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Bacillus spp. are the most prevalent group of bacteria in nature. Their prevalence
depends upon multiple factors, namely, sporulation, antagonism, and production of
secondary metabolites. The development of an eco-friendly approach to cope with
edible crops diseases is very substantial for humans. In the present study, 658 isolates
were obtained from wheat grown in the wheat rice cropping system and tested for
their antagonistic activity against four wheat root rot pathogens, namely, Fusarium
oxysporum, Fusarium moniliforme, Macrophomina phaseolina, and Rhizoctonia solani.
Out of 658, 106 isolates were found antagonistic to either single or multiple fungi.
Out of 106 antagonistic bacteria, 62 (23%) were rhizospheric, 28 (14%) were root
endospheric, and 16 (9%) were leaf endospheric. Based on mean inhibition against
all fungi, the bacterial strains SM-39 and SM-93 showed maximum antagonistic activity.
The 16S rRNA gene analysis revealed that most of the antagonistic bacteria exhibiting
≥48% antagonism were Bacillus spp. (98%), except two were Klebsiella spp. (2%). The
bacterial strains exhibited phylogenetic lineage with the type strains of the respective
genus based on the 16S rRNA gene sequences. In the net house experiment, Bacillus
velezensis (SM-39) and Bacillus cabrialesii (SM-93) significantly suppressed Fusarium
root rot severity in wheat (42–62%). Plants treated with these strains had lower
electrolytic leakage (29–36%), as compared to untreated (44%). Relative water content
was much higher (46–58%) for plants inoculated with these strains. These antagonistic
strains also considerably colonized the wheat rhizosphere with a cell population of 5.8–
6.9.log CFU/g of soil. The rhizosphere of wheat grown in the wheat-rice cropping system
could be the potential habitat of effective biocontrol agents.

Keywords: Bacillus spp., cropping system, prevalence, root rot, wheat-rice

INTRODUCTION

Phytopathogenic fungi affect the field crops adversely and pose a serious threat to agriculture. They
not only decrease the crop yield but also deteriorate their quality. They cause destructive damage to
crops, leading to economic losses of 1 billion dollars globally (Volova et al., 2018). Among various
pathogens, root rot fungi such as Macrophomina phaseolina, Fusarium oxysporum, Fusarium
moniliforme, and Rhizoctonia solani are the most devastating pathogens of cereals including wheat
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(Islam et al., 2013). Their infection coupled with the prolonged
drought conditions poses a serious threat to global food security
(Fira et al., 2018).

Biological control of phytopathogens using plant growth-
promoting rhizobacteria (PGPR) is an eco-friendly strategy
(Parry et al., 2016; Dangi et al., 2017; Khanna et al., 2019a).
A plethora of literature is available on the activity of PGPR
(Khanna et al., 2019b; Sharma et al., 2020) but their commercial
application is still limited. The factors responsible for their
commercial limitation include lack of consistent field efficacy and
poor shelf life (Valente et al., 2020).

The field performance of PGPR is typically inconsistent
because of sub-optimal rhizosphere colonization and
promiscuous host-specificity (Martiny et al., 2006). The
higher persistence of certain microbes in the rhizosphere is a
key factor that determines their consistent efficacy. Sometimes,
the efficient rhizobacteria lose their efficacy due to competition
with the soil microbiota. The antagonistic potential of microbes
plays an important role in determining the spatial structuring
of bacterial communities. This has also been formerly verified
in different bacterial communities such as endophytic bacteria,
whose antagonism has been described as one of the reasons for
structuring the community within different plant compartments
(Chiellini et al., 2019).

Rhizobacteria-host adaptation is a complex phenomenon and
is regulated by multiple factors including bacterial type, host
genotype, and rhizosphere environment (Brader et al., 2014). As
the rhizobacteria are recognized by a certain host, crosstalk of the
signaling molecules is initiated (Verma et al., 2021). The signaling
also includes the chemotactic movements of microbes regulated
by the root exudates of plants (Abid et al., 2018). The occurrence
of certain bacterial communities is highly influenced by biotic
and abiotic factors. In agriculture niches/habitats, various cultural
practices like irrigation, fertilization, pathogen infestation, and
cropping pattern highly influence the diversity and activity of the
microbes inhabiting certain rhizosphere.

Wheat (Triticum aestivum) being a staple food is grown
worldwide under different cropping systems such as fallow-
wheat, wheat-maize, and wheat-rice (Koondhar et al., 2018).
Wheat-rice is the most promising cropping pattern as it
involves the rotation of economically important crops. The
bacterial communities of multiple cropping systems have been
reported as diverse than that of mono-cropping systems
(Bhattacharyya and Jha, 2012).

