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ABSTRACT
Background. Soil heavy metals (HMs) under different land-use types have diverse
effects, whichmay trigger the ecological risk. To explore the potential sources of HMs in
karst soils, the spatial distribution and geochemical behavior of HMs based on different
land-use types are employed in this study.
Methods. Soil samples (n= 47) were collected in three suites of karst soil profiles
from the secondary forest, abandoned cropland and shrubland in Yinjiang, Southwest
China. The concentrations of Ni, Mn, Cr, Pb, Cd and Mo were determined to give a
comprehensive understanding of the possible sources of these HMs and evaluate the
potential ecological risk in Yinjiang County.
Results. The mean concentrations of HMs in all profiles followed the same order:
Mn > Cr > Ni > Pb > Mo > Cd. Meanwhile, the concentrations of most HMs
roughly increased with the depth. Additionally, the concentrations of HMs were mostly
correlated with soil pH and SOC, rather than with clay and silt proportions. By contrast,
with the enrichment factors (EF), geo-accumulation (Igeo) and potential ecological risk
index (PERI) of HMs in soil under different land-use types, the results indicated that
these HMs exhibited non-pollution (Igeo < 0) and no ecological risk (PERI < 30) to
human health in soils of Yinjiang County.
Conclusions. The distribution of HMs is dominated by weathering in the karst area,
and the effects of agricultural inputs on the enrichment of soil HMs in Yinjiang County
are limited. This further state that the arrangement of the local agricultural structure is
reasonable.

Subjects Ecosystem Science, Soil Science, Ecotoxicology, Biogeochemistry, Environmental
Contamination and Remediation
Keywords Contamination assessment, Distribution characteristics, Land-use types, Karst area,
Soil heavy metals

INTRODUCTION
Soil acts an important sink of heavy metals (HMs) in the Earth’s surface system. There are
two ways for soil to accumulate HMs: (i) natural inputs from the weathering of continental
rocks, and (ii) anthropogenic sources such as industrial production, atmospheric
precipitation and agricultural activities (Taylor et al., 2010; Wei & Yang, 2010). As a vital
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environmental media, soil can be directly affected by human activities, including farming
activities, mining development and smelting (Qiu et al., 2016; Skierszkan et al., 2016;Wang
& Zhang, 2007). Soil environment, in turn, affects human health in multifarious ways.
The poisonous Mo, Cd and Pb metals in soil can be easily absorbed by crops, resulting
in a high chronic carcinogenic risk for human beings (Demir, 2021; Xiao et al., 2017). The
intake of proper quantity of HMs is essential for the living organisms growing, whereas
the excessive intake of HMs will provoke detrimental effects on vegetation, animals and
human bodies (Sawut et al., 2018; Taylor et al., 2010). The soil adsorption of Cr is limited
because Cr is mostly available in water-soluble or exchangeable from in soil (Liu et al.,
1990). As a migratory pollutant, Cr could very easily affect the resident water environment
by polluting groundwater. The compounds of Mn and Ni may also be absorbed by plants
and forage crops, ultimately into the body of herbivores and humans (Bashir, Ahmad &
Khan, 2020; Fardous et al., 2011). Excessive HMs and their interaction can also aggravate
bioavailability and ecological risk (Lago-Vila et al., 2017). Accordingly, the accumulation
degree of HMs (e.g., Mn, Ni, Cr, Pb, Cd and Mo) in soils can indicate soil environment
pollution level and ecological risk.

The information containing in a suit of soil profile can reflect the soil physical and
chemical processes at a specific site (Liu et al., 2016b; Vodyanitskii & Yakovlev, 2011).
Previous researches have mainly focused on the spatiotemporal variations and the
contamination of HMs in human-affected regions, for examples, sewage irrigation area,
polluted farmland and mining area (Khanal et al., 2014; Kong et al., 2018; Liu et al., 2016a;
You et al., 2015). However, the studies of HMs characteristics in soil profile were mostly
aimed at a single land-use type (Balabane et al., 1999; Vodyanitskii & Yakovlev, 2011). Little
is known about the vertical distribution of HMs based on different land-use types under
the same geological background, especially for the soils in the karst area. The manner and
degree of human disturbance are closely associated with land-use types, which can affect
the spatial distribution of HMs in soil profiles. The research on HMs characteristics in soil
profiles under different land-use types is almost negligible and thus poorly documented.
Accordingly, it is of vital importance to investigate the vertical characteristics of HMs under
different land-use patterns and human interferential degrees in the karst regions.

