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Design and development 
of an open‑source framework 
for citizen‑centric environmental 
monitoring and data analysis
Sachit Mahajan 

Cities around the world are struggling with environmental pollution. The conventional monitoring 
approaches are not effective for undertaking large-scale environmental monitoring due to logistical 
and cost-related issues. The availability of low-cost and low-power Internet of Things (IoT) devices 
has proved to be an effective alternative to monitoring the environment. Such systems have 
opened up environment monitoring opportunities to citizens while simultaneously confronting 
them with challenges related to sensor accuracy and the accumulation of large data sets. Analyzing 
and interpreting sensor data itself is a formidable task that requires extensive computational 
resources and expertise. To address this challenge, a social, open-source, and citizen-centric IoT 
(Soc-IoT) framework is presented, which combines a real-time environmental sensing device with an 
intuitive data analysis and visualization application. Soc-IoT has two main components: (1) CoSense 
Unit—a resource-efficient, portable and modular device designed and evaluated for indoor and 
outdoor environmental monitoring, and (2) exploreR—an intuitive cross-platform data analysis and 
visualization application that offers a comprehensive set of tools for systematic analysis of sensor data 
without the need for coding. Developed as a proof-of-concept framework to monitor the environment 
at scale, Soc-IoT aims to promote environmental resilience and open innovation by lowering 
technological barriers.

Over the past years, the world has seen massive growth in urbanization at regional and national levels. Although 
rapid urbanization has led to economic growth, it has led to environmental degradation as well1. Activities like 
excessive use of fossil fuels for energy production and deforestation to create more urban spaces are already 
contributing to the degradation of air quality. Traffic related pollution (mostly air and noise pollution) is also 
contributing to environment and health degradation. The World Health Organization (WHO) has already 
identified traffic-related noise as a public health risk since it can disrupt the human sleep cycle, increase stress, 
and lead to psychiatric disorders2. Noise and air pollution aren’t the only side effects of urbanization. Excessive 
use of artificial lighting in cities already contributes to light pollution, which leads to the release of more heat into 
the atmosphere3. The environmental pollution is not only limited to developing or under-developed countries, 
but even high-income countries are getting adversely affected by it4. According to a report by WHO5, indoor 
and outdoor air pollution exposure is strongly linked to heart and cardiovascular diseases. Among different 
pollutants, particulate matter (PM) is known to be more dangerous for human health as compared to gaseous 
components6. While there have been numerous efforts by governments and environmental protection agencies 
to combat the threats like air pollution, there has been limited success in a reduction in the levels of pollutants 
like PM. This has been mainly due to the limited availability of accurate and fine-grained air quality data to create 
effective policies. The official monitoring networks used in most countries around the world comprise a limited 
number of fixed monitoring stations. They are accurate but only covered a limited geographical area7. Due to 
the expensive and bulky nature of such stations, it is not logistically possible to do a mass deployment of such 
stations. Similarly, noise monitoring infrastructures are limited to to the expensive nature of professional sound 
level meters and poorly calibrated low-cost noise monitoring sensors8.

It is now easier than ever to collect large-scale environmental data, thanks to the rise of the smart city concept. 
Smart cities are cities in which information and communication technology (ICT) is incorporated into the city 
fabric to collect data for the purpose of upgrading infrastructure and providing better services to people9. One 
of the strategic aims of smart cities has been to improve economic, social and environmental sustainability10. 
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To fulfil the sustainability needs, smart cities use technologies that improve the quality of life, improve urban 
operations and services and promote sustainable development11. The Internet of Things (IoT) is already speeding 
up smart city innovation by allowing complicated systems such as traffic control, environmental monitoring and 
automatic street lighting to be managed using data from networked sensors. The usage of IoT devices embedded 
with low-cost sensors for environmental monitoring has increased dramatically in recent years12. Because of 
the low cost of the sensors, citizens have been able to access these technologies and use them for activities like 
crowd-sensing, in which a group of residents uses low-cost sensing systems to monitor the surroundings and 
collect actionable data. The open-source nature of environmental monitoring solutions has also contributed 
to the rise in IoT-based environmental monitoring. Open-source refers to any program or platform whose 
source code is freely available and can be reused and redistributed13. The application of crowd-based methods 
in research has substantially increased over the past decade10. This has resulted in an increase in various forms 
of crowd involvement, such as crowdsourcing and Citizen Science; the former involves people in gathering 
ideas and solutions to various problems10, while the latter allows people to participate in scientific processes and 
provide input and valuable contributions14. Low-cost IoT systems have enabled large-scale deployments and data 
collection at finer spatio-temporal resolutions, which were previously impossible with traditional monitoring 
systems due to logistical and financial constraints15. These devices provide real-time air quality data that can 
be useful for understanding the ambient environment and assisting decision-makers in making better policies 
for pollution control. There have been several examples of how low-cost environmental monitoring solutions 
have been implemented around the world to raise air pollution awareness15–17, create air pollution data sets15,18, 
promote citizen participation in air quality monitoring19–21, and create applications for data-informed decision 
making22,23. The impact is not limited to raising awareness, but also to developing innovative methodologies 
and technologies to improve citizens’ well-being24. The studies by Pigliautile et al.25,26 are good examples of how 
innovative solutions like wearable sensing technology can be used to investigate complex topics like microclimate 
variations and pedestrian comfort. The valuable data crowdsourced through IoT has a direct impact on the 
location-based services provided to citizens. The data is instrumental in creating advanced air quality data 
analysis frameworks27,28, PM2.5 forecasting systems29–31, ecosystems for smart environment governance32,33, 
and resilient cities34.

