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A meta-analysis of genome-wide association
studies identifies multiple longevity genes
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Human longevity is heritable, but genome-wide association (GWA) studies have had limited

success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity

phenotype definition including 11,262/3484 cases surviving at or beyond the age corre-

sponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age

at death or at last contact was at or below the age corresponding to the 60th survival

percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is

associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412

(ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with

lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a

role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of

the longevity GWA results with that of several disease-related phenotypes points to a shared

genetic architecture between health and longevity.
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The average human life expectancy has been increasing for
centuries1. Based on twin studies, the heritability of human
lifespan has been estimated to be ~25%, although this

estimate differs among studies2. On the other hand, the herit-
ability of lifespan based on the correlation of the mid-parent (i.e.,
the average of the father and mother) and offspring difference
between age at death and expected lifespan was estimated to be
12%3. A recent study has indicated that the different heritability
estimates may be inflated due to assortative mating, leaving a true
heritability that is below 10%4. The heritability of lifespan, esti-
mated using the sibling relative risk, increases with age5 and is
assumed to be enriched in long-lived families, particularly when
belonging to the 10% longest-lived of their generation6. To iden-
tify genetic associations with human lifespan, several genome-wide
association (GWA) studies have been performed7–20. These stu-
dies have used a discrete (i.e., older cases versus younger controls)
or a continuous phenotype (such as age at death of individuals or
their parents). The selection of cases for the studies using a dis-
crete longevity phenotype has been based on the survival to ages
above 90 or 100 years or belonging to the top 10% or 1% of
survivors in a population. Studies defining cases using a discrete
longevity phenotype often need to rely on controls from more
contemporary birth cohorts, because all others from the case birth
cohorts have died before sample collection. Previous GWA studies
have identified several genetic variants, but the only locus that has
shown genome-wide significance (P ≤ 5 × 10−8) in multiple
independent meta-analyses of GWA studies is apolipoprotein E
(APOE)21, where the ApoE ε4 variant is associated with lower
odds of being a long-lived case.

The lack of replication for many reported associations with
longevity could be due, at least partly, to the use of different
definitions for cases and controls between studies. Furthermore,
even within a study, the use of a single age cut-off phenotype for
men and women and for individuals belonging to different birth
cohorts will give rise to heterogeneity, as survival probabilities
differ by sex and birth cohort22, and genetic effects are known to
be age- and birth cohort-specific5,23. In an attempt to mitigate the
effects of heterogeneous case and control groups, we use country-,
sex- and birth cohort-specific life tables to identify ages that
correspond to different survival percentiles to define cases and
controls in our meta-analyses of GWA studies of longevity.
Furthermore, most studies in our meta-analyses use controls from
the same study population as the cases, which limits the impact of
sampling biases that could confound associations. The current
meta-analyses include individuals from 20 cohorts from popu-
lations of European, East Asian, or African American descent.
Two sets of cases are examined: individuals surviving at or
beyond the age corresponding to the 90th survival percentile
(90th percentile cases) or the 99th survival percentile (99th per-
centile cases) based on life tables specific to the country where
each cohort was based, sex, and birth cohort (i.e., birth year). The
same country-, sex-, and birth cohort-specific life tables are used
to define the age threshold for controls, corresponding to the 60th
percentile of survival. We identify two genome-wide significant
loci, of which one is replicated in two independent European
cohorts that use de novo genotyping. We also perform a gene-
level association analysis based on tissue-specific gene expression
and identify additional longevity genes. In addition, using linkage
disequilibrium (LD) score regression24, we show that longevity is
genetically correlated with multiple diseases and traits.

Results
Genome-wide association meta-analyses. We performed two
meta-analyses in individuals of European ancestry combining

cohort-specific genome-wide association data generated using
1000 Genomes imputation: (1) 90th percentile cases versus all
controls and (2) 99th percentile cases versus all controls. The
numbers of cases and controls in each study are shown in Table 1.
For both case definitions, multiple genetic variants at the well-
replicated APOE locus reached genome-wide significance (P ≤
5 × 10−8) (Table 2, Fig. 1 and Supplementary Fig. 1). Consistent
with previous reports, rs429358 (ApoE ε4) was associated with
lower odds of surviving to the 90th or 99th percentile age at the
genome-wide significance level. In addition, we report a genome-
wide significant association of rs7412 (ApoE ε2) with higher odds
of surviving to the 90th and the 99th percentile age. Conditional
analysis in two of the cohorts with individuals of European
ancestry, CEPH and LLS (combined with GEHA Dutch) (repre-
senting 18% of the 90th percentile cases and 6% of all controls),
indicated that the signal at the APOE locus was explained by these
two independent variants, i.e., rs429358 (ApoE ε4) and rs7412
(ApoE ε2). There was no evidence of heterogeneity of effect
across cohorts for ApoE ε2 (P-value for heterogeneity (Phet)=
0.619, Table 2). For ApoE ε4, on the other hand, there was evi-
dence of heterogeneity (Phet= 0.004, Table 2), although the
direction of effect of this variant was consistent across cohorts
(Fig. 2). Besides ApoE ε4 and ε2, one additional variant,
rs7676745, located on chromosome 4 near GPR78, showed a
genome-wide significant association in the 90th percentile cases
versus all controls analysis (P= 4.3 × 10−8, Table 2). The rare
allele of this variant (A) was associated with lower odds of sur-
viving to the 90th percentile age and there was no evidence of
heterogeneity of effect across cohorts (Phet= 0.462, Table 2). The
regional association and forest plots for this locus are depicted in
Figs. 1 and 2.

Most of the variants reported in Table 2 show stronger effects
in the 99th percentile as compared to the 90th percentile analysis
(Supplementary Fig. 2), indicating that the use of a more extreme
phenotype results in stronger effects.

Replication. The effects of ApoE ε4 and ε2 were replicated in the
two cohorts (i.e., DKLSII and GLS) in which de novo genotyping,
using predesigned Taqman SNP Genotyping Assays, was applied
(Table 2). However, we were not able to replicate the effect of
rs7676745 in these cohorts, since there was no Taqman SNP
Genotyping Assay available for this variant.