Plant growth-promoting rhizobacteria belong to diverse
genera such as Arthrobacter, Azospirillum, Bacillus, Burkholderia,
Chromobacterium, Caulobacter, Erwinia, Enterobacter,
Flavobacterium, Pseudomonas, and Klebsiella. The distribution
of rhizobacterial communities varies with the host species,
genotype, growth stage, location, and growing practices (Hakim
et al., 2018). Although various studies have been conducted
to know the diversity of rhizospheric bacteria using culture-
dependent and independent techniques (Qaisrani et al., 2019),
less attention has been paid to the prevalence of antagonistic
bacteria in the rhizosphere of crops grown at the commercial
scale in the specific cropping system. Based on these facts, this
study aimed to recruit the antagonistic bacteria effective against

wheat root rot and identify the most prevalent antagonistic
genera associated with the wheat grown in the wheat-rice
cropping system.

MATERIALS AND METHODS

Survey and Sampling
A survey was conducted to identify the major areas practicing the
wheat-rice cropping system in Punjab, Pakistan. Representative
districts, namely, Gujranwala, Gujrat, Sialkot, Lahore, Kasur,
Sheikhupura, and Nankana Sahib, within these areas were
selected for sampling. Among each district, two types of zones
were identified based on their mode of irrigation, i.e., canal and
tube well. Two to three fields were randomly identified in a radius
of 2 km of the respective zone. Three to four plants (healthy and
diseased) with variable phenotypes were sampled randomly from
different corners of the field. The plants were generally uprooted
manually. However, a mini spade (6′′× 9′′) with a 1-m handle was
used to uproot the plants from moisture deficient soil to minimize
the risk of root damage. The spade was surface sterilized with 70%
ethanol before using it on the other samples. The uprooted plants
were mixed to make the representative sample of each category.
The representative samples were tagged, placed in paper bags,
brought to the laboratory at 4◦C, and processed immediately.

Rhizosphere Soil and Physiochemical
Analysis
Rhizospheric soil was carefully removed from the root surfaces
by vigorously shaking on sterilized aluminum foil. The soil was
analyzed for different physiochemical parameters such as organic
matter, electrical conductivity, pH, total nitrogen, phosphorous,
potassium, sodium, and sodium absorption ratio (SAR) at Fatima
Sugar Mills Limited, Kot Addu, Punjab, Pakistan.

Isolation of Bacteria
The bacterial isolates were obtained from the root rhizosphere,
root, and leaf endosphere of plants by the serial dilution method
(Ullah et al., 2020; Riaz et al., 2021). For endophytic isolation,
the roots/leaves were washed with tap water to remove surface
impurities and surface sterilized with 0.1% mercuric chloride
(HgCl2) (Rais et al., 2016). Briefly, the plant tissues were dipped
in solution (0.1% HgCl2) for 1–2 min, washed twice with sterile
distilled water, dried, and crushed in a sterilized mortar pestle.

The rhizosphere soil or tissue homogenate (1 g) was
suspended in 9 mL of sterile saline (0.9% w/v) and diluted serially
(10−1–10−8). The bacterial colonies were obtained by spreading
each dilution (100 µL) on Luria-Bertani (LB) agar and incubating
at 37 ± 2◦C overnight. The bacterial colonies appearing on
agar were differentiated based on their morphology like shape,
size, margins, and elevations. Different isolates were sub-cultured
and preserved in 20% glycerol at −0 ± 2◦C for future studies
(Rais et al., 2016).

Fungal Antagonism
Antagonistic activity of bacteria was assessed against wheat
root rot fungi such as F. oxysporum, F. moniliforme, M.
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TABLE 1 | Physiochemical parameters of soil collected from wheat rhizosphere at various locations.

Location Irrigation source pH EC(ds/m) Nitrogen (%) Phosphorus (ppm) Potassium (ppm) Organic matter (%) Sodium (ppm) SAR