Bibliometric analysis Bibliometric analysis is an efficient method to understand research trends and scholarly 
networks in different disciplines28. In this work, bibliometric analysis has been carried out to highlight the 
state of the art as well as research gaps. To understand how the keywords like “Internet of Things” and “Air 
pollution monitoring”have been used within the existing literature and in what context, quantitative bibliometric 
analysis and knowledge mapping approaches were used. The keyword co-occurrence method was used to find 
the keywords that are discussed more frequently together. To perform the analysis, first, a search query was 
created that searched all the papers indexed in the Web of Science database35 since the year 1990 containing the 
topics “Internet of Things”AND “Air pollution monitoring”. The search included the title of the paper, abstract 
and author’s keywords. The search query resulted in 65 papers. The data from those 65 papers were used to create 
the keyword co-occurrence network graph, shown in Fig. 1. bibliometrix package of R was used to perform 
the network analysis36. Keyword co-occurrence analysis was used to create the network graph by looking for 
very frequent terms in the database created by the initial search query. The nodes were chosen from the top 50 
most frequently occuring terms. There were at least two edges on each node. To detect the communities in the 
network, the Louvain method of community detection was implemented37. It is a clustering algorithm that is 
based on the greedy approach to modularity optimization. In the beginning, every node is assigned to a unique 
cluster. This is followed by placing each node is into another cluster to make the network more modular. The 
process is repeated several times until there is no further scope for improving the network modularity. It can be 
observed in Fig. 1 that there are three key research clusters. The largest cluster is mainly focused on air pollution 
monitoring systems, the environment, and smart cities. Between the other two clusters, one focuses on the IoT 
devices, data, and information while the other is more centered around PM, networks, and sensors. Despite a 
strong focus of existing research on IoT systems, environment, data, and cities, surprisingly there was no mention 
of keywords like ‘citizens’, ‘community’, ‘open-source’, or ‘sustainability’. There is a clear gap when it comes to 
bridging the IoT, environmental monitoring, citizen participation, and open-source solutions. This reinforces 
the relevance of this study which aims at creating a proof-of-concept framework for environmental monitoring 
that is citizen-centric, open-source, and sustainable.

Motivation While the use of low-cost sensors has improved the air quality data availability and access, sev-
eral challenges still need to be addressed. Data quality and accuracy of low-cost sensors remains one of the key 
challenges38–40. It has been widely discussed how an IoT application could be considered useless due to poor 
sensor data quality41. This not only restricts the potential use of IoT data for various applications but also creates 
an environment where the acceptability of citizen-generated data reduces due to a lack of accuracy. This makes it 
imperative that the hardware and software components of the IoT framework are extensively validated to success-
fully handle the sensor data with minimum errors and missing data. It has also been observed that IoT systems 
are sometimes designed in less human-centric ways42. This can be related to highly automated sensors, black-box 
algorithms, data accessibility, and complex data analysis tools. The lack of value-sensitive design often results in 
user disempowerment followed by disengagement43,44. This is a critical concern as the majority of citizen science 
air quality monitoring projects depend on volunteers who are investing their time and resources. For example, 
in many citizen science air quality monitoring projects, the citizens rely on experts to do the data analysis and 
interpretation. Though scientific expertise is needed to analyze data but creating opportunities for citizens to 
do data analysis and interpretation allows bridging the gap between experts and non-experts. It also fosters a 
sense of collaboration and trust that are important for successfully doing citizen science. Another pressing issue 
is the consideration of sustainability factors for the design, development, and implementation of low-cost sen-
sor systems. Based on a study45, it was found that there is limited literature when it comes to understanding the 
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long-term sustainability of low-cost sensor solutions for environmental monitoring. The predominant focus of 
most of the studies has been on data collection and analysis. This could be partly because most of these sensor 
studies are conducted in regions that have significant resources and infrastructure45.

This paper addresses these challenges by describing the design, implementation, and potential impact of 
a social, open-source, and citizen-centric IoT (Soc-IoT, pronounced as ‘Society’) framework Fig. 2. Soc-IoT is 
proposed as an open-source46 environmental monitoring and data analysis framework that encourages collective 

Figure 1.   Network visualization of frequently occurring terms within the existing literature related to keywords 
“Internet of Things” and “Air pollution monitoring”.

Figure 2.   Overview of the proposed framework.
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and participatory action as well as social impact. It comprises of two key components that are specifically 
designed and developed to address the issues raised previously in the paper. The first component is the CoSense 
Unit which is a modular and open-source environment sensing device that can provide consistent and reliable 
air quality data. It has been thoroughly tested and validated in a real-world setting and evaluated by co-locating 
with a Swiss government environmental monitoring station. The carbon footprint and energy usage of these low-
cost gadgets are also examined to determine the CoSense Unit’s environmental sustainability. The framework’s 
second core component is the exploreR, an open-source RShiny-based data analysis and visualization application. 
The app is intended to lower technological obstacles, particularly those connected to programming, by allowing 
citizens and specialists alike to examine and interpret sensor data in a useful way. To address the critical issue 
of collaborative environmental sensing, the entire framework is designed to establish an innovative ecosystem 
that encourages cooperation, sustainable practices, and inclusivity.

Methods
This section describes the methodology behind the design of the proposed Soc-IoT framework. The following 
paragraphs provide a detailed overview of the system architecture, sensor prototype, and data analysis application.

System architecture.  The Soc-IoT framework is based on the principle of open-source hardware and 
software. Figure 3 shows the system architecture of the proposed framework. It comprises four major components:

•	 Data Acquisition Layer: This layer consists of the sensors that are responsible for sensing the environmental 
variables monitored by the CoSense Unit. The current version of the CoSense Unit consists of a Sensirion 
SPS 30 PM sensor that can sense PM1, PM2.5, and PM10. The Enviro+ board for Raspberry Pi is used to 
monitor temperature, pressure, humidity, light intensity, noise, and gas concentration (NO2, NH3, and CO). 
As the codes for these sensors are open-source, the users can easily reprogram the sensors based on their 
requirements as well as examine and verify the sensors without any complications. More details about the 
hardware components are available in the next section.

•	 Data Processing and Communication Layer: This layer is responsible for processing and integrating data 
from different sensors and communicating it to the data storage layer. A Raspberry Pi Zero handles all the 
functions related to data processing and communication. The Wi-Fi module of Raspberry Pi Zero is used to 
create an access point that allows a continuous flow of data from the Raspberry Pi Zero to the data storage 
layer. Different data transmission protocols were considered for data transmission. The current version of 
the CoSense Unit uses the Hyper Text Transfer Protocol (HTTP) due to its high transmission reliability and 
infrastructure40,47.

•	 Data Storage Layer: This layer is responsible for securely storing the data. The current version of the frame-
work allows two storage options. Either the data can be directly transmitted to the ThingSpeak database or 
the user can save the data locally on the SD card that comes with the Raspberry Pi. This is beneficial in case 
of unavailability of the internet to send the data to the ThingSpeak cloud. The users can simply upload the 
data from the SD card to their data stream at a later stage. This also provides more control to the users over 
their data. If the users prefer not to share their data, they can opt out of making their data stream public and 
use the data from the stream and the SD card for their information.