Validation in parental age-based data sets. Given that all
available studies with genome-wide genetic data that met our
inclusion criteria were included in our genome-wide association
meta-analyses, we additionally set out to validate our findings in
two UK Biobank parental longevity data sets (Table 1) and the
parental lifespan data set recently created by Timmers and col-
leagues20. Since the genotyped individuals in the UK Biobank
were recruited at relatively young ages (40–69 years), these data
sets were based on the age reached by the parents of the study
participants. Hence, the phenotypes used for validation were
different from those used in our meta-analyses, resulting in
smaller effect sizes. Moreover, the reference panels used to impute
the genetic variants (a merged panel of UK10K, 1000G Phase 3,
and Haplotype Reference Consortium (HRC) for parental long-
evity and HRC alone for parental lifespan)20 were different from
the one used in our meta-analyses (1000G Phase 1), which could
have influenced the outcome of the analyses. Of the variants that
showed a P-value ≤ 1 × 10−6 in our meta-analyses (Table 2), only
ApoE ε4 and ε2 were significantly associated with both parental
longevity and lifespan (P < 0.05) in these data sets (Table 3).
Moreover, the rare allele (A) of the second most significant
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Table 1 Samples included in the different genome-wide association meta-analyses or the replication and validation

Study Ancestry 90th percentile cases 99th percentile cases All controls Dead controls

Discovery
100-plus/LASA/ADC European 373 301 2271 245
AGES European 300 1001 466
CEPHa European 1234 1112 831
CHS European 905 68 558 539
DKLSa European 960 610 1917
FHS European 332 1444 539
GEHA Danisha European 451 127 900
GEHA French European 271 81 358
GEHA Italy European 182 184
HRS European 361 3312 657
LLFS European 1110 339 552 82
LLS+GEHA Dutch European 1037 377 712
Longevity European 548 271 584
MrOS European 1171 82 386 320
Newcastle 85+ a European 215 5159
RS European 774 79 2965 1731
SOF European 812 37 354 300
Vitality 90+ a European 226 1995
Total 11,262 3484 25,483 4879

Replication
DKLSIIa European 944 298 772
GLS European 1613 1613 4215
Total 2557 1911 4987

Validation
UK Biobank European 19,742 928 19,698

Trans-ethnic
CLHLS East Asian 2178 2178 2299
CHS African American 177 211
Total 13,617 5662 27,993

100-plus 100-plus Study, LASA Longitudinal aging study of Amsterdam, ADC Amsterdam dementia cohort, AGES Age/Gene Environment Susceptibility Study, CEPH CEPH centenarian cohort, CHS
Cardiovascular Health Study, DKLS Danish longevity study, FHS Framingham Heart Study, GEHA Genetics of Healthy Aging Study, HRS Health and Retirement Study, LLFS Long Life Family Study, LLS
Leiden Longevity Study, Longevity Longevity Gene Project, MrOS Osteoporotic Fractures in Men Study, Newcastle 85+ Newcastle 85+ Study, RS Rotterdam study, SOF Study of Osteoporotic Fracture,
Vitality 90+ Vitality 90+ project, GLS German longevity study, CLHLS Chinese Longitudinal Healthy Longevity Survey
aFor these studies, controls were provided by a separate cohort. Further details of the cohorts are provided in Supplementary Data 4

Table 2 Results of the European genome-wide association meta-analyses and replication in the de novo genotyped cohorts

rsID Chr:Position Candidate/
closest gene

Alleles (EA/
OA)

EAF OR 95% CI P I2 (%) Phet

90th percentile cases versus all controls (Discovery)
rs116362179 2:53,380,757 − T/C 0.05 1.34 1.20–1.50 4.9 × 10−7 0 0.457
rs7676745a 4:8,565,547 GPR78 A/G 0.04 0.67 0.57–0.77 4.3 × 10−8 0 0.462
rs7754015 6:127,206,068 − G/T 0.43 0.90 0.86–0.94 6.8 × 10−7 0 0.670
rs35262860 8:55,478,909 RP1 GCT/G 0.39 1.11 1.07–1.15 3.9 × 10−7 0 0.941
rs3138136 12:56,117,570 RDH5 T/C 0.10 0.83 0.77–0.89 5.4 × 10−7 14.5 0.284
rs429358 19:45,411,941 APOE C/T 0.13 0.60 0.56–0.64 1.3 × 10−56 54.3 0.004
rs7412 19:45,412,079 APOE T/C 0.09 1.28 1.19–1.37 2.4 × 10−11 0 0.619

90th percentile cases versus all controls (Replication)
rs429358 19:45,411,941 APOE C/T 0.45 0.40–0.51 5.2 × 10−36 85.4 0.009
rs7412 19:45,412,079 APOE T/C 1.32 1.18–1.48 2.4 × 10−6 16.6 0.274

99th percentile cases versus all controls (Discovery)
rs3830412 3:124,397,321 KALRN A/AT 0.22 1.21 1.12–1.30 4.3 × 10−7 0 0.767
rs138762279 5:173,710,197 − AT/A 0.16 0.79 0.72–0.86 1.2 × 10−7 0 0.769
rs62502826 8:28,982,295 KIF13B A/G 0.15 1.23 1.13–1.33 5.6 × 10−7 14.9 0.298
rs7039467 9:22,056,213 CDKN2A/B A/G 0.48 1.20 1.12–1.28 1.1 × 10−7 0 0.843
rs429358 19:45,411,941 APOE C/T 0.13 0.52 0.47–0.58 3.9 × 10−34 0 0.833
rs7412 19:45,412,079 APOE T/C 0.09 1.47 1.32–1.64 3.2 × 10−12 0 0.639

99th percentile cases versus all controls (Replication)
rs429358 19:45,411,941 APOE C/T 0.44 0.38–0.50 4.0 × 10−32 84.0 0.012
rs7412 19:45,412,079 APOE T/C 1.35 1.19–1.53 2.0 × 10−6 0 0.534

EA effect allele, OA other allele, EAF effect allele frequency, OR odds ratio (i.e., odds to become long-lived when carrying the effect allele); 95% CI 95% confidence interval, I2 heterogeneity statistic, Phet
P-value for heterogeneity
aWe were not able to replicate the effect of this genetic variant, since there was no Taqman SNP Genotyping Assay available. We only report the most significant genetic variant for the loci with at least
one variant with a P-value ≤ 1 × 10–6. The rsID is based on dbSNP build 150. The Chr:Position is based on Genome Reference Consortium Human Build 37 (GRCh37)
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variant at the CDKN2A/B locus, rs2184061, was associated with
increased parental lifespan (P= 8.4 × 10−6), but not with parental
longevity (P= 0.329). However, we had adequate power to vali-
date all of our identified variants, even when the effect sizes were
halved in the parental longevity data sets.

