mix (KAPA Biosystems, 

Cape Town, South Africa). The qPCR was performed follow-

ing the manufacturer’s protocol, and the optimal number of 

cycles was determined. Next, 65 µL of the cDNA Amplification 

Mix (Takara Bio, Mountain View, CA, USA) was added to the 

remaining sample, which was then incubated for 12 cycles 

according to the recommended protocol.

Library preparation and RNA sequencing
After the identities of the cDNA amplification products were 

confirmed, the sequencing library was constructed using a 

Library Construction KIT (10× Genomics). First, the cDNA 

was chemically knocked-out. The cDNA fragment was then 

cut into 200~300 bp fragments, the cDNA fragments were 

segmented, and their terminals were repaired and added. 

The cDNA fragments were then screened. The P7 adapter 

was connected and introduced into the sample index using 

PCR amplification. Finally, a sequence library was obtained. 

Sequencing was performed on an Illumina Hiseq 3000/4000 

(Illumina, San Diego, CA, USA) with a 150 bp pair-end run 

by Quick Biology (Pasadena, CA, USA). A data quality check 

was performed using the SAV (Illumina). Demultiplexing was 

performed using the Bcl2fastq2 v 2.17 program (Illumina).

RNA sequencing analysis

In this study, the official Space Ranger software (10× 

Genomics) was used for data preprocessing, quantitative 

gene expression analysis, and point identification. Sequencing 

data preprocessing included filtering the sequenced product, 

evaluating the quality of sequencing data, and calculating the 

sequence length distributions. The web-based ST spot detector 

software, Space Ranger (10× Genomics), was used to identify 

the spatial barcode markers in Reads1 and UMI markers of dif-

ferent transcripts. Read2 was aligned to the reference genome, 

human GRCh38 v86, and mouse mm10, using the transcrip-

tome-specific STAR alignment software (starsoftware.co). The 

sequence with a unique alignment position was selected for 

subsequent analysis. Space Ranger (10× Genomics) produced 

the bright field slide image of a single capture area and the 

fastq sequence, distinguished by tissue, background, and the 

detected spot barcodes. The gene spot matrix was generated by 

using Viscum spatial barcodes, and then point clustering and 

gene expression analysis were performed.

Seurat software (https://cran.r-project.org/web/packages/

Seurat/index.html) was used to analyze and cluster the four sam-

ples. Low quality data were then filtered. Principal Component 

Analysis (PCA), including the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) and Uniform Manifold Approximation and 

Projection (UMAP) algorithms, were used to reduce and visu-

alize the dimensions of the data. All spots from the four sam-

ples were clustered according to differentially-expressed genes, 

which were expressed in over 25% of the spots with LOGFC 

values greater than 0.25. Heat maps were generated with Seurat 

software using default hierarchical clustering of read counts.

Identification of cluster-specific hypoxia genes 
and marker genes

The hypoxia gene was curated from the literature 

(Supplementary Table S2). Gene sets with false discovery 

rate-adjusted P-values < 0.05 were considered significantly 

enriched in the related clusters. Kyoto Encyclopedia and Genes 

and Genomes (KEGG) and Gene Ontology (GO) slim were 

used to analyze the signaling pathway information. Data from 

1,222 cases of The Cancer Genome Atlas (TCGA) breast cancer 

were downloaded. The top 100 cases with the highest expres-

sions and 100 cases with the lowest expressions of TCGA were 

selected for Gene Set Enrichment Analysis (4.0.3)23. Cluster-

specific hypoxia genes were then analyzed (ftp.broadinstitute.

org://pub/gsea/gene_sets/h.all.v7.1.symbols.gmt).

Marker genes were identified based on a comprehensive 

analysis of the database and gene ranks of LOGFC values in 

differentially-expressed genes of the clusters. The top 200 

differentially expressed genes and cluster-specific hypoxia 

https://cran.r-project.org/web/packages/Seurat/index.html
https://cran.r-project.org/web/packages/Seurat/index.html
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genes of each cluster were submitted to the STRING website 

(https://string-db.org/), and the human protein interaction 

network provided by the STRING database was imported into 

Cytoscape 3.8.0 (https://cytoscape.org/release_notes_3_8_0.

html) software. The MCODE app (http://apps.cytoscape.org/

apps/mcode) was used to score and enrich the dense region 

groups of the protein interaction network. The BOTTLENECK 

algorithm of the cytoHubba app (http://apps.cytoscape.org/

apps/cytohubba) was used to identify the top 20 molecules 

in the protein interaction network. Ten genes with higher 

rank, MCODE score, and cytoHubba score were identified as 

marker genes for each cluster. Pearson’s correlation was used 

to identify the relationship between cluster-specific hypoxia 

and marker genes. Correlation heat maps were provided by the 

HIPLOT website (https://hiplot.com.cn/basic/cor-heatmap).