•	 Application Layer: The data from the storage layer is used to create applications that are used to make sense 
of the raw data. This includes data streams, visualizations, and data analysis applications. The Soc-IoT frame-
work includes two core applications: (1) ThingSpeak dashboard that allows a user to create data streams, 
visualize data, and use Matlab functions to perform data analysis. (2) An R-based application that allows a 
user to do data processing, analysis, visualization, and performs Machine Learning (ML) on the data. Sec-
tion 3 includes more details about the applications.

Hardware implementation.  Despite the fact that the quality of one’s environment has a significant impact 
on one’s health, most people are unaware of it48. The majority of harmful pollutants, for example, are colorless 
and odorless, making it difficult to determine their actual levels. As a result, having an efficient system that 
quantifies pollution levels and provides feedback is critical. Objective measurements and easily understood 
visualizations could assist people in consciously processing - and, if necessary, adjusting - air quality, lighting, 
and noise levels. In other words, objective measurements are required to induce behavioral change. The 
CoSense Unit is the hardware component of the Soc-IoT framework that is responsible for indoor and outdoor 
environmental monitoring. It has been designed using state-of-the-art sensors and a single board computer. 

Figure 3.   Soc-IoT system infrastructure.
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The current version of the CoSense Unit measures: (1) PM concentration in the air; (2) temperature, pressure, 
humidity; (3) gas (NO2, NH3, CO) concentration; (3) light intensity; and (4) noise. The modular nature of the 
device allows users to easily remove and add more sensors based on their requirements. The CoSense Unit is 
easy to assemble and can be used for indoor and outdoor environment sensing. For building a participatory 
sensing unit, it is important to select the most suitable sensors. While there are a lot of low-cost sensors 
circulating in the market, not all of them are accurate and efficient when it comes to long-term environmental 
monitoring. For PM monitoring, the CoSense Unit uses a Sensirion SPS30 PM sensor. The sensor was selected 
because of its high precision, accuracy, and low bias as compared to other available PM sensors like Plantower 
PMS5003, SM-UART-04L PM sensor49,50. The SPS30 is capable of monitoring PM1, PM2.5, PM4, and PM10 
using the light-based scattering principle. The current version of the CoSense Unit is programmed to monitor 
PM1, PM2.5, and PM10. In addition to the SPS30 sensor, a sensor array called Enviro Plus that has sensors like 
BME280 (temperature, humidity, pressure), MICS6814 analog gas sensor (NO2, NH3, and CO), LTR-559 light 
and proximity sensor, and a MEMS microphone (noise) is also added to the CoSense Unit. It also includes the 
ADS1015 analog to digital converter for converting data from the analog gas sensor and a color LCD. The data 
produced by the analog gas sensor is in kOhms, which is not the standard unit for gas concentration monitoring. 
The sensor program converts it into parts per million (ppm) to get an indicative value. Due to a lot of conversion 
processes, it is difficult to precisely validate it with a regulatory or industry-grade monitor. Nevertheless, the 
values from the gas sensor can be used as indicative values for understanding how the concentration is changing 
in a given environment, as highlighted by many studies51,52.

Enviro Plus is particularly efficient due to its small size, seamless sensor integration, and compatibility with 
single board computers like Raspberry Pi. The CoSense Unit uses a Raspberry Pi Zero to communicate with 
the sensors using the General-Purpose Input Output (GPIO) ports. As Raspberry Pi has multiple GPIO ports, 
it allows flexibility to add more sensors based on the requirement of a user. Figure 4 shows the detailed view 
of the CoSense Unit with components and annotations. All the components are housed within a 3D-printed 
enclosure. The CoSense Unit is powered using a USB cable to provide a 5V supply. The users have a choice to use 
an adapter or a power bank for powering the Raspberry Pi. This allows the device to be used flexibly for mobile 
or stationary environmental monitoring.

Software implementation.  The CoSense Unit uses a Raspberry Pi Zero to communicate with sensors 
and handles tasks related to network creation, data transmission, and storage in an SD card. Figure 5 shows the 
flowchart of the CoSense Unit source code. The CoSense Unit source code is written in Python programming 
language53 and uses standard sensor libraries to communicate with the sensors. As shown in Fig. 5, once the 
Raspberry Pi is powered on, it goes into the set-up mode. The Wi-Fi module of the Raspberry Pi goes into the 
Access Point (AP) mode and allows the user to connect to the device’s Wi-Fi network. Once this connection is 
successful, the users are redirected to a web interface that allows them to connect to a secure Wi-Fi network. 
The device automatically saves the Wi-Fi credentials that allow the device to connect to the saved Wi-Fi network 
in case of a reboot. In case no Wi-Fi network is available, the device goes into offline mode. In either case, the 
sensors are put in active mode following the connection test. The sensors stay awake for 30 seconds and do the 
measurement. The measured data is stored in the Raspberry Pi’s SD card in CSV format. When the device is in 
an online mode, an HTTP connection is created and the measured data is sent to the ThingSpeak server using 
the GET request. Once the acknowledgment is received from the server, the connection is closed. To secure the 
data transmission, private keys are generated by ThingSpeak before a data stream can be created. The LCD screen 
shows the data values from the sensors. The availability of online and offline modes allows continuous sensing of 
data. It is also useful in case environmental monitoring needs to be done in a remote location without internet 
connectivity. The current version of the prototype measures data every 5 minutes and goes to sleep mode after 
the measurement. The users can change the sampling frequency based on their needs.

Figure 4.   A complete and exploded view of the CoSense Unit with annotations.
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Results and discussion
This section describes the criterion that was used to validate and evaluate the performance of the CoSense 
Unit, specifically focusing on PM2.5 concentration. The results are followed by a discussion to understand 
how the prototype works in real-life conditions. This section also looks into the design and development of the 
data analysis and visualization application and how the proposed setup compares with existing environmental 
monitoring infrastructures.

Sensor validation.  Sensor validation is a key step in the development of environmental monitoring 
infrastructure. There are different ways to perform quality assurance and control of a sensing unit. This study 
followed a standard approach for validating the sensor by looking at the inter-sensor variability and comparing 
the sensor output with the official air quality monitoring station54–56.

