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BACKGROUND: High plasma osteopontin (OPN) has been linked to tumour hypoxia, metastasis, and poor prognosis. This study aims to
assess whether plasma osteopontin was a biomarker of increasing progression within prostate cancer (PCa) prognostic groups and
whether it reflected treatment response to local and systemic therapies.
METHODS: Baseline OPN was determined in men with localised (n¼ 199), locally recurrent (n¼ 9) and castrate-resistant, metastatic
PCa (CRPC-MET; n¼ 37). Receiver-operating curves (ROC) were generated to describe the accuracy of OPN for distinguishing
between localised risk groups or localised vs metastatic disease. We also measured OPN pre- and posttreatment, following radical
prostatectomy, external beam radiotherapy (EBRT), androgen deprivation (AD) or taxane-based chemotherapy.
RESULTS: The CRPC-MET patients had increased baseline values (mean 219; 56–513 ng ml� 1; Po0.0001) compared with the
localised, non-metastatic group (mean 72; 12–438 ng ml� 1). The area under the ROC to differentiate localised vs metastatic disease
was improved when OPN was added to prostate-specific antigen (PSA) (0.943–0.969). Osteopontin neither distinguished high-risk
PCa from other localised PCa nor correlated with serum PSA at baseline. Osteopontin levels reduced in low-risk patients after radical
prostatectomy (P¼ 0.005) and in CRPC-MET patients after chemotherapy (P¼ 0.027), but not after EBRT or AD.
CONCLUSION: Plasma OPN is as good as PSA at predicting treatment response in CRPC-MET patients after chemotherapy. Our data
do not support the use of plasma OPN as a biomarker of increasing tumour burden within localised PCa.
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Prostate cancer (PCa) is the most commonly diagnosed, non-
cutaneous male cancer and is the third leading cause of cancer-
related death in North America (Gibbons and Waters, 2003). The
ability to predict, a priori, an individual PCa patient’s tumour
response to surgery, image-guided radiotherapy (IGRT), external
beam radiotherapy (EBRT), androgen deprivation (AD) or taxane-
based chemotherapy is based on pretreatment clinical factors,
including the absolute value and doubling time of prostate-specific
antigen (PSA), tumour stage (TNM staging), pathologic Gleason
score (GS) and performance status (Nichol et al, 2005; Wo et al,
2009; Armstrong et al, 2010). Prostate-specific antigen is a
kallikrein protease produced almost exclusively by luminal cells
in the prostate gland (Wo et al, 2009) and its tissue specificity is an
important property as a serum biomarker. In large cohorts, the
pre- and posttreatment absolute value, and doubling time of PSA,
may predict disease-free survival (DFS) and long-term response to
localised and systemic treatment (Christensen et al, 2008; Wo et al,
2009). Using PSA alone to monitor EBRT response can be
problematic due to the long time (12–24 months) to reach a

PSA-nadir, the difficulty in using PSA to monitor tumour cell kill
during AD and PSA ‘bounces’ and changes due to benign causes
(Christensen et al, 2008). Nonetheless, PSA remains the exclusive
blood biomarker used to place patients into prognostic risk groups
to determine overall tumour burden and track response following
local or systemic treatment (Christensen et al, 2008).

Additional biomarkers that could be used with PSA to denote
non-aggressive from aggressive disease, including increasing
tumour bulk and/or the presence of occult metastases in
the D’Amico high-risk group (any one of: PSA420 ng ml� 1,
T3/T4N0M0, GS 8 or above), could effectively triage patients to
more individualised PCa management (Christensen et al, 2008;
Bristow, 2009). There has been substantial interest in osteopontin
(OPN) as a biomarker of cancer aggression, tumour hypoxia and
response to treatment (Rittling and Chambers, 2004; Overgaard
et al, 2005; Blasberg et al, 2010; Weber et al, 2010; Anborgh et al,
2011). Osteopontin is a small integrin-binding ligand N-linked
glycoprotein (SIBLING) that binds to cell surface receptors
including integrins and CD44. It is expressed in many tissues
and secreted into body fluids, including blood, milk and urine.
Osteopontin has important physiological roles in bone remodeling,
immune response and inflammation. It is also a tumour-associated
protein and elevated OPN levels are associated with cellular
proliferation, invasion and angiogenesis via altered activity of
matrix metalloproteinases, the epidermal growth factor receptor
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and PI3K-AKT signaling (Castellano et al, 2008; Anborgh et al,
2011). These preclinical studies suggest that plasma OPN could be
an important biomarker of occult systemic metastases.