Clinical significance of cluster-specific hypoxia 
genes and marker genes in human PDAC

The prognostic values of cluster-specific hypoxia and marker 

genes were evaluated using the KM-Plotter database24. 

Approximately 178 PDAC patient samples were divided into 2 

groups according to the median value of marker gene expres-

sions from the gene chip. The 2 patient cohorts were compared 

using a Kaplan-Meier survival plot, and the hazard ratios with 

95% confidence intervals and log-rank P-values were calculated.

Connectivity map (cMAP) query

To identify candidate compounds for hypoxic tumor treat-

ment, we used an online cMap analysis (https://clue.io/

query)25. The marker genes of all subgroups in the hypoxia and 

control groups were submitted and queried against the L1000 

beta dataset released on December 17, 2020. The expression 

signatures of 9 human cancer lines treated with 2,837 chem-

ical drugs were compared to the genes that were submitted 

and scored. CMap drug-gene expression profiles with negative 

mean scores reversed (or opposed) gene expression profiles 

were compared with the submitted data.

Results

The STs of human Panc-1 engrafts

To assess the spatial organization of PDAC tumor cell popu-

lations under different hypoxic conditions, we performed ST 

on 8 sections from PDAC engraftments in ischemic hind limbs 

and controls. Transcriptomes from 15,731 spots across four 

sections in the hypoxia group and 14,951 spots in the control 

group were obtained, and the STAR group-specific alignment 

software was matched to the Read2 in the reference genomes, 

human Gsh38 and mouse mm10. Sequences with unique 

alignment positions were selected for subsequent analyses. The 

data were obtained at a median depth of 2,178.8 human genes/

spot and 730.8 mouse genes/spots in the hypoxia group, and 

2,541.5 human genes/spot and 730.5 mouse genes/spot in the 

control group. Seurat software was used to analyze the ST data 

using data dimensionality reduction including PCA, t-SNE, 

and UMAP. Figure 1B shows the gene number distribution, 

expression distribution, and mitochondrial and hemoglobin 

gene expression ratios of all spots. The spatial gene number 

distributions and their respective expression distributions 

have been shown in 8 sections (Figure 1C to 1F).

According to the results of t-SNE and UMAP, the spots of 

4 sections in the hypoxia group were grouped into 13 clusters, 

and the spots of 4 sections in the control were grouped into 15 

clusters (Figures 2A to 2F). Figures 2G and 2H indicate the 

distribution of clusters under different hypoxia conditions. 

Figures 2I and 2J show the top 10 differentially expressed 

genes in the hypoxia and the control groups.

The changes of heterogeneities of STs of PDACs 
in different hypoxic microenvironments

To investigate the changes in ST heterogeneity of PDACs 

induced by hypoxic microenvironments, clusters in the 2 

groups were analyzed. Tumor cells in the ischemic hind limb 

were enriched in 7 subgroups, compared to 9 subgroups in 

the control group (Figure 3A). The number of tumor cell 

subgroups decreased in the hypoxia group. Furthermore, GO 

enrichment analysis was used to compare the characteristics of 

different pancreatic cancer cell subgroups in the hypoxia and 

control groups.