Field co-location During the summer of 2021, two CoSense Units were tested in the field in Zurich, Switzer-
land. To analyze the accuracy of the sensors and evaluate the performance, two units were collocated at one of 
the sites of the National Air Pollution Monitoring Network (NABEL). NABEL monitors air quality at 16 sites 
in Switzerland. For this study, the sensor units were collocated at the NABEL station in Dubendorf. Figure 6a 
shows the location of the test site. Figure 6b shows the actual setup of CoSense Units for colocation at the NABEL 
reference monitoring station. The station is located in a suburban location. The area is densely populated with 
a network of heavily used roads and railway lines. The field test was conducted between 4 June 2021 and 8 June 
2021. The PM2.5 was sampled every five minutes and it was averaged for 1 h to maintain consistency with the 
PM2.5 data obtained from the reference monitor. Overall, the data was compared for 100 h. Figure 6c presents 
a line plot that compares the data obtained from two CoSense Units (denoted by Sensor 1 and Sensor 2) and the 
reference monitor. It can be observed that the CoSense Units can match the variations recorded by the reference 
monitor. This highlights that the CoSense Unit can successfully capture sudden variations in PM2.5 concentra-
tion in a real-world environment. The average error between the PM2.5 recorded by the reference monitor and 
Sensor 1 was 1 µg/m3 . In the case of Sensor 2, it was 1.2 µg/m3.

The error value is very low and shows high accuracy and reliability of the data sensed by the CoSense Units. 
Figure 6d shows the empirical cumulative distribution function (CDF) to understand the PM2.5 measurement 
offset between the reference monitor and the two sensors. It can be observed that more than 85% of the 
observations have an offset below 5 µg/m3 . A statistical summary of the co-located data is presented in Table 1. 
The statistical parameters show strong similarity between the data obtained from the reference monitor and 
two CoSense Units.

Inter-unit variability Inter-unit variability is an important method to measure the similarity of data produced 
by the same sensor units. It is a useful metric that has been widely used to measure the data reproducibility of 
sensor units40,54. For this study, two CoSense Units were collocated and the PM2.5 data were analyzed to under-
stand the similarity in data reported by the two units. The study was conducted between 3 August 2021 and 31 
August 2021. Figure 7 shows the line plot based on the data obtained from two units. The data from both the 
units show a similar trend, except for some outliers. The data was sampled every 5 minutes. For analysis, the 
data were aggregated to hourly data. Two units were compared for a total of 681 h. As observed in Table 2, the 
data from the two units showed high similarity. The comparison showed similarities in the observed mean and 
standard error. Strong linearity was observed over the entire range of hourly averaged PM2.5 data.

Sensor sustainability analysis As discussed earlier in the Introduction, the environmental sustainability of IoT 
devices is also a critical component when discussing resource efficiency. Most sensors-related studies usually 
look into the power consumed by the sensors to address the environmental sustainability of low-cost sensor 
technology. This work looks at environmental sustainability through a different lens by examining the energy 
consumption of the IoT device as well as understanding the carbon footprint of the sensor code. To the best of 
our knowledge, there is no work within air quality monitoring literature that looks into this aspect of sensors. 
This can potentially help in promoting sensor code optimization as well as resource-aware IoT deployment. For 
this study, the focus was on two parameters: Emissions (Emissions as CO2-equivalents, kg of CO2 emitted per 
kilowatt-hour of electricity) and Energy Consumed (power consumed in kilowatt-hours). A CoSense Unit with a 

Figure 5.   Flowchart of CoSense Unit software.
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sampling frequency of 1 h would emit approximately 0.029 kg of CO2 for a month of regular sampling. Similarly, 
the energy consumption for one month’s use of the CoSense Unit would be approximately 0.072 kilowatt-hours. 
To put these values in context, watching Netflix for half an hour produces 0.4 kg of CO2

57, and running an air 
purifier for 12 h would use 0.60 kilowatt-hours58. These values can give us an idea about how properly designed 
and optimized sensors can potentially be used in a sustainable way for monitoring the environment in the long 
run.

Data analysis and visualization.  A key part of any IoT infrastructure is an intuitive and efficient data 
analysis and visualization platform. IoT devices produce a massive amount of data and to make sense of such 
that it is important to have user-friendly platforms that can be easily used by experts as well as non-experts. Soc-
IoT framework provides two options to visualize and analyze sensor data. The first option uses the in-built data 
analysis and visualization feature of the ThingSpeak platform. It allows the users to visualize data in real-time, 
create interactive graphs, set alerts, and statistically analyze the data using MATLAB functions. In addition to 
this, another non-sensor-specific sensor data analysis and visualization application called exploreR is proposed.

exploreR is an open-source online application that has been developed using the Shiny package in the R 
programming language. RShiny package has been widely used in recent years to create interactive applications 
for data analysis and visualizations59–61. Such applications have been used as a motivation to create exploreR that 

Figure 6.   (a) Red dot on the map shows the field test location, (b) Co-location setup at NABEL monitoring 
station, (c) Line plot of PM2.5 data obtained from two CoSense Units located with the reference monitor at 
NABEL station, and (d) CDF of the difference between the PM2.5 values recorded by the reference monitor and 
two sensors (S1 and S2).

Table 1.   Summary statistics of PM2.5 (g/m3 ) values recorded by the reference station and two CoSense units.

Reference PM2.5 Sensor 1 PM2.5 Sensor 2 PM2.5

Mean 5.09 5.04 5.43

Standard Error 0.31 0.27 0.31

Median 3.95 3.99 4.42

Standard Deviation 3.12 2.75 3.10

Sample Variance 9.75 7.55 9.57

Minimum 1.20 2.43 2.54

Maximum 14.1 15.5 16.32
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is designed to reduce the technical barriers especially related to coding when it comes to analyzing and visualizing 
citizen-generated data. The next few paragraphs explain the design and architecture of the exploreR application.

Design and architecture exploreR is designed as an intuitive and easy-to-use sensor data analysis and visualiza-
tion. The application Graphical User Interface (GUI) is designed in a way that guides the user during the analysis 
process. Figure 8 shows a snapshot of the GUI of the exploreR application. The left column of the GUI (Fig. 8a) 
holds the main functions that expand once the user decides to use them for data analysis. Figure 8b and c shows 
different functions supported by the exploreR application. The application framework is designed in a way that 
follows a series of steps that cover the complete cycle of data input, pre-processing, visualization, and analysis. 
Figure 9 shows the schematic representation of the exploreR pipeline.