The karst ecosystem belongs to a highly fragile ecosystem that can be easily affected
by anthropogenic activities (Han et al., 2020). The slight discrepancy in different soil
types may be more prominent in the karst region (Liu et al., 2013; Parise, De Waele &
Gutierrez, 2009). In the karst region, the high-rate of rock weathering and low-rate of soil
formation can result in a strong spatial of soil distribution and chemical composition in
soils (Gao et al., 2013). Even though at the similar depth, the physicochemical properties
andHMs concentrations in the soils derived from different locations likely show substantial
discrepancies (Gregorauskiene & Kadunas, 2006). Moreover, the soil was mainly developed
from limestone in the karst area of southwest China, and sizable amounts of HMs were
released due to its unique geochemical process (Wen et al., 2020; Zhao et al., 2015).
Naturally, the concentrations of Mn, Ni, Cr, Pb, Cd and Mo in karst soils are higher
than other area which are not developed from limestone (Wen et al., 2020). The migration
ability of HMs is stronger with high porosity and heterogeneous distribution in karst
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soil (Tao et al., 2020). The high concentrations of HMs are harmful to the large soil
environment area through surface water and groundwater flow due to the unique hydraulic
and hydrogeological characteristics of karst area (Huang et al., 2020; Reimann & Caritat,
2000). Therefore, it is necessary to analyze the behavior of HMs in the karst area showing
potentially higher background concentration.

In Yinjiang County, in addition to weathering and pedogenic processes, agricultural
activities play a significant role in regulating the geochemical behaviors of HMs in soils
(Huang et al., 2017; Xu et al., 2017b). Therefore, the purposes of this study were to: (1)
explore the vertical distribution of HMs in the profiles under different land-use types;
(2) determine the influence of rock weathering processes and anthropogenic inputs on
the distribution of HMs in the soils under different land-use types; and (3) evaluate the
ecological risks of HMs in karst areas by the enrichment factor (EF), geo-accumulation
index (Igeo) and potential ecological risk index (PERI). This study is desirable to extend
the knowledge of the migration process of HMs in soil under different land-use types soils
in karst area and evaluate the possible influence of interferential degrees from human. The
HMs results in this study can supply the data supporting soil management for soil quality
and sustainability.

MATERIALS & METHODS
Study area
The study area is located in the Yinjiang County (Fig. 1), a karst region inGuizhou Province,
of Southwest China. The study area lies between 27◦35′–28◦21′N and 108◦18′–108◦48′E,
with above 454,000 permanent resident population. The Yinjiang County is dominated
by the subtropical monsoon climate, with the variation in temperature from −9 ◦C to
39.9 ◦C (Xu et al., 2017b). Rainfalls are mainly concentrated from April to September,
with the annual precipitation of 1,057–1,268 mm (Xu et al., 2017a). The rock exposed
in the Yinjiang County is dominated by the Permian and Triassic carbonates, with a
rocky desertification area of 11783.06 hm2 (Huang et al., 2017; Li, 2018). The elevation
decreases from southeast to northwest, a typical karst trough valley with a relative elevation
exceeding 2,000 m (Li, 2018). The study area is far away from urban cities and diggings and
mostly covered by cropland (Huang et al., 2017). The agricultural areas in Yinjiang County
accounted for nearly 30% of the total area with the main crops being corn and sweet
potatoes (TBS, 2017), and the forest area accounted above 60% of the total area with the
dominant vegetation of Platycarya strobilacea Sieb.et Zucc., Melia azedarach L. and Quercus
fabri Hance. The vegetation of shrubland is mainly cultivated with Pyracantha fortuneana,
Castanea mollissima, Lindera communis. The main soil types of Yinjiang county are Mollic
Inceptisols Soil Survey Staff, 2010, which are calcareous soils derived from limestone rocks.

Sample collection
A total of 47 soil samples were collected during September 2016 in the Yinjiang County,
from the three soil profiles in secondary forest land (T1, n= 20), abandoned cropland (T2,
n= 16) and shrubland (T3, n= 11), respectively. Due to the strong spatial heterogeneity
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Figure 1 Land-use types profiles sites and in the study area.
Full-size DOI: 10.7717/peerj.12716/fig-1

in soil properties, particularly at the vertical direction, three duplicate soil profiles of less
than 1 meter were selected at each sampling sites. Moreover, the results were presented as
an average of three samples derived from the three duplicate profiles at the same depth in
the present study. The detailed descriptions of soil profiles are shown in Table 1.

Soil analyses
Soil samples were air-dried and sieved through a two mm sieve after removing big litters
and stones. For subsequent analysis, soils were entirely grounded to around 200 mesh.
Soil particles were categorized into three groups including clay (<2 µm), silt (2 µm to 50
µm) and sand (50 µm to 2,000 µm) according to USDA Soil Taxonomy (Soil Survey Staff,
2010). Soil pH was measured using glass electrode in the 1:2.5 soil–water suspension with
a precision of ±0.05. Soil powders were digested with HNO3–HF–HClO4 (Li et al., 2022;
Li et al., 2020; Liu, Han & Li, 2021). The concentrations of Al, Cr, Mn were determined by
ICP–OES (Optima 5300DV; Perkin Elmer, Waltham, MA, US) and the concentrations of
Ni, Mo, Cd, Pb were analyzed by ICP–MS (Elan DRC–e; Perkin Elmer, Waltham, MA, US)
in the Institute of Geographic Sciences and Natural Resources Research, CAS at precision
±5%. Quality control and quality assurance were performed by the procedural blank and
standard reference material (GBW07447 and GBW07449).