In a recent meta-analysis of over 228 publications, high plasma
or tissue OPN levels correlated with decreased overall survival and
DFS across a number of different tumour types, including lung
cancer, breast cancer, head and neck cancer, liver cancer and PCa
(Weber et al, 2010). High tumour OPN levels as determined by
immunohistochemistry (IHC) in situ are associated with pretreat-
ment tumour hypoxia and are prognostic following PCa EBRT
(Vergis et al, 2008). In the DAHANCA-5 head and neck trial, high
plasma OPN concentrations were correlated with tumour hypoxia
and predicted poor loco-regional control following EBRT
(Overgaard et al, 2005). Hypoxia in PCa has an important role
as it correlates with increased clinical stage and poor prognosis
following EBRT and surgery (Movsas et al, 2000; Chan et al, 2007;
Vergis et al, 2008; Milosevic et al, 2012).

To date, a definitive study of plasma OPN as a biomarker of
increasing tumour aggression (bulk/stage, grade, PSA) across
both localised and systemic disease has not been published. Given
the reported aggressive nature of OPN-expressing tumours, we
explored the role of circulating OPN expression as a potential
surrogate biomarker of PCa tumour aggression and occult
metastasis. We also assessed OPN levels in response to treatment
in both localised and systemic disease.

MATERIALS AND METHODS

Patient samples

Plasma samples were prospectively collected from consenting
patients with newly diagnosed PCa attending clinics at Princess
Margaret Hospital (University Health Network; University of
Toronto) or the London Regional Cancer Center (University of
Western Ontario). Written informed consent for blood collection
for research purposes was obtained from all patients on local
Research Ethics Board (REB)-approved studies of proteomics and
biobanking in genitourinary cancers (GU BioBank) (PMH-UHN
REB 10-0223-T/08-0124-T). Additional plasma samples in patients
with biopsy-proven locally recurrent PCa following treatment
with radiotherapy were collected as part of a PHASE I study of
MRI-guided prostate biopsies (PMH-UHN REB 05-0641-C). Speci-
mens were collected from 208 men with localised PCa (54, 84,
and 61 with low, intermediate and high risk, respectively, and
9 patients with biopsy-proven local recurrence (LR) following
radiotherapy ) and 37 men with CRPC-MET. Risk categories were
defined by the D’Amico criteria (D’Amico et al, 1999; Nichol et al,
2005) defined as: (1) low risk defined as clinical stage T1 to
T2aN0M0, GS 4–6 and PSA of o10 ng ml� 1; (2) intermediate risk
defined as clinical stage T1 to T2N0M0 and GS of 7 or PSA of
10–20 ng ml� 1; (3) high risk defined as clinical stage T3-T4N0M0
or GS of 8–10 or PSA420 ng ml� 1.

Patients with localised low-risk disease were treated with radical
prostatectomy (28) or active surveillance (26). Intermediate-risk
patients were treated with radical prostatectomy (22) with lymph
node sampling or lymphadenectomy (with or without nerve
sparing) or intensity-modulated radiotherapy with image guidance
(IGRT-IMRT; 60 Gy in 20 fractions or 78 Gy in 39 fractions) (62)
(Vesprini et al, 2011). Fifteen localised high-risk patients were
treated with pelvic and prostatic IMRT radiotherapy (pelvic dose
of 46 Gy and total prostate dose 74 Gy) plus AD therapy (e.g.,
LHRH-agonist injections given as concurrent and adjuvant therapy
for a total period of 3 years) and 45 high-risk patients underwent
radical prostatectomy with lymph node sampling or lymphade-
nectomy. Thirty seven CRPC-MET patients were treated with
docetaxel chemotherapy at 75 mg m� 2 every 3 weeks with
prednisone (Tannock et al, 2004) (Supplementary Table 1).

Control plasma OPN samples were collected from 26 healthy
volunteers. We also assessed plasma OPN levels from 96 men
presenting negative biopsies who were at higher risk for
developing PCa (PMH-UHN REB 09-0787-T).