While designing exploreR, one of the objectives was to create an application that would facilitate usability 
for people from diverse backgrounds. Different integrated workflows within the application allow the user to 
meaningfully interpret the data without any need for coding. Here is a summary of functions supported by the 
current version of the application:

•	 Data Processing: The application accepts the data in CSV format and allows the users to filter rows/columns 
as well as view data summary and plot the raw data. The plots are generated using Plotly which is an interac-
tive graphing library. The generated plots can easily be analyzed using the inbuilt functions like zoom-in/
zoom-out, rescaling, among others. The users can save the generated plots in PNG format.

•	 Outlier Detection: The users can use sophisticated statistical and machine learning methods like k-Nearest 
Neighbour, ARIMA, and Artificial Neural Networks (ANN) to perform anomaly and outlier detection. Data 
reliability is an important topic that is widely discussed in low-cost sensor literature55,62,63. The outlier detec-
tion function allows the user to look for anomalies, plot them and later clean them using state-of-the-art 
methods.

•	 Gap Filling: This function allows the users to fill gaps due to missing data or gaps that are generated after 
removing the outliers in the previous stage. The current version of the application supports two methods: 
linear interpolation and Kalman filter. These methods have been used due to their widespread use in sensor 
literature as well as overall accuracy64,65.

Figure 7.   Line plot of PM2.5 data obtained from two collocated CoSense Units.

Table 2.   Summary statistics of PM2.5 (g/m3 ) values recorded by two CoSense Units.

Sensor1 PM2.5 Sensor2 PM2.5

Mean 4.86 4.86

Standard Error 0.06 0.06

Median 4.67 4.56

Standard Deviation 1.60 1.62

Sample Variance 2.55 2.62

Minimum 1.86 1.74

Maximum 10.05 12.51
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•	 Exploratory Data Analysis: This feature allows the users to implement different functions on the dataset to 
understand the data in more detail as well observe the strengths of the relationship between different variables 
within the data set. The users can use the Correlation Matrix function to calculate Pearson correlation. Such 
information can be valuable while creating sensor calibration models66. The users can also create box plots 
and histograms to perform a visual analysis of data. The plots can be downloaded as files in PNG format.

•	 Data Forecasting: exploreR also has features that can be used for more advanced analysis and understanding 
of the air quality data. The application allows users to use advanced machine learning algorithms to perform 
data forecasts. PM2.5 forecast is a major challenge as has been widely studied by researchers in atmospheric 
science, environment monitoring, and computer science domains. The data forecast functions allow the 
users to use methods ranging from simple to more complex to analyze which method performs well. The 
current version supports methods like Linear Regression (LR), Random Forest (RF) Model, XGBoost, and 
ANN. The reason for selecting these models is their widespread use in time-series forecasting research66,67. 
Having multiple models allow users to compare model performance and potentially use those findings for 
creating real-time forecasting applications. The forecasting results can be viewed in the application as well 
as downloaded in CSV format.

Figure 8.   Screenshot showing some of the features of the exploreR GUI: (a) Landing page, (b) Box plot 
function window, and (c) Data forecast function window.
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•	 Data Aggregation: Different air quality sensors are programmed to record data at a different frequencies. 
Sometimes the data may be too granular or not granular at all. This can lead to an imbalanced time series 
and adversely impact the overall analysis. To address this challenge, exploreR allows the users to downsample 
the data to daily, weekly, monthly and yearly data. The user can either use the sum or mean to aggregate the 
data. The aggregated data can be downloaded in CSV format.

exploreR is a major component of the Soc-IoT framework and is aimed at the easy analysis of sensor data as 
well as assisting citizen scientists, policymakers, researchers from non-programming backgrounds to perform 
data analysis. Furthermore, exploreR facilitates the easy export of figures and files that can be used for reporting 
data, publications, and data dissemination.

Comparison with existing applications.  To understand how this application contributes to the field of 
open-source sensor data analysis, exploreR is compared with similar air quality sensor data analysis applications 
and softwares61,68–71. Different applications and softwares have been proposed over the years, with each of them 
having some strengths and weaknesses. Most of the applications are usually designed for the data from a specific 
sensor. It works well for data from particular sensors, but with data from different IoT devices, it might not 
work well. This is mainly due to different data formats as well as the organization of the data. Similarly, with 
programming-intensive tools, users who are technically experienced can easily analyze the data but it becomes 
difficult in case the user has no background in programming languages. Keeping these points in mind, exploreR 
is designed as a non-sensor-specific application that doesn’t require any prior knowledge of programming. 
This allows the users to analyze data from different sensors with ease and without worrying about technical 

Figure 9.   Schematic of the exploreR pipeline.
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complexities. At the same time, the open-source nature of the application allows the users with training in 
programming to improve the existing framework by using their skills to add more functions to the application.

Table 3 compares exploreR with other existing open-source tools and softwares that have been widely used for 
analyzing air quality data obtained using low-cost sensors. Most of the existing solutions are designed keeping in 
mind specific sensors and user groups. The comparison highlights that exploreR successfully combines features 
that allow the analysis of data from different sensors without any need for programming.

Discussion.  Soc-IoT improves the accessibility to environmental data and promotes community engagement 
by capitalising on the recent advancements and developments of low-cost environmental monitoring sensors 
as well as open-source data analysis packages. It represents a novel opportunity for the citizens as well as the 
researchers to monitor environment using the CoSense Unit that is built using“off-the-shelf ” hardware. The 
exploreR application on the other hand allows detailed and reproducible analysis of sensor data. Such an open-
source tool can potentially bridge the gap between experts and non-experts as well as allow citizen scientists 
to add context while analyzing their data, which is often missing when data is evaluated by a third party. Soc-
IoT has been designed as a citizen-centric platform where users can benefit from hands-on experience when 
it comes to using environmental monitoring sensors. The open-source nature of the framework allows for 
continuous development of the Soc-IoT framework while also encouraging wider community participation in 
environmental monitoring tasks. The methodology used for CoSense Unit validation is representative of widely 
used quality assurance and quality control methods for low-cost sensors. Despite the challenges of using low-
cost sensors, the CoSense Unit performed well in terms of data quality when compared to data from official air 
quality monitoring stations. In terms of sensor sustainability, the CoSense Unit can be utilized for resource-
aware IoT deployment, which not only considers the IoT device’s energy usage but also ensures that the sensor 
code consumes as little energy as possible. This also opens up the possibility of supplementing the official 
environmental monitoring system with a low-cost environmental sensing framework. As highlighted in a recent 
study72, technological complexity and limited interaction between key stakeholders are some of the key barriers 
to participatory citizen science. The modular and transparent nature of Soc-IoT framework allows it to be used 
for participatory citizen science activities that could promote citizen engagement and allow communities and 
decision-makers to collaborate on major environmental issues.