Data calculation
Index of enrichment factor
As the indicator in various environmental media, the enrichment factor (EF) and the Geo–
accumulation Index (Igeo) widely employs to quantify the accumulation and contamination

Han and Xu (2022), PeerJ, DOI 10.7717/peerj.12716 4/23

https://peerj.com
https://doi.org/10.7717/peerj.12716/fig-1
http://www.ncbi.nlm.nih.gov/protein/GBW07447
http://www.ncbi.nlm.nih.gov/protein/GBW07449
http://dx.doi.org/10.7717/peerj.12716


Table 1 Geographic information, dominant vegetation and profile characteristic at the soil sites.

Profile Location Altitude
(m)

Thickness
(cm)

Land-use types and
primary vegetation

Profile descriptions

Secondary
forest (T1)

28◦04′57.64′′N
108◦42′31.01′′E

838 160 Subtropical evergreen broad–leaved
secondary forest, interspersed with
Platycarya strobilacea Sieb.et
Zucc., Melia azedarach L., Quercus
fabri Hance. etc.

0–5 cm: Gray soil, abundant
plant roots, and debris.
5–85 cm: Yellow clay and silt,
few small stone particles.
85–160 cm: Relatively uniform
brawn to red soil, connect
to bedrock.

Abandoned
cropland
(T2)

28◦04′48.35′′N
108◦42′58.22′′E

892 130 Sloping farmland, cultivation history
is about 50 years, the main crops are corn
and potatoes, which have been abandoned
3 years before sampling

0–25 cm: Yellow soil, few plant
residues, and small stone particles.
25–110 cm: Relatively uniform
yellow fine silt.
110–130 cm: Yellow brawn to red
brawn soil, more stones.

Shrubland
(T3)

28◦04′22.68′′N
108◦40′37.62′′E

776 70 Native shrub grass slope, the main
plants are Pyracantha fortuneana,
Castanea mollissima, Lindera communis,
and interspersed with less Cunninghamia
lanceolata, Pinus massoniana Lamb, etc.

0–10 cm: Black soil, abundant
humus, few stones.
10–25 cm: Gray soil,
abundant stones.
25–70 cm: Yellow soil, few
stones, connect to bedrock.

Table 2 The classification of EF values and Igeo values.

EF Soil quality Igeo Soil quality

EF < 2 Negligible enrichment Igeo < 0 Non-pollution
2 ≤ EF < 5 Moderate enrichment 0 ≤ Igeo < 1 Minor pollution
5 ≤ EF < 20 Significant enrichment 1 ≤ Igeo < 2 Moderate pollution
20 ≤ EF < 40 Severe enrichment 2 ≤ Igeo < 3 Moderate to severe pollution
EF ≥ 40 Extremely severe enrichment 3 ≤ Igeo < 4 Severe pollution

4 ≤ Igeo <5 Severe to extreme pollution
Igeo ≥ 5 Extreme pollution

of metallic elements through calculating the soil exchangeable fractions (Barbieri, 2016;
Zeng, Han & Yang, 2020).

The indexes of EF are usually calculated by the normalized concentration of a
metal relative to its reference concentration (Barbieri, 2016; Mazurek et al., 2017). The
representative element used in several studies is Al due to its insusceptible property
(Ackermann, 1980; Blaser et al., 2000). The formula of EF is shown as:

EF=
(M/Al)S
(M/Al)B

(1)

where M means the concentrations of metal (mg kg−1), and S means soil samples.
And calculated the (M/Al)B ratio based on the HMs and Al values in the average soils
of Guizhou Province (China Environmental Monitoring Station, CEMS)(1990). Barbieri
(2016) categorized the EF values into five grades (Table 2).
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Index of Geo–accumulation
The Geo–accumulation Index (Igeo) is extensively employed to evaluate anthropogenic
contamination levels (Nazeer, Hashmi & Malik, 2014; Zoller, Gladney & Duce, 1974).
Müller (1971) defined the formula of Igeo as:

Igeo= log2(SM/1.5RM) (2)

where SM represents the concentrations of HMs in samples; RM represents the
reference value for HMs in Guizhou Province (China Environmental Monitoring Station,
CEMS)(1990), and the constant 1.5 is applied to eliminate the lithological fluctuations
(Barbieri, 2016). Accordingly, the values of Igeo are separated into seven classes (Table 2)
from non-pollution to extreme pollution (Müller, 1971).