Plasma OPN levels and PSA at baseline were determined for
each group of patients before treatment. In a subgroup of patients,
OPN and PSA were compared pre- and posttreatment. We defined
response to chemotherapy as a 450% reduction in PSA following
docetaxel chemotherapy. Blood samples were obtained from
patients at the pretreatment appointment and at 1 year posttreat-
ment. For CRPC-MET patients, blood samples were collected
before and after the second, third or fourth cycles. Patient-derived
toxicity grading was prospectively collected using the Common
Terminology Criteria for Adverse Events v3.0 (CTCAE v3.0) as
previously described (Christensen et al, 2009). Patients were asked
to complete questionnaires concerning symptoms of rectal or
bladder injury before, and every week during, radiotherapy as part
of their standard of care.

Enzyme-linked immunosorbent assay (ELISA) for OPN

Reporting of plasma OPN measurements and analysis was
completed using the National Cancer Institute and European
Organization for Research and Treatment of Cancer recommenda-
tions for reporting tumour marker prognostic studies (McShane
et al, 2006). The dual monoclonal human OPN ELISA kit (Catalog
900-142, Enzo Life Sciences, Plymouth Meeting, PA, USA), was
used as previously published (Anborgh et al, 2009) using the
manufacturer’s instructions. Human recombinant OPN provided
with this kit was used as a standard. Duplicate readings of each
plasma sample were averaged.

Statistical analyses

Non-parametric tests were applied to investigate the differences in
OPN values between the different risk groups (Mann–Whitney
test) or between the pre- vs posttreatment (Wilcoxon-signed rank
test). Spearman’s correlation coefficients were calculated to assess
correlations between OPN and PSA.

To evaluate the performance of OPN values as a predictor for
metastatic disease we plotted the receiver-operating characteristic
(ROC) curve. As a measure of performance we calculated the area
under the ROC (AUC). The software programs utilized were
SAS/STAT Version 9.2 (SAS Institute Inc., Cary, NC, USA) and R
(Development Core Team, 2011). For all analyses, Pp0.05 was
interpreted as significant.

RESULTS

Table 1 shows the baseline characteristics of all the patients in the
study. We initially tested differences in OPN and PSA between
cohorts of patients with low-risk, intermediate-risk, high-risk
prostate and CRPC-MET cancers. In pair-wise testing, PSA
differentiated between all tested groups (see Supplementary
Table 2). We then compared OPN values in the same groups of
patients and found that OPN values were not statistically
significantly different between low-, intermediate- or high-risk
groups (Figure 1A, and Supplementary Table 2). The OPN values
of the CRPC-MET group of patients in this study were similar to a
previous published cohort of CRPC-MET using a similar ELISA
(20). In each of the localised disease-risk groups, we observed
heterogeneity in OPN with values ranging from 12 to 438 ng ml� 1

(see Supplementary Table 3a). The OPN levels in the CRPC-MET
group (range: 56–513 ng ml� 1) were significantly higher to values
measured in the localised risk groups (overall mean values of 72 vs
219 ng ml� 1; Po0.0001; see 1 : 1 comparisons in Supplementary
Table 2). To assess the performance of plasma OPN in
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distinguishing men with high-risk cancer vs intermediate and low-
risk cancer (Figure 1B) or localised vs CRPC-MET disease
(Figure 1C), ROC analyses were performed. Figure 1B shows that
the AUC was 0.505 (95% confidence interval (CI) 0.417–0.542) for
OPN alone. For PSA the AUC was 0.717 (95% CI; 0.632–0.803) and
for PSA and OPN together the AUC was 0.72 (95% CI;
0.635–0.806). Figure 1C shows that the AUC for distinguishing
CRPC-MET was 0.935 (95% CI; 0.889–0.982) for OPN alone. For
PSA the AUC was 0.943 (95% CI; 0.872–1.0) and for PSA and OPN
together the AUC was 0.969 (95% CI; 0.918–1.0).

Taken together, these data confirm that higher circulating
plasma OPN levels are observed in CRPC-MET patients as
compared with other groups; plasma OPN does not differentiate
high-risk patients when compared with intermediate-risk and
low-risk patients; plasma OPN is as good as PSA as a predictor
of CRPC-MET.

Plasma OPN could be an important biomarker of local or
systemic recurrence following surgery or EBRT. However, plasma
OPN levels were not uniquely elevated in biopsy-proven LRs
following EBRT when compared with localised PCas or non-cancer
normal volunteers (P40.05; Figure 1A). We also noted high
plasma levels outliers in Figure 1A (defined as OPN4100 ng ml� 1

for non-CRPC-MET patients and OPN4400 ng ml� 1 for CRPC-
MET patients). A careful chart review did not show that these
patients have different clinical outcomes as compared with
individuals from the same risk category. This could also represent
inflammation-related comorbidities (e.g., rheumatoid arthritis)
(24); however, we did not find an association to known
comorbidities or clinical symptoms at the time of assay.