Conclusion and future work
Leveraging the growth in the IoT and its interplay with sustainable practices and open-source principles, this 
paper proposes Soc-IoT, a proof-of-concept framework for citizen-centric environmental monitoring. The 
framework promotes accurate and efficient environmental monitoring by integrating open-source hardware 
and software. The CoSense Unit is built with readily available low-cost hardware components that can be used 
by researchers, citizens, and the maker community to create their own sensing devices. Because of the ease of 
access and low cost of these hardware components, the CoSense Unit can also be used in locations that have 
limited resources and budget for environmental monitoring. The performance and accuracy of the CoSense 
Units is extensively evaluated by co-locating them at an official air quality monitoring station equipped with 
reference-equivalent instrumentation in Dubendorf, Switzerland. Additionally, quality assurance was performed 
by studying the inter-unit variability. With a modular design, easy assembly, and intuitive data analysis interface, 
the Soc-IoT framework can assist in air pollution exposure assessment as well as comprehensive analysis of air 
quality data. The exploreR application is designed to reduce technical barriers, particularly those related to pro-
gramming. It offers both experts and non-experts a wide range of data analysis and visualization functionalities 
that support visual inspection of data, data cleaning, and detailed data analysis.

The core part of the framework focuses on enhancing embedded spatial intelligence where citizen empow-
erment meets smart environments and sustainable design.The proposed framework has the potential to foster 
collaboration among a wide range of stakeholders, including scientists, policymakers, and citizens and maker 
community. The CoSense Unit’s reliability and accuracy enable it to potentially complement official environ-
mental monitoring networks. The extensible and open-source nature of Soc-IoT framework would encourage 
others to use it as a development platform rather than reinventing everything from scratch. To strengthen the 
science-policy-society interface, the Soc-IoT framework can also be used to facilitate co-creation and Citizen 

Table 3.   Comparison of exploreR with other air quality data analysis tools and softwares.

Name
Open
Source GUI

Sensor
Specific

Programming
Requirement

Data
Analysis

Data
Visualization

Data
Forecast

OpenAir68 Yes – No Yes Yes Yes Yes

AirSensor69 Yes – Yes Yes Yes Yes No

Vayu70 Yes Desktop-based No No Yes Yes No

Data Viewer69 Yes Web-based Yes No Yes Yes No

Sense Your
Data61 Yes Web-based Yes No Yes Yes No

PWFSLSmoke71 Yes – No Yes Yes Yes Yes

exploreR Yes Web-based No No Yes Yes Yes
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Science activities. Besides supporting data democratization, it can be used to create an environment where 
citizens’ opinions, observations, and expertise are valued and used to facilitate a dialogue with decision-makers.

The framework presented in this paper demonstrates the feasibility of using open-source low-cost IoT tech-
nology in environmental monitoring applications. Therefore, the work presented here can be used for future 
research. Although the environmental sustainability of IoT devices has been considered as part of this work, 
there are other aspects that could not be considered due to time constraints, such as the social and economic 
sustainability of IoT. Future work will look into the social and economic viability of the technological solutions 
discussed in this paper. Another future research direction would be to investigate data-related issues such as 
user data security and privacy, as well as to evaluate various privacy preservation techniques to protect user data. 
In order to improve the system’s scalability, future research will also look into dynamic calibration and edge 
analytics. Additional enhancements will be made to the data analysis tool, including improvement in the user 
interface and the addition of more functionalities. A key part of the future works would include conducting field 
experiments in collaboration with the research as well as the citizen science community to analyze the usability 
of the device for promoting environmental awareness.

Code availability
The sensor code, STL files for 3D printing as well as the code for explorR application are available freely at Github 
https://​github.​com/​sachi​t27/​Soc-​IoT. The exploreR application can be accessed using this link https://​sachi​tmaha​
jan.​shiny​apps.​io/​explo​reR/.

Received: 6 April 2022; Accepted: 17 August 2022

References
	 1.	 Liang, W. & Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput.: 

Inform. Syst. 21, 1–9 (2019).
	 2.	 Jacyna, M., Wasiak, M., Lewczuk, K. & Karoń, G. Noise and environmental pollution from transport: Decisive problems in 

developing ecologically efficient transport systems. J. Vibroeng. 19, 5639–5655 (2017).
	 3.	 Zachos, E. Too Much Light at Night Causes Spring to Come Early (2016).
	 4.	 Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions 

exist. Int. J. Environ. Res. Public Health 15, 16 (2018).
	 5.	 WHO. Ambient (outdoor) air quality and health. Tech. Rep. (2014).
	 6.	 Hamanaka, R. B. & Mutlu, G. M. Particulate matter air pollution: effects on the cardiovascular system. Front. Endocrinol. 9, 680 

(2018).
	 7.	 Riojas-Rodríguez, H., da Silva, A. S., Texcalac-Sangrador, J. L. & Moreno-Banda, G. L. Air pollution management and control in 

Latin America and the Caribbean: Implications for climate change. Rev. Panam. Salud Publica 40, 150–159 (2016).
	 8.	 Wu, S.-C., Wu, D.-Y., Ching, F.-H. & Chen, L.-J. Participatory sound meter calibration system for mobile devices. In Proceedings 

of the 18th Conference on Embedded Networked Sensor Systems, 709–710 (2020).
	 9.	 Batty, M. et al. Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 481–518 (2012).
	10.	 Cappa, F., Franco, S. & Rosso, F. Citizens and cities: Leveraging citizen science and big data for sustainable urban development. 