Index of potential ecological risk
Hakanson (1980) originally proposed the potential ecological risk index (PERI) to effectively
appraise the ecological risk of HMs in sediment or soil. Extensive studies have applied PERI
to estimate the potential ecological risk and pollution level triggered by single or multiple
HMs (Aboubakar et al., 2021; Gujre, Rangan & Mitra, 2021; Sun et al., 2010). The (3)–(5)
to calculate PERI are as:

Ci
c=Ci

s/C
i
r (3)

Eif=Ti
f×C

i
c (4)

RI=
n∑
i=1

Eif (5)

where Cc
i indicates the contaminated factor of each heavy metal, Cs

i represents the
measured concentration of HMs in soils, Cr

i represents the reference value for HMs in the
average soils of Guizhou Province (China Environmental Monitoring Station, CEMS)(1990).
Efi indicates the potential ecological risk of each heavy metal, T f

i represents the toxic
response factor of respective HMs, and RI indicates the comprehensive potential ecological
risk of soil HMs (Hakanson, 1980). Tf

i values of Mn, Cr, Pb, Ni and Cd were obtained from
Xu et al. (2008) and were 1, 2, 5, 5, 30, respectively. Unfortunately, the toxicity response
factor of Mo is indefinite.

Based on the contaminated degree of single heavy metal, the values of C c
i and E

f
i are classified into five classes and the values of RI are divided into 4 classes by the

comprehensive value of the PERI of multiple HMs (Gujre, Rangan & Mitra, 2021; Qiu et
al., 2016). The specific evaluation indicators and classes are shown in Table 3.

The relationship between different HMs and soil properties was identified by linear-
regression analysis, with the determination of the coefficient R and p-values by SPSS 25.0
(IBM SPSS Statistics, Chicago, IL, US). The graphics were completed by Origin 2017
(OriginLab, Northampton, MA, USA).
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Table 3 The corresponding relationships of Cc
i, Ef

i, RI, and contaminated degree.

Cc
i Contaminated degree Ef

i Contaminated degree RI Contaminated degree

Cc
i
≤ 0.7 Great Ef

i < 40 Slight ecological risk RI < 150 Slight ecological risk
0.7 < Cc

i
≤ 1.0 Safety 40 ≤ Ef

i < 80 Moderate ecological risk 150 ≤ RI < 300 Moderate ecological risk
1.0 < Cc

i
≤ 2.0 Slight contamination 80 ≤ Ef

i < 160 High ecological risk 300 ≤ RI <600 High ecological risk
2.0 < Cc

i
≤ 3.0 Moderated contamination 160 ≤ Ef

i < 320 Heavy ecological risk RI ≥ 600 Heavy ecological risk
Cc

i > 3.0 Heavy contamination Ef
i
≥ 320 Extremely ecological risk

RESULTS
Soil properties
Soil properties (e.g., soil pH and soil particle distribution) are the influencing factors that
regulate the concentrations of HMs in natural soils (Wang & Zhang, 2007; Zhang et al.,
2018). The variations of soil properties in all profiles are summarized in Table 4. The values
of soil pH T1 profile: 7.1–7.9, T2 profile: 4.8–5.2 and T3 profile: 6.3–7.0) in the three
profiles have been reported by Han & Xu (2021). Soil silt particle accounted for the largest
portion (mean: 85.87% in T1profile; 75.12% in T2 profile; 85.25% in T3 profile), and the
second largest was clay (mean: 12.96% in T1profile; 15.50% in T2 profile; 12.09% in T3
profile) in all profiles (Han & Xu, 2021). The contents of soil SOC in three profiles ranged
from 0.38% to 4.2% in T1 profile, 0.51% to 1.7% in T2 profile and 0.76% to 10.8% in T3
profile.

HMs in the soil profiles
The vertical distributions of the six HMs (Mn, Ni, Cr, Pb, Cd and Mo) in the three soil
profiles under different land-use types are presented in Fig. 2, and the concentration data
are shown in Table 4. The concentrations of all HMs in Yinjiang County were higher
than those in the upper continental crust but lower than the values from the Draft soil
screening guidance reported by the EPA (OSWER 1993; Rudnick & Gao, 2003). Most of
the concentrations of HMs are lower than the average soils of Guizhou Province (China
Environmental Monitoring Station, CEMS)(1990). The high geological background values
of HMs may be related to the regional geochemistry and the endogenous influence of the
pedogenesis process in the GuizhouKarst area (Chen et al., 2019). A large amount of HMs is
released into soils during the weathering of carbonate rocks, causing HMs ‘‘concentrated’’
in soil (Wu et al., 2020). The concentrations of metals in all profiles decreased in the
following order: Mn (400.43 mg/kg) > Cr (57.28 mg/kg) > Ni (35.85 mg/kg) > Pb (25.34
mg/kg) > Mo (1.87 mg/kg) > Cd (0.33 mg/kg). The concentrations of most HMs in the T1
profile under secondary forest were the highest in the three profiles. The concentrations of
most HMs tended to be similar in the bottommost soil

Indexes of ecological risks assessment
Based on the calculation, the EF values of most HMs in soils from three profiles were less
than 2. However, the EF values of Ni ranged from 2.16 to 3.90 in the T1 profile and from
1.89 to 2.86 in the T3 profile. The EF values of Pb were greater than 2 in more than one
third of the T1 profile, while the EF > 2 was found in the bedrock. Except the sample at
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Table 4 Soil properties and HMs concentrations (mg/kg) in soil samples of the three profiles. The data of soil pH and soil particle proportion
were reported by Han & Xu, (2021).