Trans-ethnic meta-analyses. We subsequently performed two
trans-ethnic meta-analyses (90th and 99th percentile cases versus
all controls) to see if the increase in sample size would lead to
identification of additional longevity loci. In this analysis we
included individuals of European (all previously used data sets),
East Asian (CLHLS), and African American (CHS) ancestry.
However, with the exception of APOE and rs2069837, located in
IL6, which has previously been associated with longevity in
CLHLS9, this analysis did not identify additional genome-wide
significant loci (Table 4, Fig. 3 and Supplementary Fig. 3). The
observed association of the genetic variant in IL6 in the trans-
ethnic meta-analyses was mainly driven by the association in the
East Asian population. The other variant previously associated
with longevity in CLHLS9, rs2440012, located in ANKRD20A9P,
did not pass quality control in the large majority of the included
cohorts from populations of European descent and was thus not
analysed in the trans-ethnic meta-analyses.

Comparison of control definitions. To examine the impact of
the definition of controls, we performed a sensitivity analysis in
which we compared the results of the meta-analysis using the
same case definition (90th percentile) with (1) all controls and (2)
dead controls only. For this analysis, only cohorts that con-
tributed results using both control definitions were considered
(i.e., 100-plus/LASA/ADC, AGES, CHS, FHS, HRS, LLFS, MrOS,
RS, and SOF). The results of the two meta-analyses with different
control groups were very similar (Supplementary Fig. 4). Among
the three loci with at least one genetic variant with a P-value ≤
1 × 10−6 in either meta-analysis (and analysed in the same
cohorts in both meta-analyses), the most significant variants had
odds ratios (ORs) that differed by <1% (Supplementary Table 1).

Replication of previously identified loci for human lifespan. To
determine the association of previously identified loci for human
lifespan and longevity, we performed a look-up of the reported
genetic variants within these loci in our meta-analyses data sets.
The only previously identified loci that contained variants that
showed a significant (P < 7.8 × 10−4, i.e., Bonferroni adjusted for
the number of tested loci (n= 64)) and directionally consistent
associations in our study were FOXO3 and CDKN2A/B (Sup-
plementary Data 1). As depicted in Supplementary Fig. 5, the
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Fig. 1 Results of the European genome-wide association meta-analyses. Manhattan plot presenting the –log10 P-values from the European genome-wide
association meta-analysis of the 90th percentile cases versus all controls (a) and 99th percentile cases versus all controls (b). The red line indicates the
threshold for genome-wide significance (P≤ 5 × 10−8), while the blue line indicates the threshold for genetic variants that showed a suggestive significant
association (P≤ 1 × 10−6). The variants that are reported in Table 2 are highlighted in green. For representation purposes, the maximum of the y-axis was
set to 14. Regional association plot for the APOE (c) and GPR78 (d) loci based on the results from the 90th percentile cases versus all controls meta-
analysis. The colour of the variants is based on the linkage disequilibrium with rs429358 (ApoE ε4) (c) or rs7676745 (d)
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effects of the most frequently reported variants within these loci
(i.e., rs2802292 and rs1556516) fluctuate between cohorts and
there seems to be no correlation with the genetic background of
the included populations. However, for the reported variants
within both loci, the odds of surviving to the 99th percentile age is
higher than the odds of surviving to the 90th percentile age,
indicating they likely affect both early and late-life mortality.

Several of the loci that have been associated with increased
parental lifespan in the most recent and largest meta-analysis of
GWA studies for this phenotype (i.e., KCNK3, HTT, LPA,
ATXN2/BRAP, and LDLR)20 contain genetic variants that show a
nominal significant association (P < 0.05) with higher odds of

surviving to the 90th and/or 99th percentile age. Since the
phenotypes used in our study (i.e., cases surviving at or beyond
the age corresponding to the 90th/99th survival percentile) were
different from the one used in the previous study (i.e., parental
lifespan), we performed an additional look-up of these variants in
one of the UK Biobank data sets we created for validation of our
findings (i.e., the 90th percentile cases versus all controls data set).
With the exception of the variant in HTT, all variants showed a
nominal significant association in this data set (Supplementary
Table 2), indicating that the lack of significant replication of these
loci in our discovery phase data set is not likely to be due to a
difference in the used phenotype.
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Fig. 2 Study-specific results for the genetic variants in APOE and GPR78. Forest plots for the ApoE ε4 (a) and ε2 (b) variants and rs7676745 (c) based on
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when using the 1000 Genomes reference panel
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Gene-level association analysis. In addition to genetic variant
associations, GWA studies can also be used to identify gene-level
associations by integrating results from expression quantitative
trait locus (eQTL) studies that relate variants to gene expression.
In order to identify gene-level associations, we used MetaXcan, an
analytic approach that uses tissue-specific eQTL results from the
GTEx project to estimate gene-level associations with the trait
examined from summary-level GWA study results25. Tissue-
specific genetically predicted expression of 14 genes (ANKRD31,
BLOC1S1, KANSL1, CRHR1, ARL17A, LRRC37A2, ERCC1, RELB,
DMPK, CD3EAP, PVRL2, GEMIN7, BLOC1S3, and APOC2) was
significantly associated with survival to the 90th and/or 99th
percentile age after adjustment for multiple testing (Table 5).
Eight of these genes (ERCC1, RELB, DMPK, CD3EAP, PVRL2,
GEMIN7, BLOC1S3, and APOC2) are located near the APOE
gene, raising the likely possibility that these associations reflected
the influence of variants in this well-established longevity-asso-
ciated locus. The remaining genes are located on chromosome 5,
12, and 17. As depicted in Supplementary Data 2, distinct sets of
genetic variants were used by MetaXcan for all significant tissue-
specific gene expression associations with survival to the 90th
and/or 99th percentile age.