Given its role in cell proliferation, hypoxia, angiogenesis and
metastasis, OPN could also be an important biomarker for
treatment response if it reflected overall local and/or tumour bulk
similar to PSA. We therefore investigated whether there was any

evidence for change in OPN levels in localised PCas treated with
surgery or EBRT (Figure 2). In the low-risk patients that were
treated by surgery (Figure 2A), 13 out of 18 patients showed
decreased OPN values following surgery with the removal of the
entire prostate gland. One out of the five patients without
decreasing OPN postsurgery had detectable PSA. The mean change
in OPN was � 26.5 ng ml� 1. A significant decrease in OPN was not
observed in high- and intermediate-risk patients after surgery
(Figures 2B and C, respectively). There was great heterogeneity in
the response of intermediate-risk patients to EBRT with the
prostate gland remaining in situ as the overall mean change of
OPN in this group was � 0.9 ng ml� 1 (Figures 2D and E and
Figure 4). We also hypothesised that OPN response may differ
based on EBRT fraction size or duration and we therefore
compared the response in patients receiving 60 Gy in 20 daily
fractions (3 Gy fractions; 4 weeks) vs 78 Gy in 39 daily fractions
(2 Gy fractions; 8 weeks) using EBRT. We did not find any
significant OPN change related to altered fraction size or duration
during or after EBRT (Figures 2D and E and Supplementary
Figure 1). We also found no evidence for increased baseline or
intra-treatment OPN values in patients that had increased acute
toxicity (i.e., maximum CTCAE scores 2 out of 3 vs 0 out of 1)
during EBRT (see Supplementary Table 4).

We next investigated whether OPN levels were altered in
response to systemic therapies. In the high-risk patients treated
with radiotherapy plus AD therapy, the mean OPN level
significantly surprisingly increased (þ 12.4 ng ml� 1) even though
all patients had PSA response at this time point with no evidence
of castrate resistance (Figure 3A). In patients with CRPC-MET
receiving two to four cycles of docetaxel chemotherapy there was a
statistically significant decrease in OPN levels (� 29.1 ng ml� 1,
P-value¼ 0.027; see Figure 3B). In five patients, there was no
reduction in both PSA and OPN with chemotherapy. Fifteen

Table 1 Patients’ characteristics

Controls
(26)

Biopsy
negative

(96)
Low

(N¼ 54)
Int

(N¼ 84)
High

(N¼ 61)
LR

(N¼ 9)
CRPC-MET

(N¼ 37)
Overall

(N¼ 367)

Age (median) 30 61 62 64 63 70 72 63

PSA
o10 — 86 53 68 31 9 2 249
10–20 — 10 1 16 18 — — 45
420 — 0 — — 12 — 35 47

Gleason
6 — — 54 8 — — — 63
7 — — — 76 27 6 14 123
8–10 — — — — 34 — 20 54
Unknown — — — — — 3 3 6

T-category
TX — — — 7 — 9 14 30
T1 — — 54 26 7 — 4 91
T2a — — — 24 9 — 7 41
T2b — — — 12 3 — 3 18
T2c — — — 15 2 — — 17
T3a — — — — 32 — 4 36
T3b — — — — 7 — 5 12
T4 — — — — 1 — — 1

M-category
M0 — — 54 84 61 9 3 211
M1a — — — — — — —
M1b — — — — — — 15 15
M1c — — — — — — 19 19

Abbreviations: CRPC-MET¼ castrate-resistant, metastatic prostate cancer; LR¼ local recurrence; PSA¼ prostate-specific antigen.
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patients had both OPN and PSA decrease after treatment. In all of
the responding patients, five patients had an increase in plasma
OPN and the remaining seven patients showed minimal change in
OPN. The PSA and OPN differences by chemotherapy cycle are
presented in Supplementary Figure 2.

Finally, we correlated OPN to PSA in our patient cohorts. The
change in OPN and PSA following treatment for each patient was
calculated and shown in Figure 4. For patients receiving local
therapy or systemic therapies, we observed expected reductions in
PSA values, but a heterogeneous response with respect to OPN
values. The change in OPN does not track with the change of PSA
in patients receiving EBRT. Finally, we tested whether plasma OPN
levels were a surrogate for serum PSA at baseline or following
treatment (Supplementary Figure 3a–c). Plasma PSA and plasma
OPN are not correlated at baseline (in all patients or even in the
subgroup analysis of localised PCas; Spearman’s correlation
coefficients of 0.226 and � 0.05, respectively), nor at 1 year
posttreatment (Spearman’s correlation coefficient¼ 0.366).
We conclude that plasma OPN expression is not a surrogate for
serum PSA.