Profiles Depth
(cm)

pH SOC
(%)

Clay
(%)

Silt
(%)

Sand
(%)

Cr Mn Mo Ni Pb Cd

0 7.2 4.22 13.58 83.97 2.45 79.75 683.8 2.92 41.47 31.73 0.83
5 7.7 1.73 14.34 84.31 1.35 81.66 642.6 3.12 40.38 28.81 0.70
10 7.7 1.63 13.38 84.74 1.88 84.42 694.6 3.52 40.47 30.24 0.69
15 7.7 1.27 14.68 84.34 0.98 76.58 668.9 2.78 37.73 27.59 0.46
20 7.7 0.85 12.92 85.79 1.29 80.77 626.0 2.17 39.51 28.64 0.35
30 7.7 0.75 14.41 84.46 1.13 74.99 606.8 2.17 38.23 28.16 0.34
40 7.9 0.76 15.41 83.92 0.67 73.59 583.5 1.97 40.42 28.69 0.33
50 7.9 0.94 13.99 85.07 0.94 61.94 557.6 1.67 34.36 24.19 0.32
60 7.8 0.71 14.09 84.93 0.99 62.86 647.6 1.86 41.48 29.06 0.33
70 7.5 0.71 15.99 83.30 0.72 50.45 447.6 1.95 41.57 29.70 0.34
80 7.7 0.48 14.55 84.82 0.63 55.69 397.5 1.77 40.63 28.23 0.28
90 7.5 0.41 12.38 86.70 0.92 54.19 342.9 2.24 47.32 28.43 0.24
100 7.3 0.46 12.60 86.54 0.86 59.71 395.2 2.02 46.24 28.56 0.27
110 7.3 0.39 12.66 85.79 1.55 56.82 417.2 1.60 41.61 27.37 0.29
120 7.2 0.38 11.83 87.65 0.52 58.06 454.1 1.67 44.05 29.20 0.31
130 7.1 0.40 11.00 87.90 1.09 57.14 433.5 1.71 48.48 29.44 0.31
140 7.1 0.60 10.56 88.42 1.02 67.33 475.9 2.23 55.50 33.62 0.37
150 7.2 0.47 9.07 88.96 1.97 63.65 507.8 2.28 54.06 34.85 0.34

Secondary
forest
(T1)

160 7.3 0.52 8.71 89.88 1.41 59.29 368.9 2.04 49.50 32.28 0.32

Bedrock 26.57 26.57 85.20 1.14 12.16 8.10
0 4.8 1.77 10.12 75.46 14.43 59.05 298.8 1.37 31.21 29.60 0.45
5 4.8 0.70 15.16 72.77 12.08 54.28 258.2 1.05 30.93 25.53 0.31
10 4.9 0.70 14.05 75.12 10.83 53.73 283.9 1.04 28.91 25.51 0.30
15 4.8 0.59 12.94 68.65 18.42 46.58 360.5 0.93 29.21 25.79 0.29
20 5.0 0.58 14.10 75.28 10.63 51.29 331.9 0.91 28.39 25.05 0.26
30 5.0 0.57 14.30 75.84 9.87 50.18 320.1 0.83 26.98 24.06 0.22
40 5.1 0.57 16.12 75.86 8.02 49.89 328.3 0.83 27.69 24.00 0.23
50 5.0 0.55 16.26 75.49 8.25 49.81 323.5 0.73 27.59 22.32 0.21
60 5.1 0.57 17.90 74.49 7.61 44.70 311.7 0.74 26.07 22.76 0.22
70 4.8 0.68 16.23 78.19 5.58 49.36 343.0 0.82 27.43 23.08 0.21
80 4.8 0.73 17.04 77.30 5.66 53.41 314.4 0.81 26.88 23.59 0.19
90 4.9 0.66 17.40 78.42 4.18 57.03 331.8 0.82 29.54 23.79 0.18
100 4.9 0.83 16.37 79.63 4.00 49.92 315.8 0.84 26.71 22.94 0.21
110 5.2 0.51 14.74 73.31 11.95 56.80 370.9 0.79 39.10 34.42 0.23
120 5.1 0.53 17.82 73.61 8.57 61.58 778.4 0.79 42.00 31.85 0.19