Genetic correlation analyses. LD score regression was performed
to determine the genetic correlation between the different case
definitions used for our meta-analyses (based on the results from
the European cohorts only), and between longevity and other
traits and diseases24. The genetic correlation (rg) between the
90th and 99th percentile analysis, using all controls for both
groups, was 1.01 (SE= 0.06, P= 3.9 × 10−66). Using LD Hub26,
which performs automated LD score regression, we subsequently

estimated the genetic correlation of our phenotypes with 246
diseases and traits available in their database. We found a sig-
nificant genetic correlation of our phenotypes with the father’s
age at death phenotype from the UK Biobank. The most sig-
nificant (negative) genetic correlation of both our phenotypes was
with coronary artery disease (CAD) (rg (SE)=−0.40 (0.07) and
rg (SE)=−0.29 (0.07), respectively) and several traits involved in
type 2 diabetes (T2D) also showed a significant association with
one or both phenotypes after Bonferroni adjustment for multiple
testing (Table 6 and Supplementary Data 3).

Discussion
We brought together studies from all over the world to perform
GWA study meta-analyses in over 13,000 long-lived individuals
of diverse ethnic background, including European, East Asian and
African American ancestry, to characterise the genetic archi-
tecture of human longevity. We used the 1000 Genomes reference
panel for imputation to expand the coverage of the genome in
comparison to previous GWA studies of longevity. Consistent
with previous reports, rs429358, defining ApoE ε4, was associated
with decreased odds of becoming long-lived. Moreover, we report
a genome-wide significant association of rs7412, defining ApoE
ε2, with increased odds of becoming long-lived. We additionally
found a genome-wide significant association of a locus near
GPR78. Gene-level association analysis revealed association of
increased KANSL1, CRHR1, ARL17A, and LRRC37A2 expression
and decreased ANKRD31 and BLOC1S1 expression with
increased odds of becoming long-lived. Genetic correlation ana-
lysis showed that our longevity phenotypes are genetically cor-
related with father’s age at death, CAD and T2D-related
phenotypes.

Table 3 Results of the validation in the UK Biobank parental age-based data sets

rsID Chr:Position Candidate/ closest gene Alleles (EA/OA) EAF OR 95% CI P

90th percentile cases versus all controls (Parental longevity)
rs116362179 2:53,380,757 − T/C 0.04 1.01 0.94–1.08 0.775
rs7676745 4:8,565,547 GPR78 A/G 0.04 0.98 0.92–1.06 0.667
rs7754015 6:127,206,068 − G/T 0.43 1.00 0.97–1.03 0.832
rs35262860 8:55,478,909 RP1 GCT/G 0.39 0.97 0.94–0.99 0.021
rs3138136 12:56,117,570 RDH5 T/C 0.11 1.00 0.95–1.04 0.863
rs429358 19:45,411,941 APOE C/T 0.16 0.85 0.81–0.88 1.1 × 10−16

rs7412 19:45,412,079 APOE T/C 0.08 1.12 1.06–1.18 2.2 × 10−5

90th percentile cases versus all controls (Parental lifespan)
rs116362179 2:53,380,757 − T/C 0.04 1.00 0.98–1.02 0.697
rs7676745 4:8,565,547 GPR78 A/G 0.05 1.01 0.99–1.03 0.247
rs3138136 12:56,117,570 RDH5 T/C 0.11 0.99 0.98–1.00 0.135
rs429358 19:45,411,941 APOE C/T 0.15 0.90 0.89–0.91 3.1 × 10−83

rs7412 19:45,412,079 APOE T/C 0.08 1.06 1.05–1.08 7.6 × 10−17

99th percentile cases versus all controls (Parental longevity)
rs3830412 3:124,397,321 KALRN A/AT 0.20 1.11 0.99–1.24 0.081
rs138762279 5:173,710,197 − AT/A 0.34 1.05 0.95–1.17 0.299
rs62502826 8:28,982,295 KIF13B A/G 0.14 1.04 0.90–1.19 0.614
rs7039467 9:22,056,213 CDKN2A/B A/G 0.69 0.93 0.83–1.05 0.245
rs2184061 9:22,061,562 CDKN2A/B A/C 0.40 0.95 0.87–1.05 0.329
rs429358 19:45,411,941 APOE C/T 0.16 0.76 0.66–0.87 9.6 × 10−5

rs7412 19:45,412,079 APOE T/C 0.08 1.23 1.05–1.45 0.011
99th percentile cases versus all controls (Parental lifespan)
rs62502826 8:28,982,295 KIF13B A/G 0.14 1.00 0.99–1.02 0.376
rs2184061 9:22,061,562 CDKN2A/B A/C 0.40 1.02 1.01–1.03 8.4 × 10−6

rs429358 19:45,411,941 APOE C/T 0.15 0.90 0.89–0.91 3.1 × 10−84

rs7412 19:45,412,079 APOE T/C 0.08 1.06 1.05–1.08 7.6 × 10−17

For the CDKN2A/B locus we have also reported the second most significant variant in this locus (rs2184061), since the allele frequency of the most significant variant (rs7039467) is not comparable
between the meta-analyses and UK Biobank data sets due to difference in the reference panel used for imputation. The rsID is based on dbSNP build 150. The Chr:Position is based on Genome Reference
Consortium Human Build 37 (GRCh37)
EA effect allele, OA other allele, EAF effect allele frequency, OR odds ratio (i.e., odds of parent(s) to become long-lived when carrying the effect allele), 95% CI 95% confidence interval
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Genetic variation in APOE is well known to be associated with
longevity and lifespan, with the first report more than two dec-
ades ago in a small candidate gene study27. Since then, there have
been numerous candidate gene studies, including individuals of
diverse ancestry, which have identified associations of ApoE with
longevity28–32. However, thus far, rs7412, the ApoE ε2-defining,
genetic variant has not been reported to show a genome-wide
significant association in GWA studies of longevity and lifespan.
This could be due to the fact that we performed imputation using
the 1000 Genomes reference panel, while earlier GWA studies
used the HapMap reference panel, which has limited coverage of
this variant. ApoE mediates cholesterol metabolism in peripheral
tissues and is the principal cholesterol carrier in the brain. The
ApoE ε2 and ε4 variants have previously been associated with a
decreased (ε2) or increased (ε4) risk for several age-relatedT
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Fig. 3 Results of the trans-ethnic genome-wide association meta-analyses.
Manhattan plot presenting the –log10 P-values from the trans-ethnic
genome-wide association meta-analysis of the 90th percentile cases versus
all controls (a) and 99th percentile cases versus all controls (b). The red
line indicates the threshold for genome-wide significance (P≤ 5 × 10−8),
while the blue line indicates the threshold for genetic variants that showed
a suggestive significant association (P≤ 1 × 10−6)
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diseases, such as cardiovascular disease and Alzheimer’s disease33,
which could explain their effect on longevity. The fact that the
two variants in ApoE show opposite effects may be attributable to
differences in structural and biophysical properties of the protein,
since ApoE ε2 shows high stability and ApoE ε4 low stability
upon folding34.