DISCUSSION

Unlike the suggested role of OPN in treatment response in head
and neck, lung and breast cancers (Overgaard et al, 2005; Bramwell

et al, 2006; Hui et al, 2008; Blasberg et al, 2010), our novel report
suggests that plasma OPN in localised PCa is not predictive of
response to local therapy when compared with changes in PSA
following therapy. In particular, we found no evidence of
significantly elevated baseline levels of OPN in high-risk but
localised disease relative to low- and intermediate-risk disease.
Hence, unlike PSA, OPN is not a direct marker of tumour burden.
Longer follow-up will be needed to absolutely determine whether
the high OPN outliers in localised risk groups will ultimately fail
but we had no evidence that ultra-high levels (4100 ng ml� 1) of
OPN in localised disease at diagnosis heralds a more aggressive
cancer after treatment.

Vergis et al (2008) suggested that IHC staining for tumour OPN
in situ was prognostic for response following EBRT or surgery. We
did not examine OPN-IHC expression in PCa biopsies in this
study. But given the lack of an observed difference between
baseline expression of plasma OPN in patients with high-risk PCa
and normal volunteers, we would not expect a high degree of
concordance between plasma OPN and OPN-IHC as positive
staining of OPN in situ occurs in 25% percent of localised PCas
(Vergis et al, 2008). Jain et al (2009) recently reported on a number
of SIBLING proteins, including plasma OPN, in men with PCa
treated with radical prostatectomy. Our results are consistent with
their findings, as they did not observe a significant difference in
plasma OPN expression between subgroups of patients with
different GSs. However, their study did not categorise the patients
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according to risk group nor treatment response. We observed a
significant correlation of plasma OPN to PSA levels pre- and
posttreatment following surgery or chemotherapy, but not
following radiotherapy or AD, despite strong PSA decline. Plasma
OPN levels are therefore not likely to directly reflect PCa cell death
during radiotherapy or AD when the prostate gland remains
in situ. Further preclinical work using PCa models will be needed
to understand this observation. It will also be important to study
OPN following second-generation AD therapies such as abirater-
one or MDV3100 (de Bono et al, 2011; Scher et al, 2012).

We have previously reported using the same plasma samples
from the EBRT cohort that there was a significant increase in

IFN-gamma and IL-6 during EBRT. In this study, increasing IL-2
and IL-1 expression were associated with increased probability of
acute gastrointestinal and genitourinary toxicity, respectively
(Christensen et al, 2009). As OPN is secreted by activated
macrophages, leukocytes and activated T lymphocytes and is
chemotactic for macrophages and neutrophils, we hypothesised
that OPN could have a role in EBRT-associated toxicity and acute
inflammatory response (Rittling and Chambers, 2004; Castellano
et al, 2008; Bazzichi et al, 2009; Weber et al, 2010). However, our
data do not support plasma OPN as a biomarker of endogenous or
iatrogenic (e.g., EBRT-induced) inflammation (See Supplementary
Figure 1 and Supplementary Table 4). We speculate that the overall
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driving mechanism of increased baseline plasma OPN levels in our
CRPC-MET patients is secondary to OPN’s roles in tumour cell
adhesion, migration and matrix degradation during the formation
of bone metastases (Hotte et al, 2002; Rittling and Chambers, 2004;
Weber et al, 2010). It would be of interest to measure OPN
response to intermittent AD during the intervals ‘on’ and ‘off’
therapy in prostate patients with biochemical recurrent disease. In
the setting of CRPC-MET and docetaxel chemotherapy treatment,
reduced OPN levels was observed in 23 of 31 patients. Reductions
in plasma OPN in CRPC-MET patients may therefore be biomarker
of response relating to bone metastases.

CONCLUSION

Plasma OPN is a biomarker of CRPC-MET. Plasma OPN might be
used to track response to chemotherapy, where it correlates to
treatment-induced changes in PSA. However, OPN levels do not
directly track PSA changes following EBRT or AD and may not
reflect local or occult metastatic burden in PCa. Our studies
support future prospective studies of the use of plasma OPN as a
response biomarker in PCa chemotherapy trials.
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