Abandoned
cropland
(T2)

130 5.1 0.53 17.47 72.50 10.03 54.55 527.2 0.77 42.67 30.06 0.19
0 10.82 44.23 224.2 2.44 22.86 22.68 0.54
5 6.3 7.07 10.45 85.99 3.56 41.27 208.6 2.48 24.51 20.71 0.44
10 6.3 4.82 10.79 85.93 3.28 42.59 234.3 2.65 26.01 21.34 0.43
15 6.4 3.91 12.16 85.10 2.75 39.97 164.6 2.05 20.63 14.80 0.25

(continued on next page)
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Table 4 (continued)

Profiles Depth
(cm)

pH SOC
(%)

Clay
(%)

Silt
(%)

Sand
(%)

Cr Mn Mo Ni Pb Cd

20 6.5 2.72 12.13 85.56 2.31 45.64 194.7 2.43 24.39 3.92 0.33
30 6.6 1.90 13.33 84.35 2.32 47.41 215.7 3.02 29.76 17.58 0.34
40 6.8 1.06 13.30 84.24 2.46 53.08 247.5 3.49 35.38 12.55 0.28
50 7.0 0.84 12.87 85.26 1.87 52.80 236.7 3.84 37.69 19.47 0.26
60 7.0 0.76 11.36 86.96 1.68 51.78 258.8 3.24 40.40 20.11 0.24

Shrubland
(T3)

70 7.0 0.90 12.39 83.90 3.71 57.70 283.8 2.55 37.07 14.14 0.25

Bedrock 26.49 62.69 0.60 9.20 4.17 0.06

the 40 cm depth in the T3 profile, the Igeo values of all HMs in soils were lower than 0.
Excluding for the Cc

i values of Mo, Ni and Cd in the T1 profile and Mo in the T3 profile
were greater than 1, the Cc

i values of other HMs in soils were less than 1. Moreover, most
soils showed that values of Cc

i were less than 0.7, especially in the T2 profile. The RI values
reveal that Cr, Mn, Ni, Pb and Cd were of slight ecological risk (RI < 60) in the three
profiles.

DISCUSSION
Effects of soil particles on HMs
Generally, HMs concentrations are significantly correlated with soil particle distribution
(Probst et al., 2003). The higher concentrations of HMs in soil are always related to a
larger proportion of clay because of the larger specific surface, which tend to increase the
absorption capacity of HMs (Jaradat et al., 2009). Although the clay contents in the T2
profile was relatively high, the study area soils were silt loamy texture and the clay contents
were lower than 20% in three profiles. The adsorption capacity for the HMs is relatively
weak.

The phenomenon of the rapid vertical migration of water during irrigation and rainfall
was always found in cropland due to higher heterogeneity in cropland soil properties
such as preferential flows (Brusseau & Rao, 1990). Clay is an important carrier of HMs.
Thus, the preferential flow also promotes the translocation of adsorbed HMs by affecting
the migration of fine particles (Zhang, 2005). In the process of transporting the solution
by the preferential flow in soil profile, the chemical composition is stable (Zhang et al.,
2016a; Zhang et al., 2016b). In recent years, several studies have found that heavy metals
migrate rapidly from the soil surface to the deep soils through the soil preferential flow
(Knechtenhofer et al., 2003; Zhang et al., 2016a; Zhang et al., 2016b). The preferential flow
might affect the vertical migration of HMs in the T2 profile. In contrast, some studies
suggest that the contribution of preferential flow in HMsmigration is limited (Allaire et al.,
2002; Zhang et al., 2016b).We also observed weak correlation between the size distributions
of soil particles and HMs concentrations in this study. It can be inferred that the effect of
soil particles is limited on the distribution of HMs in the study soils.
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Figure 2 Vertical variation of HMs in the three soil profiles, including Cr (A), Mn (B), Mo (C), Ni (D),
Pb (E), and Cd (F).
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Effects of soil organic carbon on HMs
SOC is one of the most important properties affecting HMs as the humus could easily
coordinate or chelate withHMs by some functional groups (Dijkstra, 1998). The correlation
analysis between SOC and HMs in 0–30 cm soil layers are presented in Fig. 3. Many studies
indicated that the concentrations of HMs show a positive correlation with SOC in the
various types of soils including in karst area (Balabane et al., 1999; Mazurek et al., 2017;
Zhang et al., 2019). HMs can easily form stable compounds with the soil organic matter
(SOM) (Mazurek et al., 2017). For example, there was strong correlations between SOC
and Pb, Cd in the T1 profile (Figs. 3E, 3F), Cr, Mo, Pb, Cd in the T2 profile (Figs. 3A, 3C,
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Figure 3 Correlation analysis of Cr (A), Mn (B), Mo (C), Ni (D), Pb (E), and Cd (F) with soil SOC in 0–
30 cm of the three profiles. Asterisks: ** represents p< 0. 01; * represents p< 0.05.