In the control group, the cell functions of each subgroup 

were diverse. The hypoxic microenvironment induced the 

concentration of cell subgroups in a few subgroups (Figure 

3B). Because proliferation was found to be the main feature 

of PDAC, the relative signaling pathways were validated in this 

study. It was found that the proliferative activities of multiple 

cell subsets in the control group were stronger than those in 

the hypoxia group (Figure 3B). The unique functions of sub-

groups 2,3, 4, and 11 in the control were related to cell cycle 

https://string-db.org/),
https://cytoscape.org/release_notes_3_8_0.html
https://cytoscape.org/release_notes_3_8_0.html
http://apps.cytoscape.org/apps/mcode)
http://apps.cytoscape.org/apps/mcode)
http://apps.cytoscape.org/apps/cytohubba)
http://apps.cytoscape.org/apps/cytohubba)
https://hiplot.com.cn/basic/cor-heatmap
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Figure 1  A spatial transcriptomic atlas of human pancreatic ductal adenocarcinoma (PDAC) Panc-1 engrafts. (A) Workflow of PDAC sample pro-
cessing for spatial transcriptomics. (B) Distribution of all expression gene numbers in 8 samples, distribution of all expression genes in 8 samples, 
distribution of mitochondrial genes in 8 samples, and distribution of hemoglobin gene expressions in 8 samples. Samples marker in the hypoxia 
group: 1A, 1B, 1C and 1D; Samples marker in the control group: 2A, 2B, 2C and 2D. (C) Scatter plot of the correlations between gene expressions 
and the mitochondrial gene expression ratios and gene numbers. (D) Spatial distributions of the numbers of expressed genes in 4 samples of the 
hypoxia group. (E) Spatial distribution of the numbers of expressed genes in 4 samples of the control group.
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Figure 2  Classification of Panc-1 engrafts. (A) The t-NSE clustering graph of the hypoxia group. (B) Uniform Manifold Approximation and 
Projection (UMAP) clustering graph of the hypoxia group. (C) UMAP clustering graph of every sample in the hypoxia group. (D) The t-NSE 
clustering graph of 4 samples of the hypoxia group. (E) UMAP clustering graph of the control group. (F) UMAP clustering graph of the control. 
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and cell proliferation, and the proliferative abilities of the 

cell subsets in the hypoxia group were related to subgroup 6 

(Figure 3B). Specifically, genes for subgroup 10 in the con-

trol group were enriched for GO terms such as response to 

hypoxia, angiogenesis, and cell adhesion, emphasizing their 

potential functions in migration and metastasis (Figure 3B). 

The functions of the genes for subgroup 9 in the control group 

were associated with cell division and apoptosis (Figure 3B). 

Notably, GO function analysis indicated that only subgroup 

6 had active functions. Genes for subgroup 6 in the hypoxia 

group were enriched for cell proliferation, invasion, and the 

response to stress (Figure 3B). We also found that the genes 

expressed in subgroup 4 of the hypoxia group were related 

to angiogenesis, extracellular matrix organization, and colla-

gen organization, indicating a possible association with the 

immune response (Figure 3B).

Based on the differences in tumor heterogeneities between 

the 2 groups, we compared differentially-expressed genes in 

the subpopulations of these groups. The results showed that 

gene expression of subgroup 5 in the hypoxia group was the 

least coincident with other groups (Figures 3C to 3F). This 

indicated that pancreatic cancer in a hypoxic microenviron-

ment produced a new functional subgroup.

The difference of hypoxia gene expression 
patterns in the hypoxia and control groups

Because pancreatic cancer cells have a strong tolerance to hypoxic 

stress, we investigated hypoxia-related gene signatures in differ-

ent groups; 35 hypoxia-related genes reported in the literature 

were selected and analyzed for their expression and spatial distri-

butions. There were 28 genes expressed in this PDAC model, and 

the expression of 7 genes was considered to be absent. Notably, 

these genes were differentially-expressed in these clusters 

(Supplementary Figure S1). The distributions of hypoxia-re-

lated genes among the subgroups were uneven. Hypoxia-related 

genes such as ENO1, LDHA, TPI1, ALDOA, MIF, and PGK1 were 

highly expressed in subgroup 6 of the hypoxia group and in sub-

group 10 of the control group (Supplementary Figure S1).

The genes significantly associated with hypoxia were vali-

dated by immunohistochemistry (IHC) staining. The results 

in both ST and IHC analyses revealed that LDHA expression 

in the tumor boundary in both groups was higher than that in 

the tumor center (Figure 4A). AKT expression in the hypoxia 

group was upregulated compared to that in the control group 

(Figure 4B). In contrast to AKT, ALDOA expression in the 

hypoxia group was lower than that in the control group 

(Figure 4C). There was no significant difference in BINP3 

expression, which is involved in cell death-related signaling 

pathways, in either group (Figure 4D).

To determine the signaling pathways of genes significantly 

associated with hypoxia, GSEA analyses were performed in 

TCGA PDACs. Although the hypoxia status was different in 

different clusters, LDHA, AKT, ALDOA, and BINP3 partici-

pated in hypoxia, glycolysis, the inflammatory response, and 

oxidative phosphorylation signaling pathways, respectively, in 

human PDACs (Figure 4E).