Gujranwala Tube well 8.2 1.8 0.04 10.9 170 0.71 183 2.8

Gujranwala Canal 7.8 1.0 0.06 12.2 205 0.84 146 2.1

Gujrat Tube well 7.9 1.5 0.04 11.5 212 0.77 220 3.1

Gujrat Canal 7.6 1.2 0.06 12.9 187 0.89 201 2.3

Sialkot Tube well 8.2 1.4 0.03 11.5 225 0.85 178 2.7

Sialkot Canal 7.5 1.2 0.05 13.6 210 0.95 170 2.5

Lahore Tube well 7.8 2.1 0.04 10.6 185 0.82 178 2.6

Lahore Canal 7.2 1.3 0.07 12.6 210 0.91 152 2.0

Kasur Tube well 8 1.5 0.04 12.2 208 0.83 230 2.8

Kasur Canal 7.5 1.2 0.05 13.2 228 0.95 214 2.3

Sheikhupura Tube well 8 1.3 0.03 11.6 190 0.88 190 2.8

Sheikhupura Canal 7.2 1.0 0.05 13.5 225 0.97 175 2.5

Nankana Sahib Tube well 8 2.2 0.04 12.2 208 0.86 225 2.9

Nankana Sahib Canal 7.6 1.2 0.06 13.8 220 0.91 195 2.4

EC, electrical conductivity; ppm, parts per million; and SAR, sodium adsorption ratio.

FIGURE 1 | Venn diagram representing the number of antagonists against different root rot fungi. F, Fusarium; R, Rhizoctonia; and M, Macrophomina.

phaseolina, and R. solani. Pure fungal cultures were obtained
from Applied Microbiology and Biotechnology Laboratory,
COMSATS University, Islamabad, Pakistan. A dual culture assay
was performed as described in earlier studies (Ullah et al., 2020).
Briefly, 5 mm mycelium plug of each fungus (5–7 days old)
was kept at the center of the plate containing potato dextrose
agar (PDA) and freshly grown bacteria were inoculated at equal
distances from each fungus. Sterilized LB broth was used as a
control. The plates were incubated at 28 ± 2◦C and observed for
zone inhibition until the 7th day. The percentage inhibition was
calculated by the following formula.

Percent Inhibition = [(C− T) /C × 100)]

where C, mycelium diameter of fungus taken as control; T,
mycelium diameter of fungus treated with bacteria.

Molecular Identification
The antagonistic bacteria were identified by 16S rRNA gene
analysis. Genomic DNA was extracted by CTAB method (Moore
et al., 1999). The extracted DNA was qualitatively analyzed on
agarose gel (1% W/V) pre-stained with ethidium bromide and
electrophoresed in 1× TBE buffer at 100 V for 30–40 min.

DNA bands were visualized in the Gel documentation system
(Biometra, Germany) and their quality was compared with that
of the DNA ladder (Thermo Scientific). The 16S rRNA gene was
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FIGURE 2 | Antagonistic bacteria with variable antagonistic potential (29–76%) against root rot fungi. F, Fusarium; R, Rhizoctonia; and M, Macrophomina.

amplified by using the primers P1 and P6 (Tan et al., 1997).
A 50 µL PCR reaction consisted of PCR water (31 µL), 5 µL Taq
buffer (10x), 4 µL MgCl2 (25 mM), 3 µL dNTPs (10 mM), 2 µL
of each primer (100 pM), 0.5 µL Taq polymerase (500 U), and
2.5 µL template DNA (25 ng/µL). The reaction was amplified in
a thermal cycler (Applied Biosystems, United States) using the
cycling conditions, namely, initial denaturation (95◦C for 5 min),
25 cycles x (denaturation at 95◦C for 1 min, annealing at 56◦C
for 1 min, extension at 72◦C for 1.5 min) and final extension
at 72◦C for 5 min. The PCR products were visualized by gel
electrophoresis (as described above) and purified by using PCR
purification kit (Thermo Scientific).

Sequencing, Nucleotide Accession
Number, and Phylogenetic Analysis
The purified PCR products of 16S rRNA gene were sequenced
by Macrogen Incorporation, South Korea, and analyzed for
homology with that of the closest type strain available at EZ
taxon1 (Kumar et al., 2016). The 16S rRNA gene sequence
of each strain was submitted to the gene bank2 under its
respective accession number. For phylogenetic analysis, 16S
rRNA genes of respective type strains were accessed from EZ
taxon.3 These sequences were oriented in the same direction,
i.e., 5′-3′, saved in FASTA format and uploaded on MEGA

1https://www.ezbiocloud.net/
2https://submit.ncbi.nlm.nih.gov/
3https://www.ezbiocloud.net/

X software (Molecular Evolutionary Genetics Analysis X).
The sequences were aligned and trimmed to the proper
length to get conserved regions. These trimmed sequences
were then converted into MEGA X format and saved for
phylogenetic tree construction. The phylogeny was created
by using the neighbor joining phylogenetic tree option in
MEGA X software (Afzal et al., 2019). Evolutionary distances
were calculated by using the maximum composite likelihood
model and were in the units of the number of base
substitutions per site.