Full-size DOI: 10.7717/peerj.12716/fig-3

3E, 3F), and Cd in T3 profile (Fig. 3F). The contents of SOC in shrubland are possibly
enriched in the surface soil, and decrease obviously with the depth in the surface soil due
to grazing (Hiernaux et al., 1999). This phenomenon was also found in T3 profile, and
the highest content of SOC was found in T3 profile. However, the distribution of SOC
contents in the T2 profile is almost constant. And the contents of HMs almost have no
fluctuations which are similar with the distribution of SOC in T2 profile, and present the
great correlation between the contents of HMs and SOC. Generally, the content of SOC
recovering difficultly in the abandoned cropland for the short term (Liu, Han & Li, 2021).
The concentrations of HMs almost fluctuated moderately in the T2 profile (abandoned
cropland), which may have resulted from the distribution of SOC.

The HMs can be strongly complexed with the organic matter because of the negative
charges on its surface (Marks et al., 2015). The chelates formed by HMs and organic
compounds may increase the availability of metals to plants or reduce their bioavailability
to regulate the activities of HMs in soil (Dijkstra, 1998; Zhang et al., 2018). The absorption
capacity of SOC to Cd, Mo and Pb is relatively large, thus may reduce the migration and
increase the accumulation in soil (Dumat et al., 2006). However, most of the complexes
formed by organic matter and Ni are humic acid, which will reduce the content of Ni in
soil (Chimitdorzhieva, Nimbueva & Bodeeva, 2012). Therefore, the effects of SOC on HMs
distribution in soils under different land-use types are mixed. There are multiple factors
acting on the distribution of HMs. While the SOC has an important effect, it may not be
the dominant factor.

Effects of soil pH on HMs
The concentrations of the six HMs were positively correlated with soil pH, and their
correlation analysis is presented in Fig. 4. In the natural environment, the geochemical
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behaviors of trace elements are dominantly affected by pH (Yang et al., 2018). The changes
of soil pHwill directly or indirectly affect the soil adsorption ofHMs by affecting the stability
of complexes, oxide and organic material surface negative charge, hydrolysis of HM ions,
the formation of ion pairs, etc. (Rieuwerts et al., 1998; Sauvé, McBride & Hendershot, 1997).
The negative charge on the organicmatter and clayminerals surface is likely to increase with
a high pH, which further enhances the adsorption capacity and the complexes stability of
HMs (Markiewicz-Patkowska, Hursthouse & Przybyla-Kij, 2005; Semerjian & Ayoub, 2003).
In addition, HMs will enrich in soil under high pH environment because of decreasing
metal availability (Sparks, 2003). Generally, the distribution of HMs is mainly controlled
by adsorption reaction under acidic conditions, while the precipitation reaction of HMs
and hydroxides or carbonate account for a dominant proportion in medium-alkaline
conditions (Ottosen, Hansen & Jensen, 2009). The relationship between Cr, Mo, Mn, Ni
and Cd and soil pH presented similar relation under three soil profiles. With the lower pH
and SOC content, the adsorption capacity of soil to HMs is lower in the T2 profile. The
soil pH values and concentrations of HMs in the T1 profile are the highest. The soil pH
possibly plays an important role in regulating the concentrations of HMs in the T1 profile.
It should be considered that the relationship of Pb and soil particle distribution, SOC, soil
pH is weak. Result showed that the Pb were slightly enriched in the topsoil (0–5 cm) of
three profiles, which may be related to the atmospheric deposition or fertilizer usage (Kong
et al., 2018).

Soil contamination assessment
The enrichment factors (EF) of HMs in the soils are quantified and displayed in Fig. 5. The
mean EF values of most HMs in soils were less than 2, indicating that the enrichment of
HMs in most soils was negligible. It is estimated that the characteristic of the geological
material may regulate the HMs concentrations, and non-natural sources may contribute
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Figure 5 Variation of each EFHMs value in the soils, including T1 profile (A), T2 profile (B), T3 profile
(C).

Full-size DOI: 10.7717/peerj.12716/fig-5

less. Only the EF values of all HMs in the soils of the T2 profile were less than 2. The
agricultural activities may be limited to the accumulation of HMs in the T2 profile soil.
The higher EF values of Ni in the T1 and T3 profiles indicate that the element Ni was
moderately enriched in the T1 and T3 profiles. The Ni concentrations in most soils are
close to the background value of Guizhou Province. The difference among the three
profiles may be related to the SOC. The study shows that the content of organic matter
in abandoned farmland is significantly lower than that in normal vegetation-covered soil,
furthermore, the content of SOC in soils will not return to the normal level in a short time
after land abandoned (Liu, Han & Li, 2021). The EF higher values of Pb in the T1 profile
suggest that the Pb of T1 profile are derived from weathering. The EF values of Pb greater
than 2 was found in the shallow soil (0–5 cm) of the T3 profile, which may be caused
by atmospheric deposition (Zhang et al., 2016a). Furthermore, the shallow soil is rich in
organic matter which has better adsorption of Pb (Harter & Naidu, 1995).