Spatial distribution and cross-talk of tumor 
gene expressions in different hypoxic 
microenvironments in PDACs

To investigate the differences in gene expressions in different 

areas between the hypoxia and control groups, the marker 

genes were enriched in each subgroup in both groups. GO slim 

and KEGG signaling pathway analyses were used to analyze 

the top 100 genes in each subgroup, showing that tumor cells 

in all subgroups in the hypoxia group had a high metabolism 

(Supplementary Figure S2).

To determine how hypoxia and tumor metabolism affected 

the gene expressions and gene network operations in different 

subgroups, we used correlation analysis, String map, Mcode, 

and cytoHubba in the Cytoscape software to analyze the rela-

tionships between the top 100 genes and the differentially-ex-

pressed hypoxia genes in every subgroup. Supplementary 

Figures S3 to S6 show the gene cross-talk networks and the 

genes with the highest cytoHubba score (bottleneck algo-

rithm) in different subgroups of the hypoxic tumors.

Based on the differences in tumor heterogeneities between 

the 2 groups, we compared differentially-expressed genes 

in subpopulations of the 2 groups. Differentially expressed 

genes in subgroup 4 of the hypoxia group were related to ATP 

synthesis-coupled electron transport, oxidative phospho-

rylation, the response to endoplasmic reticulum stress, and 

the response to oxidative stress (Supplementary Figure S4). 

SOD1, the key marker gene in this subtype, was related to the 

expression of several heat shock proteins, such as HSP90AA 

and HSPD1 (Supplementary Figure S4). The marker genes 

of subgroup 5 in the hypoxia group were involved in protein 

synthesis, protein extracellular transport, and gland secretion 

(Supplementary Figure S5). They are responsible for nor-

mal pancreatic ductal cell function. The marker gene TOP2A 
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Figure 4  The validation of LDHA, AKT, ALDOA, and BINP3 expressions in pancreatic ductal adenocarcinomas (PDACs). (A) Spatial distribution 
of LDHA in the hypoxia and control groups. Immunohistochemistry (IHC) for human LDHA in the hypoxia and control groups. (B) Spatial dis-
tribution of AKT in the hypoxia and control groups. IHC for human AKT in the hypoxia and control groups. (C) Spatial distribution of ALDOA 
in the hypoxia and control groups. IHC for human ALDOA in the hypoxia and control groups. (D) Spatial distribution of BINP3 in the hypoxia 
and control groups. IHC for human BINP3 in the hypoxia and control groups. (E) The GSEA of LDHA, AKT1, ALDOA, and BINP3 in human PDAC.
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in subgroup 5 was correlated with EGFR, ALDH18A, and 

FBL (Supplementary Figure S5). Marker genes of subgroup 

6 in the hypoxia group were enriched for cell proliferation, 

invasion, and the response to stress. There were interactions 

between the marker genes, GAPDH, EEF1A1, SERPINE1, and 

hypoxia-related TPI1 ( Supplementary Figure S6). There were 

positive associations between LDHA, TPI1, and ENO1 expres-

sions in all the subgroups, which were involved in signaling 

pathways regulating glycolysis, glycolytic processes, pyruvate 

metabolism, ADP metabolism, and NADH regeneration.

Clinical relevance of marker gene expressions 
of different clusters in PDACs

The KM-plotter website was used to analyze and evaluate the 

clinical significance of marker genes of subgroups in the hypoxia 

group. According to 178 PDACs in the KM-plotter database, 

low expression of APBB and MAP2K7 in subgroup C0 of the 

hypoxia group was associated with poor prognoses for PDAC 

patients (Figure 5). High levels of C19orf33, YBX3, and NPM1 

in subgroup 2 of the hypoxia group indicated poor prognoses 

for PDAC patients (Figure 5). Downregulation of PLD3 was 

associated with poor prognoses for PDAC patients (Figure 5). 

High expression of GALT, FBXL16, and HDAC6 from subgroup 

3 in the hypoxia group was associated with good prognoses for 

PDAC patients, while upregulation of TRAM1 indicated poor 

prognoses for PDAC patients (Figure 5). Upregulated CNAX 

and PKM expression in subgroup 4 in the hypoxia group was 

associated with poor prognoses for PDAC patients (Figure 5). 