We also found a genome-wide significant association of
rs7676745, located on chromosome 4 near GPR78. We have to
note that this locus would benefit from replication in independent
cohorts in the future, given that we were not able to replicate this
variant in the cohorts in which de novo genotyping was applied.
There is no report of association of this locus with other traits
according to Phenoscanner (http://www.phenoscanner.medschl.
cam.ac.uk/)35, although other genetic variants in this gene have
been associated with several diseases and traits in the UK Bio-
bank, including death due to a variety of disorders. The GPR78
protein, belongs to the family of G-protein-coupled receptors,
whose main function is to mediate physiological responses to

various extracellular signals, including hormones and neuro-
transmitters36. However, the specific function of GPR78 is still
largely unknown, although it has been shown to play a role in
lung cancer metastasis37.

To maximise power for discovery, we meta-analysed results
from all of the studies that contained long-lived individuals that
met our 90th and/or 99th percentile case definitions, had
genome-wide genetic data, and were able to participate. Hence,
we were not able to replicate our findings in an independent
cohort with genome-wide genotype data and participants reach-
ing the age of our case definitions. Therefore, we tried to validate
our findings using two related phenotypes, parental longevity and
lifespan, in the UK Biobank. We applied our case and control
definitions to the parental lifespan of genotyped middle-aged UK
Biobank participants rather than the participants themselves, as
none of the latter fulfilled the age criteria for cases in our study.
Although this resulted in relatively large data sets for both the
90th and 99th percentile analysis, the power to replicate our

Table 5 Results of the gene-level association analyses

Genes Ensembl ID Chromosome band Tissue OR90 P90 OR99 P99
ANKRD31 ENSG00000145700 5q13.3 Stomach 0.63 1.1 × 10−6 0.61 9.0 × 10−4

BLOC1S1 ENSG00000135441 12q13.2 Adipose subcutaneous 0.49 4.5 × 10−7 0.56 0.009
KANSL1 ENSG00000120071 17q21.31 Skin sun exposed lower leg 1.22 1.5 × 10−6 1.26 1.9 × 10−4

CRHR1 ENSG00000120088 17q21.31 Nerve tibial 1.54 3.4 × 10−7 1.81 6.2 × 10−6

ARL17A ENSG00000185829 17q21.31 Artery aorta 1.24 8.1 × 10−7 1.31 5.9 × 10−5

ARL17A ENSG00000185829 17q21.31 Breast mammary tissue 1.18 1.8 × 10−6 1.22 3.2 × 10−4

ARL17A ENSG00000185829 17q21.31 Colon sigmoid 1.21 2.2 × 10−6 1.21 0.002
LRRC37A2 ENSG00000238083 17q21.31 Minor salivary gland 1.17 2.2 × 10−6 1.20 4.4 × 10−4

ERCC1 ENSG00000012061 19q13.32 Ovary 1.19 2.8 × 10−7 1.24 1.8 × 10−4

RELB ENSG00000104856 19q13.32 Lung 0.57 2.0 × 10−7 0.44 2.9 × 10−6

DMPK ENSG00000104936 19q13.32 Stomach 1.64 1.7 × 10−6 2.31 1.8 × 10−6

CD3EAP ENSG00000117877 19q13.32 Brain substantia nigra 0.51 8.0 × 10−17 0.36 3.8 × 10−15

PVRL2 ENSG00000130202 19q13.32 Artery coronary 1.36 5.0 × 10−7 1.59 1.6 × 10−6

PVRL2 ENSG00000130202 19q13.32 Oesophagus muscularis 1.62 6.6 × 10−7 2.31 4.4 × 10−8

GEMIN7 ENSG00000142252 19q13.32 Brain nucleus accumbens basal
ganglia

0.85 1.5 × 10−4 0.70 1.4 × 10−7

BLOC1S3 ENSG00000189114 19q13.32 Oesophagus muscularis 2.80 6.4 × 10−16 4.47 1.3 × 10−13

APOC2 ENSG00000234906 19q13.32 Skin not sun exposed suprapubic 0.75 4.2 × 10−7 0.74 9.3 × 10−4

OR odds ratio (i.e., odds to become long-lived when having an increased tissue-specific gene expression). P-values highlighted in bold are significant after adjustment for multiple testing of 247,999
longevity associations with gene-tissue pairs (Storey q-value < 0.05). OR90 and P90 are based on the analysis of the 90th percentile cases versus all controls meta-analysis data set, while OR99 and P99 are
based on the analysis of the 99th percentile cases versus all controls meta-analysis data set

Table 6 Results of the genetic correlation analyses of the 90th and 99th percentile phenotypes with other diseases and traits

Disease/trait rg90 SE90 P90 rg99 SE99 P99
Coronary artery disease −0.40 0.07 1.7 × 10−8 −0.29 0.07 1.2 × 10−5

Fathers age at death 0.74 0.13 2.5 × 10−8 0.54 0.13 2.7 × 10−5

HDL cholesterol 0.36 0.07 1.0 × 10−7 0.22 0.07 0.002
Age of first birth 0.33 0.07 3.8 × 10−7 0.16 0.07 0.019
Years of schooling 2016 0.26 0.05 9.6 × 10−7 0.12 0.05 0.017
Waist circumference −0.26 0.05 2.4 × 10−6 −0.19 0.06 0.001
Type 2 diabetes −0.44 0.10 4.4 × 10−6 −0.42 0.10 2.0 × 10−5