The mean values of the geo-accumulation Index (Igeo) of the six HMs at 0–10 cm, 10–20
cm, 20–30 cm, 30–50 cm depths under diverse land-uses are presented in Fig. 6. The Igeo
values of HMs in soils were lower than 0 inmost layers, indicating that the three soil profiles
were possibly not polluted by anthropogenic source (Muller, 1969). However, comparing
the distributions of HMs concentrations in the three profiles, the agricultural activities at
the T2 profile and the goats’ grazing activities near the T3 profile show limited impact on
the HMs in soil.

Ecological risk assessment
The calculated contaminated factor (Cc

i) values of six HMs in the Yinjiang County are
presented in Fig. 7. According to the classification of Cc

i values by Qiu et al. (2016), the
pollution degree of HMs in the research profile is only slight pollution at most, such as Ni
in the T1 profile (the highest value: 1.42) andMo in the T3 profile (the highest value: 1.60).
Since the secondary forest has no disturbance from human activities, it can be speculated
that the higher Ni concentrations in the T1 profile may correspond to natural factors such
as the weathering of the parent rocks (Bonifacio, Falsone & Piazza, 2010). The pollution
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Figure 6 The Igeo values of HMs in three profiles at the depth of the 0–10 cm (A), 10–20 cm (B), 20–30
cm (C), and 30–50 cm (D).

Full-size DOI: 10.7717/peerj.12716/fig-6

Figure 7 The contaminated factor of six HMs in the three profiles, including T1 profile (A), T2 profile
(B), T3 profile (C).

Full-size DOI: 10.7717/peerj.12716/fig-7

phenomenon that the high Ni concentrations in soils possibly resulted from the high
background value of bedrock.

The enrichment of Mo in the surface layer of the T1 profile under secondary forest
may be due to the plant uptake of Mo from subsurface soils (Brun et al., 2008) and return
into surface soils through the plant litter fall (Marks et al., 2015). As the only profile where
the Cc

i values of almost all soils are greater than 1, the T3 profile may have received
exogenous HMs input. The T3 profile has experienced intensive human activity (5-year
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Figure 8 The potential ecological risks index of HMs in the three profiles, including T1 profile (A), T2
profile (B), T3 profile (C).

Full-size DOI: 10.7717/peerj.12716/fig-8

grazing period) in recent years. Mo is often added into the feed, andmost ofMo ingested by
animals will be excreted with feces (Gooneratne et al., 1989; Ivan & Veira, 1985). Therefore,
the animal feces may have more Mo which may migrate into deeper layers as a result of
leaching processes. The result showed that only two Cc

i values of Ni are higher than 1
in the T2 profile (the value in 110–120 cm: 1.07, the value in 120–130 cm: 1.09), which
might be attributed to the leaching and accumulation (Domergue & Védy, 1992). It can be
determined that there are no exogenous inputs of HMs in the T2 profile. The Cc

i values of
Mo and Cd at the soil layer of 0–15 cm depth in the T1 profile were higher than 1, which
might be derived from atmospheric deposition (Zhang et al., 2016a).

The comprehensive potential ecological risk index (RI) and the Efi value of each HMs
are presented in Fig. 8. Based on the mean values of Efi, the values of HMs follow the
sequence: Cd > Ni > Pb > Cr > Mn in theT1 and T3 profiles, and Ni > Pb > Cd > Cr > Mn
in the profile T2. According to the classification of RI fromHakanson (1980), the ecological
risk in Yinjiang County soils is slight (RI < 60). Therefore, the overall quality of research
profiles in the Yinjiang County is relatively safe. The management of land-use types in the
study area is reasonable and the soil potential ecological risk is low.

CONCLUSIONS
The HMs (Mn, Ni, Cr, Pb, Cd and Mo) concentrations were higher in the secondary
forest land and those of abandoned cropland were higher than shrubland except Mo. The
dominant influence factor of the distributions of most HMs may be the soil pH and SOC.
The EF values of most samples were lower than 2 and the Igeo values were lower than 0
in the three profiles. This possibly indicates that the main source of HMs in study area is
parent rocks instead of human activities. Results from PERI on the pollution degree and
the potential ecological risk are also revealed that the quality of soils in the Yinjiang County
is relatively safe. However, there is no great ecological risk under reasonable management.
Themultiple geographic analyses (Igeo, Cc

i and RI) of these HMs denoted the low ecological
risk of the three profiles in the Yinjiang County. In addition, through the regulation of soil
pH and the content of SOC, the content of HMs in soil can be controlled.
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