High expression of TM4SF1, CAV2, IER3, and KRT17 in sub-

group C5 in the hypoxia group indicated poor prognoses for 

PDAC patients (Figure 5). High levels of C15orf48, PLAU, 

DDIT4, and KRT18 in subgroup 6 in the hypoxia group indi-

cated poor prognoses for PDAC patients (Figure 5).

Identification of potential drugs for  
hypoxia-induced PDACs

Although the growth of transplanted tumors is limited by 

ischemia and hypoxia, we used the online Connectivity Map 

(CMap) software to search for the original drug involved in 

hypoxia-induced PDAC in cases of tumor relapse. Query 

CMap is a chemical genomics database that collects gene 

expression profiles from cultured human cells treated with 

small molecules25,26. A CMap analysis was performed in which 

we searched for drugs that had a gene expression pattern 

negatively correlated to the hypoxia-induced pancreatic can-

cer (PNCA). The top 10 potential drugs for each subgroup in 

the hypoxia and the control groups are shown in Figure 6.

Discussion

PDAC is characterized by a high degree of intratumoral het-

erogeneity, which constitutes the main obstacle for effective 

PDAC treatment27. Thus, it is highly desirable for intratu-

moral heterogeneity and the underlying mechanisms that are 

pivotal for PDAC prognostic improvement. In this study, we 

established an ischemic comprehensive gene expression atlas 

of various areas of hypoxia-induced PDAC, and characterized 

the features of spatial gene expression profiles in each sub-

group based on ST and scRNA-seq analyses.

Hypoxia has a significant impact on tumor heterogene-

ity28,29. In this study, we found that the growth of pancreatic 

cancer xenografts was significantly inhibited in the ischemic 

hind limb model, but the tumor cells still survived. This was 

related to the severe fibrosis, fewer blood vessels, and strong 

hypoxia tolerance of pancreatic cancer cells30,31. Therefore, this 

study compared the transcriptomes of the hypoxia and con-

trol groups to characterize the effect of hypoxia on transcrip-

tome heterogeneity of pancreatic cancer. The results indicated 

that tumor cell subgroups decreased in the hypoxia group. 

Furthermore, GO enrichment analysis showed that in the con-

trol group, the cell function of each subgroup showed diversity. 

Tumor cells in a hypoxic microenvironment undergo clonal 

selection28, resulting in the reduction of cell subgroups and 

functional simplification. The prominent proliferative activity 

of tumor cells is an important feature of pancreatic cancer. In 

a normoxic environment, many subpopulations of pancreatic 

cancer cells express genes of the cell cycle and cell prolifera-

tion pathways, and have strong proliferative activities. Except 

for the proliferation-associated signaling pathway, the genes for 

subgroup 10 in the control group were enriched in response 

to hypoxia, angiogenesis, and cell adhesion, emphasizing their 

potential functions in migration and metastasis. The functions 

of genes in subgroup 9 in the control group were responsible 

for cell division and apoptosis. Only subgroup 6, located at the 

invasive front, showed proliferative ability under hypoxia.

Accumulating evidence has highlighted the influence of the 

microenvironment on cancer progression and evolution32. 

Glioblastoma cells in hypoxic regions of tumors overex-

press the epidermal growth factor receptor, and the vascular 

regions express the platelet-derived growth factor receptor α33. 
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Figure 5  Kaplan-Meier survival plot of marker genes of clusters 0, 2, 3, 4, 5, and 6 of the hypoxia group in human pancreatic ductal adeno-
carcinomas (PDACs). 
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Similarly, hypoxia induced by anti-angiogenic agents, such as 

sunitinib and bevacizumab, can increase the population of 

cancer stem cells in breast cancers34. In the present study, the 

hypoxic microenvironment induced heterogeneous changes 

and new functional subgroups in pancreatic cancer35-37. The 

gene expression of subgroup 5 in the hypoxia group was the 

least coincident with the other groups. The signaling pathways 

of the new functional subgroups in the hypoxia group were 

associated with protein synthesis, extracellular protein trans-

port, and gland secretion. These genes are related to normal 

pancreatic functions, supporting the possibility that the new 

functional subgroup possesses a certain degree of the differ-

entiation and maturation of the pancreatic epithelium. Tumor 

cells of subgroup 4 in the hypoxia group enhanced their abili-

ties to resist endoplasmic reticulum stress and oxidative stress 

by activating ATP synthesis-coupled electron transport and 
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oxidative phosphorylation. The key marker gene, SOD1, in 

this subtype was related to the expression of several heat shock 

proteins, such as HSP90AA and HSPD1 (Supplementary 

Figure S4). Notably, subgroup 6 at the invasive front of the 

hypoxic tumor had more active functions regulating cell pro-

liferation, invasion, and the response to stress. The morphol-

ogy of PNCA in the hypoxia group also showed that subgroup 

6 was located at the junction of tumor tissue and the muscle, 

which was the most invasive part. These results indicated that 

pancreatic cancer cells in subgroup 6 had a stronger ability for 

survival and invasion. The new functional subpopulations and 

aggressive subpopulations may be responsible for the survival, 

proliferation, and invasion of PCNA under hypoxic stress.