In planta Biocontrol Activity
Bio control efficacy of the Bacillus spp., i.e., Bacillus velezensis
and Bacillus cabrialesii showing the best in vitro inhibition (60–
63%) against root rot pathogens was assessed on wheat against
Fusarium root rot. The experiment was carried out at COMSATS
University, Islamabad, Pakistan (33.65◦N, 73.16◦) in the net
house conditions during the natural growing season of wheat, i.e.,
November–December (2019–2020) (humidity = 65% and average
temperature = 15.8◦C). The seeds of wheat varieties, i.e., Galaxy
and Sahar were obtained from National Agriculture Research
Centre (NARC), Islamabad, Pakistan. There were five treatments,
with three replications per treatment, namely, untreated plants
(1), fungicide (Dimethomorph) (2), SM-39 (B. velezensis) (3),
SM-93 (B. cabrialesii) (4), and a consortium of SM-39, SM-
93 (5). The experiment was repeated twice during the years
2019–2020.
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FIGURE 3 | Principal component analysis (PCA) of antagonistic bacteria isolated from tube well/canal irrigated wheat crop. Variables of soil parameters, plant parts,
i.e., rhizosphere, root, and leaf endospheres are represented by base vectors. EC, electrical conductivity; SAR, sodium adsorption ratio; P, phosphorous; K,
potassium; Na, sodium; N, nitrogen; OM, organic matter; R, rhizosphere; LE, leaf endosphere; and RE, root endosphere.

The soil [clay loam, phosphorous (12–14 mg/kg), total
nitrogen (0.03–0.05%); organic matter (0.5–0.7%), and pH (7.6–
7.8)] was obtained from a wheat field, autoclaved twice, filled in
pots (17 cm × 21 cm), and fertilized with nitrogen (120 Kg/ha),
phosphorous (100 Kg/ha), and potassium (60 Kg/ha) (Ramzani
et al., 2016), (Ullah et al., 2020). The upper layer of soil (2–3
inches) was infested with the root rot pathogen F. moniliforme
(Jaber, 2018). The fungus was grown on PDA for 7 days at
30 ± 2◦C, scrapped with the spatula, and suspended in sterile
water. The spore suspension was mixed with the upper layer of
soil at the rate of 105 spores per g of soil.

The seeds were surface sterilized with 0.1% sodium hypo
chloride (NaClO), dressed with bacterial cell suspension
(4× 109 CFU/mL), carboxy methyl cellulose (1% w/v), fungicide
(Dimethomorph 90 g w/w) and sown in pots. Two plants were
maintained in each pot and five plants were included in each
replication. All the agronomic practices were followed as per
standard recommendations (Ullah et al., 2020).

Disease Assessment
The disease was examined on the 60th day of seed sowing. Fifteen
plants/treatment were randomly selected, uprooted manually,
and assessed for root rot disease on a scale (0–5), i.e., 0 = healthy

(0%), 1 = very slight browning (10–20%), 2 = slight to moderate
browning (20–40%), 3 = moderate (40–60%), 4 = severe (>60%),
and 5 = completely necrotic or dead (100%). Disease severity was
determined by using the formula as described by Wildermuth and
McNamara (1994).

Disease severity =
6 xf
n 6 f

× 100

where x is the value of disease score, n is the value of the highest
disease score, and f is the number of plants for each score.

Relative Water Content and Electrolytic Leakage
The relative water content of wheat leaves was determined as
described by Guerfel et al. (2009). The fresh leaves (4–5) per
replication were randomly selected, chopped, and pooled. The
fresh leaves (0.5 g) were soaked in 100 mL distilled water
at room temperature (27◦C) for 24 h to record their turgid
weight. Then, these leaves were kept at 70◦C in a dry oven until
the appearance of constant weight. Relative water content was
calculated according to the formula used by Riaz et al. (2021).

RWC (%) = FW− DW/TW− DW × 100
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FIGURE 4 | Distribution of percent antagonistic bacteria isolated from rhizosphere, root, and leaf endosphere of wheat irrigated with canal/tube well and grown in
wheat-rice cropping system at different locations. TWH, tube well healthy; TWD, tube well disease; CH, canal healthy; and CD, canal disease.

where FW, fresh weight; DW, dry weight; and TW,
turgid weight.

The electrolytic leakage of leaves was determined by the
method of Ekmekci and Terzioglu (2005). Briefly, the fresh
leaves were sliced and placed in deionized water (20 mL)
under dark conditions for 24 h to measure the initial electrical
conductivity (EC1) at room temperature with a conductivity
meter. The leaves were autoclaved to release all the electrolytes.
Final electrical conductivity (EC2) was measured at room
temperature. The electrolytic leakage was calculated by using the
following formula:

EL (%) = EC1/EC2 × 100.