Overweight −0.28 0.06 1.2 × 10−5 −0.23 0.07 9.0 × 10−4

Fasting insulin main effect −0.45 0.11 3.0 × 10−5 −0.33 0.11 0.002
Urate −0.26 0.07 5.0 × 10−5 −0.15 0.06 0.013
Body mass index −0.21 0.05 9.2 × 10−5 −0.19 0.07 0.004
Cigarettes smoked per day −0.49 0.13 1.0 × 10−4 −0.31 0.13 0.016
Mothers age at death 0.51 0.14 2.0 × 10−4 0.14 0.13 0.289
Waist-to-hip ratio −0.24 0.07 2.0 × 10−4 −0.15 0.07 0.028

P-values highlighted in bold are significant after Bonferroni adjustment for multiple testing (P < 0.05/246). rg90, SE90, and P90 are based on the analysis of the 90th percentile cases versus all controls
meta-analysis data set, while rg99, SE99, and P99 are based on the analysis of the 99th percentile cases versus all controls meta-analysis data set
rg genetic correlation, SE standard error of the rg estimate, HDL high-density lipoprotein
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findings using the parental longevity traits was lower in com-
parison to replication using the traits based on the genotyped
individuals themselves, since these individuals share only half of
their parental genomes. In addition, many of the genotyped
individuals, who were 40–69 years at recruitment, will never
reach the age belonging to the 90th, let alone the 99th, percentile
of their birth cohort. This may explain why we were unable to
validate any of our suggestive associations (P ≤ 1 × 10−6), with the
exception of the genetic variants at the APOE locus in these data
sets. On the other hand, we were able to validate one additional
locus, CDKN2A/B, in the parental lifespan data set. This is not
surprising, since this locus had already been reported to associate
with parental lifespan20. However, it is unclear why our reported
variants at this locus, rs7039467 and rs2184061, are not associated
with parental longevity, given that the most significant parental
lifespan-associated variant at this locus, rs1556516, also shows a
nominal significant effect on parental longevity (see Supple-
mentary Table 2). We hypothesise that this may be due to a
difference in the LD structure of the reference panels used for
imputation.

We were able to detect significant genetic associations at two
previously identified longevity/lifespan-related loci, FOXO3 and
CDKN2A/B. For the other loci, we did not find evidence for
replication (P > 7.8 × 10−4), despite having adequate power (≥ 0.8)
for replication of all but one of the examined genetic variants
(rs28926173) associated with the discrete longevity phenotypes.
We were not able to calculate our power to replicate the variants
associated with the continuous lifespan-related phenotypes,
although we should have had adequate power to replicate variants
with a minor allele frequency (MAF) > 12% and an OR > 1.1
(based on the 90th percentile versus all controls analysis). How-
ever, several of the variants associated with parental lifespan show
a directionally consistent and nominal significant association with
our phenotypes, indicating they may also be relevant for longevity.
The failure to replicate previously reported loci could be due to the
use of a different longevity phenotype then what was used in
previous studies, the small effect size of some of the variants
associated with parental lifespan, and the modest power of our
study. The fact that we detect significant associations of variants in
the FOXO3 locus is not surprising, since this locus was previously
reported in the longevity GWA study from the CHARGE con-
sortium7, from which many cohorts are included in these meta-
analyses. So far, three functional longevity-associated variants
have been identified at the FOXO3 locus (rs2802292, rs12206094,
and rs4946935). For all of them, an allele-specific response to
cellular stress was observed. Consistently, the longevity-associated
alleles of all three variants were shown to induce FOXO3
expression38,39. The CDKN2A/B locus has previously been asso-
ciated with parental lifespan and parents’ attained age in the UK
Biobank as well as a diversity of age-related diseases13,20,40. The
longevity-associated allele of the most significant variant at this
locus (rs1556516) has also been associated with lower odds of
developing CAD41. Although the molecular mechanism behind
this association is still unclear, it is known that genes encoded at
the CDKN2A/B locus are involved in cellular senescence42, a
known hallmark of ageing in animal models43.

The gene-level association analysis identified several associa-
tions between increased (KANSL1, CRHR1, ARL17A, and
LRRC37A2) or decreased (ANKRD31 and BLOC1S1) genetically
driven tissue-specific gene expression with survival to the 90th
percentile age. The increased expression of KANSL1, CRHR1,
ARL17A, and LRRC37A2 on chromosome 17q21.31 is regulated
by different genetic variants, indicating that these associations
may be independent. More functional work is needed to deter-
mine the exact relationship between the altered genetically driven
tissue-specific expression of these genes and longevity in humans.

A limitation of MetaXcan is that the underlying GTEx models
might not have been adequately adjusted for age, which could be
problematic for an age-related phenotype like longevity. How-
ever, MetaXcan has successfully been used to identify gene-level
associations with age-related diseases and traits, such as Alzhei-
mer’s disease and age-related macular degeneration25.

The genetic correlation analyses showed that survival to ages
corresponding to the 90th and 99th percentile shared genetic
associations with father’s age at death, CAD and T2D-related
phenotypes, suggesting that survival to old ages may at least
partially be explained by protective influences on the mechanisms
underlying these traits. The genetic correlation with CAD and
T2D-related phenotypes is expected, since it has previously been
reported that individuals from long-lived families show a
decreased prevalence of cardiovascular disease and T2D44,45. The
higher genetic correlation of our longevity phenotypes with
father’s in comparison to mother’s age at death may be explained
by the difference in the prevalence of cardiovascular diseases and
T2D between men and women in the last century46,47, which may
be, at least partially, attributable to a difference in smoking pre-
valence48. Hence, the correlation of our longevity phenotypes
with the parental age at death phenotypes from UK Biobank is
likely due to the absence of death from specific diseases (i.e., those
with a higher prevalence in men). For longevity-specific loci, on
the other hand, one would expect that they will have beneficial
effects on multiple diseases simultaneously, since long-lived
individuals show a delay in overall morbidity49.