Pancreatic cancer is a type of tumor characterized by 

extreme hypoxia38. The Wagner effect is an important feature 

of pancreatic cancer metabolism. We analyzed the spatial dis-

tribution of 35 hypoxia-related genes between the hypoxia 

and the control groups39-41, and found that the distribution 

of hypoxia-related genes among the subgroups was uneven. 

Hypoxia-related genes such as ENO1, LDHA, TPI1, ALDOA, 

MIF, and PGK1 were highly expressed in subgroup 6, the most 

invasive subgroup of the hypoxia group and subgroup 10 of 

the control group. LDHA was one of the most highly expressed 

genes, and other genes are also important for the regulatory 

mechanisms in glycolysis42. The other upregulated genes were 

key enzymes43,44. GO analysis also showed that glycolysis, 

pyruvate metabolism, NADH regeneration, and other meta-

bolic pathways were significantly activated in hypoxia group 6, 

suggesting that hypoxia-induced glycolysis was an important 

metabolic characteristic of pancreatic cancer cells, which met 

the biological functional requirements of these cells. In the 

process of tumor proliferation, invasion, and metastasis, con-

siderable synthesis is needed, such as amino acid and nucleo-

tide synthesis45,46. In addition to consuming a large amount of 

ATP, carbon and NADPH equivalents are also needed as raw 

materials47,48. Glycolysis can not only produce ATP, but also 

forms acetyl CoA and NADPH for macromolecular synthesis.

Surgical resection followed by adjuvant chemotherapy is the 

only potentially curative treatment available, but resection is 

often difficult due to factors such as vascular involvement and 

boundary fuzziness31,49. The therapeutic treatment of PDAC is 

therefore challenging1. Progress has been unsatisfactory, and only 

a small increase in the overall survival has been achieved. This 

study also showed that the growth of pancreatic cancer could not 

be completely inhibited in an extreme hypoxic-ischemic envi-

ronment. Hypoxia-induced heterogeneity of pancreatic cancer 

leads to the recurrence and invasion of these cells. Based on the 

spatial transcriptome characteristics of the hypoxia and control 

groups, we used CMAP to analyze the differences in chemosen-

sitivities. The results showed that subgroup 6, the most invasive 

subgroup of the hypoxia group, was sensitive to ADZ-6482, a 

PI3K inhibitor25. The PI3K signaling pathway activates LDHA 

and promotes the occurrence of glycolysis. ATP is produced by 

glycolysis and the feedback mechanism of mitochondria result-

ing from PI3K-Akt-Foxo1 signaling. This promotes the contin-

uous activation of the PI3K pathway and the further differen-

tiation and proliferation of T cells50,51. It is suggested that the 

increased expression of LDHA in the most invasive subgroup of 

the hypoxia group activates the PI3K pathway, which promotes 

the invasion and metastasis of pancreatic cancer by regulating 

the differentiation, proliferation, metabolism, and stress of pan-

creatic cancer cells under hypoxic conditions (Supplementary 

Figure S7). PI3K inhibitors can inhibit the LDHA-induced acti-

vation of the PI3K signaling pathway52,53, which may become a 

new candidate drug for the treatment of pancreatic cancer. The 

efficacy of PI3K inhibitors in pancreatic cancer will be further 

verified in subsequent experiments. Therefore, an understand-

ing of the heterogeneity in the microenvironment may highlight 

further the therapeutic strategies for PDAC.

In conclusion, this study is the first to characterize hypoxic 

microenvironment-induced changes in spatial heterogeneities 

in PDACs, and highlighted potential intercellular communica-

tion networks controlling the cell fate under different hypoxic 

conditions. In addition, the hypoxia gene signature and small 

chemical molecules identified by CMAP will serve as resources 

for further investigation of prognostic markers and tumor 

therapeutic targets.
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