Bacterial Colonization on Wheat Roots
The bacterial colonization potential on wheat roots was assessed
as described earlier (Ullah et al., 2020). Rhizospheric soil samples
from 15 plants per replication (uprooted for diseases assessment
as described in section “In planta Biocontrol Activity”) were
collected and pooled together to make composite samples. The
inoculated antagonistic bacteria were isolated by serial dilution
method and identified based on their colony morphology and
antagonism against respective fungi.

Statistical Analysis
The numeric data of repeated experiments were pooled and
analyzed on the statistical package Statistix 8.1. by applying
the analysis of variance (ANOVA). The mean among different
treatments were separated by Fisher’s least significant difference
(LSD) test at p ≤ 0.05. Pearson correlation was determined by
using the same statistical package. Venn diagram was constructed
by using origin 6.0. Principal component analysis (PCA) was
constructed by using software PRIMER 6 and PERMANOVA.

RESULTS

Soil Characteristics and Bacterial
Isolates
The soil texture was clay loam with organic matter (0.71–
0.97%), electrical conductivity (1.0–2.2 ds/m), pH (7.2–8.2), total
nitrogen (0.03–0.07%), phosphorous (10.9–13.8 ppm), potassium
(170–228 ppm), sodium (146–230 ppm), and SAR (2–3.1)
(Table 1). A total of 658 isolates were obtained from wheat grown
in rice-wheat cropping system of Punjab, Pakistan. Out of these
658 isolates, 271 were obtained from root rhizosphere, 202 from
root endosphere, and 185 from leaf endosphere, respectively.
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TABLE 2 | Identification of the antagonistic bacteria based on 16S rRNA gene analysis.

Identified strain Inhibition1 (%) Similarity2 (%) Accession no. Identified strain Inhibition1 (%) Similarity2 (%) Accession no.

B. subtilis SM-5 54 99.7 MT377871 B. subtilis SM-50 53 99.2 MT377891

B. paralicheniformis SM-6 49 96.7 MT377872 B. subtilis SM-53 50 98.4 MT377893

B. subtilis SM-7 56 99.9 MT377873 B. wiedmannii SM-54 52 98.4 MT377894

B. cereus SM-8 48 99.9 MT377874 B. paralicheniformis SM-61 52 98.5 MT967486

B. velezensis SM-10 56 99.6 MT377875 Klebsiella singaporensis SM-67 50 96.1 MT377896

B. velezensis SM-14 52 94.5 MT377876 K. singaporensis SM-69 51 96.1 MT377897

B. tequilensis SM-16 51 91.6 MT377877 B. velezensis SM-72 58 99.8 MT377898

B. halotolerans SM-19 51 99.4 MT377879 B. tequilensis SM-75 50 99.7 MT377899

B. velezensis SM-22 49 96.7 MT377880 B. subtilis SM-83 53 93.5 MT377901

B. subtilis SM-23 53 96.5 MT377881 B. halotolerans SM-84 53 96.1 MT967915

B. velezensis SM-24 57 73.6 MT974248 B. velezensis SM-90 59 99.1 MT377904

B. siamensis SM-25 54 74.9 MT956910 B. cabrialesii SM-93 63 98.1 MT377907

B. halotolerans SM-27 49 96.3 MT377882 B. megaterium SM-94 54 99.4 MT377908

B. halotolerans SM-29 57 99.4 MT377883 B. velezensis SM-95 54 99.3 MT377909

B. flexus SM-30 49 93.8 MT377884 B. altitudinis SM-97 56 99 MT377911

B. tequilensis SM-31 51 91.8 MT377885 B. subtilis SM-99 54 99.6 MT377912

B. subtilis SM-32 54 99.2 MT377886 B. cereus SM-100 49 99 MT377913

B. velezensis SM-39 67 99.6 MT377887 B. paramycoides SM-116 57 87.6 MT974234

B. subtilis SM-42 49 99.9 MT974228 B. paranthracis SM-121 52 98.4 MT377914

B. tequilensis SM-43 53 99.8 MT377888 B. altitudinis SM-122 57 99.93 MT377915

B. subtilis SM-49 55 99.7 MT377890 B. paramycoides SM-136 48 99.6 MT974247

B, Bacillus spp.
1Mean inhibition against four root rot pathogens, i.e., Fusarium moniliforme, Fusarium oxysporum, Macrophomina phaseolina, and Rhizoctonia solani.
2Similarity (%) of bacterial strains with closest EZ-taxon e-match.