Bus. Strateg. Environ. 31, 648–667 (2022).
	11.	 Bakry, S. H., Al-Saud, B. A., Alfassam, A. N. & Alshehri, K. A. A framework of essential requirements for the development of smart 

cities: Riyadh city as an example. In Smart Cities: Issues and Challenges, 219–239 (Elsevier, 2019).
	12.	 Kumar, P. et al. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015).
	13.	 DiBona, C. & Ockman, S. Open sources: Voices from the open source revolution (“O’Reilly Media, Inc.”, 1999).
	14.	 Lichten, C., Ioppolo, R., D’Angelo, C., Simmons, R. K. & Jones, M. M. Citizen science: Crowdsourcing for research (THIS, Institute, 

2018).
	15.	 Chen, L.-J. et al. An open framework for participatory pm2.5 monitoring in smart cities. IEEE Access 5, 14441–14454 (2017).
	16.	 Castell, N. et al. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?. Environ. 

Int. 99, 293–302 (2017).
	17.	 Mahajan, S. et al. A citizen science approach for enhancing public understanding of air pollution. Sustain. Cities Soc. 52, 101800 

(2020).
	18.	 OpenAQ. Fighting air inequality through open data and community (2021).
	19.	 Mahajan, S., Luo, C.-H., Wu, D.-Y. & Chen, L.-J. From do-it-yourself (diy) to do-it-together (dit): Reflections on designing a 

citizen-driven air quality monitoring framework in taiwan. Sustain. Cities Soc. 66, 102628 (2021).
	20.	 Pritchard, H. & Gabrys, J. From citizen sensing to collective monitoring: Working through the perceptive and affective problematics 

of environmental pollution. GeoHumanities 2, 354–371 (2016).
	21.	 Commodore, A., Wilson, S., Muhammad, O., Svendsen, E. & Pearce, J. Community-based participatory research for the study of 

air pollution: a review of motivations, approaches, and outcomes. Environ. Monit. Assess. 189, 1–30 (2017).
	22.	 Mahajan, S., Wu, W.-L., Tsai, T.-C. & Chen, L.-J. Design and implementation of iot-enabled personal air quality assistant on instant 

messenger. In Proceedings of the 10th International Conference on Management of Digital EcoSystems, 165–170 (2018).
	23.	 Toma, C., Alexandru, A., Popa, M. & Zamfiroiu, A. Iot solution for smart cities’ pollution monitoring and the security challenges. 

Sensors 19, 3401 (2019).
	24.	 Pigliautile, I., Marseglia, G. & Pisello, A. L. Investigation of co2 variation and mapping through wearable sensing techniques for 

measuring pedestrians’ exposure in urban areas. Sustainability 12, 3936 (2020).
	25.	 Pigliautile, I. & Pisello, A. L. A new wearable monitoring system for investigating pedestrians’ environmental conditions: 

Development of the experimental tool and start-up findings. Sci. Total Environ. 630, 690–706 (2018).
	26.	 Pigliautile, I. & Pisello, A. Environmental data clustering analysis through wearable sensing techniques: New bottom-up process 

aimed to identify intra-urban granular morphologies from pedestrian transects. Build. Environ. 171, 106641 (2020).
	27.	 Chen, L.-J. et al. Adf: An anomaly detection framework for large-scale pm2.5 sensing systems. IEEE Internet Things J. 5, 559–570 

(2017).
	28.	 Camprodon, G. et al. Smart citizen kit and station: An open environmental monitoring system for citizen participation and 

scientific experimentation. HardwareX 6, e00070 (2019).
	29.	 Luo, C.-H., Yang, H., Huang, L.-P., Mahajan, S. & Chen, L.-J. A fast pm2. 5 forecast approach based on time-series data analysis, 

regression and regularization. In 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI), 78–81 (IEEE, 
2018).

https://github.com/sachit27/Soc-IoT
https://sachitmahajan.shinyapps.io/exploreR/
https://sachitmahajan.shinyapps.io/exploreR/


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14416  | https://doi.org/10.1038/s41598-022-18700-z

www.nature.com/scientificreports/

	30.	 Ma, J. et al. A lag-flstm deep learning network based on bayesian optimization for multi-sequential-variant pm2.5 prediction. 
Sustain. Cities Soc. 60, 102237 (2020).

	31.	 Cordova, C. H. et al. Air quality assessment and pollution forecasting using artificial neural networks in metropolitan Lima-Peru. 
Sci. Rep. 11, 1–19 (2021).

	32.	 Kirimtat, A., Krejcar, O., Kertesz, A. & Tasgetiren, M. F. Future trends and current state of smart city concepts: A survey. IEEE 
Access 8, 86448–86467 (2020).

	33.	 Van Oudheusden, M. & Abe, Y. Beyond the grassroots: Two trajectories of “citizen sciencization” in environmental governance. 
(2021).

	34.	 Mahajan, S., Hausladen, C. I., Sánchez-Vaquerizo, J. A., Korecki, M. & Helbing, D. Participatory resilience: Surviving, recovering 
and improving together. Sustainable Cities and Society 103942 (2022).

	35.	 WebofScience. Web of Science Database (2022).
	36.	 Aria, M. & Cuccurullo, C. bibliometrix: An r-tool for comprehensive science mapping analysis. J. Informet. 11, 959–975 (2017).
	37.	 Lu, H., Halappanavar, M. & Kalyanaraman, A. Parallel heuristics for scalable community detection. Parallel Comput. 47, 19–37 

(2015).
	38.	 Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M. & Bonavitacola, F. Calibration of a cluster of low-cost sensors for the 

measurement of air pollution in ambient air. In SENSORS, 2014 IEEE, 21–24 (IEEE, 2014).
	39.	 Balestrini, M., Kotsev, A., Ponti, M. & Schade, S. Collaboration matters: Capacity building, up-scaling, spreading, and sustainability 

in citizen-generated data projects. Human. Soc. Sci. Commun. 8, 1–15 (2021).
	40.	 Mahajan, S., Gabrys, J. & Armitage, J. Airkit: A citizen-sensing toolkit for monitoring air quality. Sensors 21, 4044 (2021).
	41.	 Teh, H. Y., Kempa-Liehr, A. W., Kevin, I. & Wang, K. Sensor data quality: A systematic review. J. Big Data 7, 1–49 (2020).
	42.	 Grundy, J. Human-centric software engineering for next generation cloud-and edge-based smart living applications. In 2020 20th 

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), 1–10 (IEEE, 2020).
	43.	 Helbing, D. et al. Ethics of smart cities: Towards value-sensitive design and co-evolving city life. Sustainability 13, 11162 (2021).
	44.	 Fiore, E. Ethics of technology and design ethics in socio-technical systems: Investigating the role of the designer. FormAkademisk-

forskningstidsskrift for design og designdidaktikk13 (2020).
	45.	 Mao, F., Khamis, K., Krause, S., Clark, J. & Hannah, D. M. Low-cost environmental sensor networks: Recent advances and future 

directions. Front. Earth Sci. 7, 221 (2019).
	46.	 Mahajan, S. sachit27/soc-iot. https://​doi.​org/​10.​5281/​zenodo.​64978​79 (2022).
	47.	 Mois, G., Folea, S. & Sanislav, T. Analysis of three iot-based wireless sensors for environmental monitoring. IEEE Trans. Instrum. 