Our study design imposed an age gap between cases and
controls to reduce outcome misclassification, which we expected
could potentially increase power by increasing the genetic effect
size. It has been correctly noted that longevity study designs that
include an age gap between cases and controls result in an effect
estimate that is based on an OR and a relative risk (RR) term,
which could lead to the identification of genetic variant associa-
tions related to early mortality (OR), rather than survival past the
case age threshold (RR) (for more details see Sebastiani et al.)50.
However, we have presented evidence that imposing a
case–control age gap did not greatly influence our results or
prevent our replication of variant associations previously dis-
covered using study designs without a case–control age gap. First,
our sensitivity analysis indicated that reducing the age gap
between cases and controls had a minimal effect on our results.
Our sensitivity analysis compared results using dead controls,
where all individuals had died before they reached the 60th
percentile age, and all controls, which included dead controls and
individuals whose age at last contact was below the 60th per-
centile age but whose age of death was unknown. There is likely
to be some outcome misclassification of the living controls, since
a small percentage may survive beyond the age corresponding to
the 90th or 99th survival percentile. On the other hand, the age
gap between cases and controls was narrower for all controls
compared to dead controls. However, despite the narrower age
gap, the suggestively significant results in all controls and dead
controls comparisons with 90th percentile cases were essentially
unchanged, and there was a very high genetic correlation between
the results of these two meta-analyses, indicating that the age gap
had little or no impact on our results. Second, if we had dis-
covered a large number of genome-wide significant variant
associations in our study, it could be argued that the OR,
reflecting early mortality, contributed to some or all of them.
However, the only genome-wide significant variant associations
we detected were in the APOE locus, which have been identified
using multiple study designs, including designs with no pre-
specified age gap between cases and controls14, and the GPR78
locus. Third, it is unlikely that our study design prevented the
replication of findings from previous GWA studies of survival to
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extreme ages (i.e., 99th percentile cases) that did not include a
case–control age gap, since such studies would only identify
variants associated with survival past the minimum case age and
not with early mortality. For variants with no early mortality
association, it would be expected that the association estimate in
our study would have an OR equal to one and a RR greater than
one. Nothing prevents our study design from also detecting this
type of variant association, as our estimated association para-
meter reflects both the OR and RR.

The majority of the previously performed GWA studies of
longevity used the survival of individuals to a pre-defined age
threshold (i.e., 85, 90, or 100 years) as selection criterion to define
long-lived cases. Although these studies used a consistent phe-
notype for each cohort included in the GWA study, this type of
selection may gave rise to heterogeneity, given that survival
probabilities differ between sexes and birth cohorts22. Moreover,
it was recently shown that the heritable component of longevity is
strongest in individuals belonging to the top 10% survivors of
their birth cohort6. Hence, instead of using a pre-defined age
threshold, we decided to select cases based on country-, sex- and
birth cohort-specific life tables. For the definition of controls we
used the 60th percentile age, since we wanted to include as many
controls as possible (preferably from the same cohort as the
cases), while leaving a large enough age gap between our cases
and controls. Using the 1920 birth cohort as an example, the
difference between the 60th and 90th percentile age is 14 years
(men) or 11 years (women), which is quite substantial. The dif-
ference between the 70th and 90th percentile age, on the other
hand, is considerably smaller (9 years (men) or 7 years (women))
and the living controls are more likely to reach the 90th percentile
age, which increases the risk of outcome misclassification.
Moreover, even when selecting the 60th percentile controls from
much later birth cohorts (i.e., 1940) than the cases (i.e., 1900) the
ages will not overlap.

Our study has several limitations. First, we did not analyse the
sex and mitochondrial chromosomes, since we were unable to
gather enough cohorts that could contribute to the analysis of
these chromosomes. However, these chromosomes may harbour
loci associated with longevity that we thus have missed. Second,
although we included as many cohorts as possible, the sample size
of our study is still relatively small (especially for the 99th per-
centile analysis) in comparison to GWA studies of age-related
diseases, such as T2D and cardiovascular disease, and parental
age at death11,51,52. Hence, this limited our power to detect loci
with a low MAF (<1%) that contribute to longevity. Third, we did
not perform sex-stratified analyses and may thus have missed sex-
specific longevity-related genetic variants. The reason for this is
that (1) we only identified a limited number of suggestive sig-
nificant associations in our unstratified 90th and 99th percentile
analyses, (2) our sample size is modest (especially when stratified
by sex), and (3) thus far, there has been no report of any genome-
wide significant sex-specific longevity locus.

Given that we have included nearly all cohorts with long-lived
individuals with genome-wide genetic data in our study, it will be
challenging to increase the sample size in future GWA studies
using the same extreme phenotypes. Future genetic studies of
longevity may therefore benefit from the use of alternative phe-
notypes or more rigorous phenotype definitions. Alternative
phenotypes that could be used are the parental lifespan or
healthspan-related phenotypes that were analysed in the UK
Biobank or biomarkers of healthy aging20,53,54. One way to
strengthen the longevity phenotype is by selecting cases from
families with multiple individuals belonging to the top 10% sur-
vivors of their birth cohort6. Moreover, given the limited number
of longevity-associated genetic variants identified through GWA
studies and the availability of affordable exome and whole-

genome sequencing, future genetic studies of longevity may also
benefit from the analysis of rare genetic variants. Ideally, such
studies should also try to include participants from genetically
diverse populations. Most cohorts that are currently included in
genetic longevity studies originate from populations of European
descent, while some longevity loci may be specific for non-
European populations, as exemplified by the previously reported
genome-wide associations of genetic variants in IL6 and
ANKRD20A9P in Han Chinese9. Moreover, a recent genetic study
of multiple complex traits has shown the benefit of analysis of
diverse populations55.

In conclusion, we performed a genome-wide association study
of longevity-related phenotypes in individuals of European,
East Asian and African American ancestry and identified the
APOE and GPR78 loci to be associated with these phenotypes in
our study. Moreover, our gene-level association analyses highlight
a role for tissue-specific expression of genes at chromosome
5q13.3, 12q13.2, 17q21.31, and 19q13.32 in longevity. Genetic
correlation analyses show that our longevity-related phenotypes
are genetically correlated with several disease-related phenotypes,
which in turn could help to identify phenotypes that could be
used as potential biomarkers for longevity in future (genetic)
studies.

Methods
Study populations. In this collaborative effort, we included cohorts that partici-
pated in one or more of the previously published GWA studies on longevity7–9.
The sample sizes and descriptive characteristics of the cohorts used in this study are
provided in Table 1, Supplementary Data 4, and the Supplementary Methods.

We have complied with all relevant ethical regulations for work with human
subjects. All participants provided written informed consent and the studies were
approved by the relevant institutional review boards.