Antagonism Against Wheat Root Rot
Pathogens
A total of 658 bacterial isolates associated with wheat root
rhizosphere, root endosphere, and leaf endosphere were
tested for their antagonistic activity against wheat root rot
fungi, namely, F. moniliforme, F. oxysporum, M. phaseolina,
and R. solani. Out of 658 bacterial isolates, 106 isolates were
found antagonistic to either single or multiple fungi, namely,
F. oxysporum, F. moniliforme, M. phaseolina, and R. solani
(Supplementary Table 1). Out of 106 antagonistic bacteria,
48 strains antagonized four fungi, namely, F. oxysporum, F.
moniliforme, M. phaseolina, and R. solani. Based on a group
of three test fungi, 22 strains antagonized M. phaseolina,
F. oxysporum, and R. solani. Three strains antagonized
F. oxysporum, F. moniliforme, and M. phaseolina, one strain
antagonized F. oxysporum, F. moniliforme, and R. solani, and one
strain antagonized F. moniliforme, M. phaseolina, and R. solani,
respectively. Seven strains antagonized two fungi, namely, R.
solani and F. oxysporum, five strains antagonized two fungi,
namely, F. moniliforme and R. solani. One strain antagonized
M. phaseolina and F. moniliforme and one strain antagonized
M. phaseolina and R. solani. Eight strains antagonized only
R. solani, four strains antagonized F. oxysporum, three strains
antagonized F. moniliforme and two strains antagonized only
M. phaseolina (Figure 1). R. solani was antagonized by a
maximum number of strains (93), followed by F. oxysporum
(85), M. phaseolina (78), and F. moniliforme (62), respectively.
The potential of antagonistic bacteria against each fungus was

highly variable (29–76%). In the case of R. solani, the maximum
number of strains (42) showed antagonism between 61 and
68%. The maximum number of strains (39 each) antagonized
F. oxysporum and M. phaseolina between 45 and 52%. While in
the case of F. moniliforme, the maximum number of strains (25)
showed antagonism between 37 and 44% (Figure 2).

Distribution of Antagonistic Bacteria
The distribution of antagonistic bacteria was variable in different
locations, plant health, irrigation source, and plant parts, i.e.,
rhizosphere, root, and leaf endospheres. Based on location,
highest antagonistic bacteria (29%) were found in Sheikhupura
followed by Sialkot (26%), Lahore (25%), Kasur (22%), Gujrat
(21%), and Gujranwala (20%), respectively. In the case of
irrigation source, the highest antagonism was found in canal
irrigated (3–29%), followed by tube well irrigated (3–20%)
(Figure 3). Healthy plants had higher antagonistic bacteria (12–
30%), followed by that of diseased plants (1–20%) (Figure 4).
The distribution of percent antagonistic bacteria in different
plant parts was also variable. The highest number of antagonistic
bacteria were observed in rhizosphere (23%), followed by that of
root (14%) and leaf endospheres (9%), respectively.

Identification and Phylogenetic Lineage
of Antagonistic Bacteria
Based on 16S rRNA gene analysis, the antagonistic bacteria
showing≥48% antagonism were identified as Bacillus spp. except
for the strain SM-67 and SM-69 which belonged to klebsiella spp.,
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FIGURE 5 | Phylogenetic lineages of antagonistic bacteria based on 16S rRNA gene. Tree leaves represent bacterial genus with accession numbers and likely top hit
strain, isolated in this study. Type strains downloaded from NCBI are represented with black dots (•).

respectively. The homology with type strains, identity, and 16S
rRNA accession number is given in Table 2. The phylogenetic
lineage based on 16S rRNA gene is given in Figure 5. The
optimal tree with the sum of branch length = 168.4 is shown in
Figure 5. Bacillus spp. strain SM-7 showed the highest bootstrap
value of 100. The percentage of replicated phylogenetic tree in
which the associated taxa are grouped in the bootstrap test (500
replicates) is shown next to the branches of the tree (Figure 5).
Type strains are represented with black dots in front of them,
while identified strains are represented with their code names.

Phylogenetic lineage was calculated based on the 16S rRNA
nucleotide sequences of different strains.

Biocontrol Efficacy of Rhizobacteria
Against Wheat Root Rot
Inoculated Bacillus spp. significantly reduced Fusarium root
rot severity in both wheat varieties, i.e., Sahar and Galaxy, as
compared to uninoculated. A significant disease suppression over
control was observed in the plants treated with consortium of
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FIGURE 6 | Effect of antagonistic bacteria on wheat challenged with F. moniliforme. (A) Root rot severity (%), (B) electrolytic leakage (%), (C) relative water content
(%), and (D) colonization of bacteria to wheat rhizosphere. The values are the mean of three replications and having different letters within the same bar are
significantly different from each other according to Fischer’s LSD test at p ≤ 0.05.