Meas. 66, 2056–2064 (2017).
	48.	 Kim, S. & Paulos, E. Inair: sharing indoor air quality measurements and visualizations. In Proceedings of the SIGCHI Conference 

on Human Factors in Computing Systems, 1861–1870 (2010).
	49.	 Sousan, S., Regmi, S. & Park, Y. M. Laboratory evaluation of low-cost optical particle counters for environmental and occupational 

exposures. Sensors 21, 4146 (2021).
	50.	 Tryner, J., Mehaffy, J., Miller-Lionberg, D. & Volckens, J. Effects of aerosol type and simulated aging on performance of low-cost 

pm sensors. J. Aerosol Sci. 150, 105654 (2020).
	51.	 Marques, G. & Pitarma, R. A cost-effective air quality supervision solution for enhanced living environments through the internet 

of things. Electronics 8, 170 (2019).
	52.	 Dang, C. T., Seiderer, A. & André, E. Theodor: A step towards smart home applications with electronic noses. In Proceedings of 

the 5th international Workshop on Sensor-based Activity Recognition and Interaction, 1–7 (2018).
	53.	 Sanner, M. F. et al. Python: A programming language for software integration and development. J. Mol. Graph. Model. 17, 57–61 

(1999).
	54.	 Tagle, M. et al. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. 

Assess. 192, 1–18 (2020).
	55.	 Fishbain, B. et al. An evaluation tool kit of air quality micro-sensing units. Sci. Total Environ. 575, 639–648 (2017).
	56.	 Bulot, F. M. et al. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. 

Sci. Rep. 9, 1–13 (2019).
	57.	 IEA. The carbon footprint of streaming video: fact-checking the headlines (2020).
	58.	 Carbon of Air Purifiers, R. Air Purifier Electricity Consumption Calculator in kWh & Cost(\$) (2022).
	59.	 Yu, Y., Ouyang, Y. & Yao, W. shinycircos: An r/shiny application for interactive creation of Circos plot. Bioinformatics 34, 1229–1231 

(2018).
	60.	 Nisa, K. K., Andrianto, H. A. & Mardhiyyah, R. Hotspot clustering using dbscan algorithm and shiny web framework. In 2014 

international conference on advanced computer science and information system, 129–132 (IEEE, 2014).
	61.	 Mahajan, S. & Kumar, P. Sense your data: Sensor toolbox manual, version 1.0 (2019).
	62.	 Maag, B., Zhou, Z. & Thiele, L. A survey on sensor calibration in air pollution monitoring deployments. IEEE Internet Things J. 5, 

4857–4870 (2018).
	63.	 Cross, E. S. et al. Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating 

measurements. Atmos. Measur. Techn. 10, 3575–3588 (2017).
	64.	 Dorich, C. D. et al. Global research alliance n2o chamber methodology guidelines: Guidelines for gap-filling missing measurements. 

J. Environ. Qual. 49, 1186–1202 (2020).
	65.	 Alavi, N., Warland, J. S. & Berg, A. A. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a 

Kalman filtering approach. Agric. For. Meteorol. 141, 57–66 (2006).
	66.	 Mahajan, S. & Kumar, P. Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustain. Cities Soc. 57, 

102076 (2020).
	67.	 Pan, B. Application of xgboost algorithm in hourly pm2.5 concentration prediction. In IOP Conference Series: Earth and 

Environmental Science, vol. 113, 012127 (IOP publishing, 2018).
	68.	 Carslaw, D. C. & Ropkins, K. Openair-an r package for air quality data analysis. Environ. Model. Softw. 27, 52–61 (2012).
	69.	 Feenstra, B., Collier-Oxandale, A., Papapostolou, V., Cocker, D. & Polidori, A. The airsensor open-source r-package and dataviewer 

web application for interpreting community data collected by low-cost sensor networks. Environ. Model. Softw. 134, 104832 (2020).
	70.	 Mahajan, S. Vayu: An open-source toolbox for visualization and analysis of crowd-sourced sensor data. Sensors 21, 7726 (2021).
	71.	 Callahan, J. et al. Pwfslsmoke: Utilities for working with air quality monitoring data. R Packag. Version 1, 111 (2019).
	72.	 Mahajan, S. et al. Translating citizen-generated air quality data into evidence for shaping policy. Human. Soc. Sci. Commun. 9, 

1–18 (2022).

Acknowledgements
The author acknowledges support through the project “CoCi: Co-Evolving City Life”, which has received funding 
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No. 833168. The author would like to thank Mr. Beat Schwarzenbach and 
Dr. Christoph Hüglin who supported in testing the CoSense Units at the NABEL facility at Empa, Dubendorf, 

https://doi.org/10.5281/zenodo.6497879


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14416  | https://doi.org/10.1038/s41598-022-18700-z

www.nature.com/scientificreports/

and Mr. Manuel Knott for designing the 3D model for the CoSense Unit enclosure. The author also wishes to 
thank Christoph Laib, Thomas Maillart, Stefan Klauser, and Octanis Instruments for their early work related to 
air quality sensors during the Climate City Cup initiative, and Sensirion for donating the SPS30 modules. Special 
thanks are due to the CoCi project team for their contribution during the development of the CoSense Unit.

Author contributions
S.M. conceptualized the idea, prototyped the device, created the R-Shiny application, performed the data analysis 
and wrote the manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Design and development of an open-source framework for citizen-centric environmental monitoring and data analysis
	Methods
	System architecture. 
	Hardware implementation. 
	Software implementation. 

	Results and discussion
	Sensor validation. 
	Data analysis and visualization. 
	Comparison with existing applications. 
	Discussion. 

	Conclusion and future work
	References
	Acknowledgements