B. velezensis SM-39 and B. cabrialesii SM-93 (52–62%) followed
by that of B. velezensis SM-39 (49%) and B. cabrialesii SM-93
strain (42–49%) (Figure 6A). A similar trend in the performance
of all treatments was observed in electrolytic leakage and relative
water content (Figures 6B,C).

Root Colonization
Antagonistic strains B. velezensis (SM-39) and B. cabrialesii (SM-
93) considerably colonized the wheat roots either inoculated

individually or in consortium (Figure 6D). Maximum root
colonization was observed in B. velezensis treated plants
(6.6–9.7 log CFU/g of rhizospheric soil), followed by that
of B. cabrialesii (5.2–6.9 log CFU/g of rhizospheric soil) as
shown in Table 3. A significant correlation was observed
between the biochemical traits, root colonization, and
disease severity (Table 4). Wheat variety had a significant
effect on disease incidence and biochemical parameters
(Supplementary Table 2).
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TABLE 3 | Habitat characteristics and root colonization of the Bacillus spp.
exhibiting in planta biocontrol activity against wheat root rot.

Strain B. velezensis SM-39 B. cabrialesii SM-93

Location Gujranwala Lahore

Irrigation source Canal Tube well

Plant health Healthy Healthy

Plant part Rhizosphere Root endosphere

Root colonization 6.6–9.7 log CFU−1 5.2–6.9 log CFU−1

% inhibition 49 42

Plant health, plant health was determined based on phenotypic traits of wheat;
CFU/g, colony forming unit/g of rhizospheric soil; % inhibition, % suppression of
wheat root rot fungi.

TABLE 4 | Pearson correlations between disease severity, biochemical traits, and
root colonization of antagonistic bacteria.

Treatment EL (%) RWC (%) DS (%)

Sahar

RWC 0.7418

DS 0.8747* 0.3499

RC −0.3998 −0.2205 −0.5601

Galaxy

RWC 0.7471

DS 0.8989* 0.3968

RC −0.4016 −0.1466 −0.5661

EL, electrolytic leakage; RWC, relative water content; DS, disease severity; RC, root
colonization; and * = p ≤ 0.05.

DISCUSSION

Antagonistic bacteria inhibit phytopathogens to protect the
plants from various diseases (Schlemper et al., 2018). The
diversity of antagonistic bacteria in the root rhizosphere and
endosphere depends on various factors such as cropping system,
cultivar, different agricultural practices, and climatic conditions
(Na et al., 2019). In this study, antagonistic Bacillus spp. were
found to be the most prevalent in wheat grown in the wheat-rice
cropping system.

In wheat, rhizospheric isolates were found higher in number
as compared to that of root and leaf endophytes. The higher
rhizosphere population may be due to the rich nutrition of
the rhizosphere where the plant secretes numerous secondary
metabolites including the chemoattractants of the rhizobacteria
(Truyens et al., 2015). These results are also in accordance with
the earlier studies in which the root rhizosphere was considered
as the hub of microbes. The less endophytic population of
bacteria may be due to their inability to infiltrate the internal
plant tissues. Endophytic bacteria infiltrate the plant’s internal
tissues through active and passive mechanisms. The active
mechanism involves chemotaxis while the passive involves the
movement of bacteria through water flow from injured plant
tissues (Cha et al., 2016).

A higher proportion of the bacteria obtained from wheat
rhizosphere/endosphere was found to be antagonistic to
either one or more pathogens causing wheat root rot.
This distribution of antagonistic rhizobacteria in the wheat
rhizosphere/endosphere could be due to the disease-suppressive

soil of the wheat-rice cropping system (Hu et al., 2018).
Another reason behind the abundance of the antagonists
could be the specific bacterial community that had adapted
this habitat through their antagonistic behavior, which was
proved in our further findings, i.e., 16S rRNA identification.
The bacterial antagonism was found to be highly variable
and dependent on the type of pathogen. This change in
antagonistic properties of different bacterial strains is due to
their genetic makeup, production of secondary metabolites,
plant health, and competition with other soil microbes and
type of targeted pathogen (van der Voort et al., 2016).
The distribution of antagonistic bacteria was also affected
by different parameters such as crop locations, crop health,
irrigation source, and plant parts, i.e., rhizosphere, root, and leaf
endospheres. Antagonistic bacteria produce different secondary
metabolites such as antibiotics and as a result, inhibit various
phytopathogens. This antagonism could be due to competition
of nutrients by activating the defense mechanism of the host
plant and by the production of antifungal compounds, which
play an important role in the biocontrol of phytopathogens.
Antibiosis and competition are the main mechanisms through
which Bacillus spp. control different diseases (Cawoy et al., 2015).
Bacillus spp. produce different secondary metabolites such as
surfactin, iturin, fengycin, and bacillomycins (Yoon et al., 2017).

The 16S rRNA gene analysis and homology with that
of type strain available at EZ Bio cloud database revealed
that bacteria obtained from wheat-rice cropping system and
exhibiting significant antagonism were Bacillus spp. except for a
single strain of Pseudomonas spp. and two strains of Klebsiella
spp. The 16S rRNA gene sequence analysis is believed to be an
excellent technique for bacterial identification and EzBioCloud is
an updated 16S rRNA gene sequences database in line with the
latest taxonomic changes (Zhou et al., 2016).

The phylogenetic tree was constructed for all the antagonistic
strains based on the 16S rRNA gene sequence on MEGA X
software (Afzal et al., 2019). It is an important tool to determine
the evolutionary relationship within the strains for analyzing the
variation at the genus level (Afzal et al., 2019). The antagonistic
bacteria showed variable phylogenetic lineage based on 16S rRNA
gene. Our findings of the prevalence of antagonistic Bacillus spp.
are in accordance with the earlier studies (Earl et al., 2007).
The ubiquitous distribution of Bacillus spp. in the rhizosphere
may be due to their unique characteristics such as adaptability
to the harsh environment through desiccation tolerance and
ability to regenerate through sporulation (Joshi et al., 2013).
The occurrence of wheat-associated antagonistic Bacillus spp.
in the wheat-rice cropping system may also be due to the
specific cropping pattern and its soil environment conditions
(Kumar et al., 2012).

Wheat and rice belong to generate family and secrete common
root exudates, namely, benzoxazinoids, phenolic acids, and
scopoletin (Zahid, 2015). The abundance of Bacillus spp. in
this cropping system may also be due to the root exudates
mediated recruitment of specific microbes (Winter et al., 2019).
The role of root exudates in shaping the specific rhizospheric
community is well documented (Lv et al., 2016). Bacillus spp.,
being facultative anaerobe/aerobe, may also have higher survival
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in the rice grown in submerged conditions. The long-standing
water creates anaerobic conditions which is an environment for
the adaptation of specific microbial communities like Bacillus
spp. The effect of waterlogging conditions on change in the
microbial community is well documented (Mentzer et al., 2006).
In waterlogging conditions, oxygen quantity decreases which
leads to a reduction in respiration rate and activity of the
microbial community. This in turn leads to variations in the
distribution of the microbial community (Fuchslueger et al.,
2014). Thus, the wheat-rice cropping system could develop
disease suppressive soil and wheat grown in such a system could
be a potential habitat of the antagonistic Bacillus spp.

Bacillus spp. with the best in vitro antagonistic abilities
also controlled Fusarium root rot in net house conditions.
These findings are in accordance with earlier reports, in which
rhizospheric bacteria have successfully colonized the wheat
rhizosphere (Ullah et al., 2020). However, in the current
study, the strains also retained their population upon their
inoculation as consortia. The biocontrol efficacy of antagonistic
bacteria against Fusarium root rot is well understood (Winter
et al., 2019). They adopt multiple mechanisms in plant defense
including induction of defense enzymes against biotic and
abiotic stress (Khanna et al., 2019c,d). In consortia, our bacterial
strains showed the best activity against wheat root rot as
compared to the individual ones. Their effect was at par with
that of earlier reports in which efficacy of Pseudomonas spp.
associated with monoculture wheat was assessed against root
rot (Ullah et al., 2020). Our results are also advocated by
Lounaci et al. (2016) findings, in which rhizospheric bacteria
has efficiently controlled root rot severity. Fungicides also
effectively control root rot of wheat and barley, but their
irrational use poses a serious threat to the environment. These
results indicate that antagonistic bacterial strains could be
an ideal candidate for the biocontrol of Fusarium root rot
disease (Ngumbi and Kloepper, 2016). Based on their disease
suppression abilities, they could be an excellent substitute to the
chemicals, i.e., fungicides, which have serious health implications
on humans and eco-systems due to their excessive usage
(Upadhyay et al., 2018).

The current study states that different rhizospheric and
endospheric bacteria isolated from wheat-rice cropping system
of Punjab, Pakistan and identified as Bacillus spp. displayed
tremendous ability to inhibit different wheat pathogens such as
F. oxysporum, F. moniliforme, R. solani, and M. phaseolina. So,

it can be concluded that the continuous practice of wheat-rice
cropping system could develop disease suppressive soil in certain
fields and wheat grown in such fields could be a potential habitat
of the antagonistic Bacillus spp.
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