Case and control definitions. Cases were individuals who lived to an age above
the 90th or 99th percentile based on cohort life tables from census data from the
appropriate country, sex, and birth cohort. Controls were individuals who died at
or before the age at the 60th percentile or whose age at the last follow-up visit was
at or before the 60th percentile age. Hence, the number of selected cases and
controls is defined by the ages of their birth cohort corresponding to the 60th or
90th/99th percentile age and is independent of the study population used (i.e., the
number of controls and cases within a study population is not based on the
percentiles of that specific population, but instead on that of their birth cohorts). As
part of their recruitment protocol, many of the studies enroled participants that
were already relatively old at the time of recruitment (i.e., close to (or even over)
the 60th percentile age). The majority of these individuals subsequently survived
past the 60th percentile age threshold of their respective birth cohorts, resulting in
a small number of controls in comparison to the number of cases for some of these
studies.

The cohort life tables were available through the Human Mortality Database
(www.mortality.org)56, the United States Social Security Administration (https://
www.ssa.gov/oact/NOTES/as120/LifeTables_Tbl_7.html)22 or National registries;
https://opendata.cbs.nl/statline/portal.html?_la= nl&_catalog= CBS&tableId=
80333ned&_theme= 90; http://webarchive.nationalarchives.gov.uk/
20160129121820/http://www.ons.gov.uk/ons/rel/npp/national-population-
projections/2012-based-extra-variants/index.html). For example, the 60th, 90th,
and 99th percentile correspond to ages of 75, 89, and 98 years for men and 83, 94,
and 102 years for women for the 1920 birth cohort from the US. For cohort life
tables providing birth cohort by decade, linear model predictions were used to
estimate the ages corresponding to survival percentiles at yearly birth cohorts.

For the parental longevity analyses in the UK Biobank, cases were individuals
with at least one parent achieving an age above the 90th or 99th percentile and who
had not themselves died, while controls were individuals for whom both parents
died at or before the age at the 60th percentile.

Genome-wide association analysis of individual cohorts. Details on the geno-
typing (platform and quality control criteria), imputation and genome-wide
association analyses for each cohort are provided in Supplementary Data 5. In all
cohorts, genetic variants were imputed using the 1000G Phase 1 version 3 reference
panel. The logistic regression analyses were adjusted for clinical site, known family
relationships, and/or the first four principal components (if applicable). All cohorts
used a Hardy–Weinberg equilibrium (HWE) P-value that was between 1 × 10−4

and 1 × 10−6 to exclude variants not in HWE, which is considered standard in
GWA studies. However, this may have resulted in removal of variants that were out
of HWE in the cases due to mortality selection57.
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Quality control of individual cohorts. Quality control of the summary statistics
from each cohort was performed using the EasyQC software and the standard
script (fileqc_1000G.ecf) available on their website (http://www.uni-regensburg.de/
medizin/epidemiologie-praeventivmedizin/genetische-epidemiologie/software/)58.
The only difference was that we used the expected minor allele count (eMAC)
instead of the MAC. To this end, we first calculated the ‘Effective N’ (2/(1/Ncases+
1/Ncontrols)) for each cohort. The use of the ‘Effective N’ instead of the ‘Total N’
leads to a more stringent filtering of genetic variants and decreases the chance of
false positive findings due to an imbalance between the number of cases and
controls58. The ‘Effective N’ was subsequently used to calculate the eMAC (2 ×
minor allele frequency × ‘Effective N’ × imputation quality) for each variant. Var-
iants were excluded when eMAC < 10, with the exception of the Newcastle 85+
(90th percentile cases versus all controls) and the RS (99th percentile cases versus
all controls) data sets in which we excluded variants when eMAC < 25 due to the
large imbalance between the number of cases and controls in these data sets (1:24
and 1:38, respectively) in comparison to the other ones (all < 1:10). For the CLHLS
and LLFS data sets, we flipped the strands of several variants based on the dis-
cordance of allele frequencies with the reference panel. We only flipped palin-
dromic variants with a MAF < 0.4 and an allele frequency that differed from the
reference panel by <10% after switching.

Meta-analyses. The fixed-effect meta-analyses based on the data sets with indi-
viduals of European ancestry were performed on the cleaned files using METAL59,
with the ‘Effective N’ as weight and adjustment for genomic control (lambda (λ))
for each cohort. Cohorts with an ‘Effective N’ < 50 were excluded from the meta-
analyses. We did not apply genomic control on the meta-analyses results, since
there was limited inflation (all λ < 1.04, Supplementary Fig. 1).

The trans-ethnic meta-analyses were performed using the random-effects
model of Han and Eskin, implemented in METASOFT60. This model separates
hypothesis testing from the estimation of the effect size, which allows the test to
better model the between-study heterogeneity that is typically encountered in a
trans-ethnic meta-analysis. Prior to using METASOFT, study-specific results were
filtered as described above, which included removing genetic variants with eMAC
< 10, and applying genomic control by multiplying each variant’s standard error by
the inverse of the square root of the lambda for cohorts with λ > 1.

Genetic variants for which the total ‘Effective N’ was less than half of the
maximum ‘Effective N’ were removed from the meta-analyses results.

Conditional analyses. Conditional analyses were performed using the ‘-con-
dition_on’ option implemented in SNPTEST to determine the number of inde-
pendent signals at the APOE locus. We performed this analysis in the cohorts that
were analysed using SNPTEST and for which both the ApoE ε4 and ApoE ε2
variant showed a significant association in the unadjusted analysis (i.e., CEPH and
LLS (combined with GEHA Dutch)). In both cohorts, the association of ApoE ε2
remained significant (P < 0.05) after adjustment for ApoE ε4, indicating an inde-
pendent effect.

Gene-level association analysis. MetaXcan was used to identify genetically
predicted tissue-specific expression associations with longevity using the results
from the 90th and 99th percentile cases versus all controls meta-analyses25. GTEx
version 7 tissue models of genetically predicted expression were used. To maximize
the number of genetic variants that MetaXcan could match with tissue models, the
MetaXcan SNP annotation file (gtex_v7_hapmapceu_dbsnp150_snp_annot.txt)
was used to map variants from the GWA study results file to rsIDs by chromo-
some, position, and alleles. To control for the false discovery rate when testing
multiple genes across multiple tissues, the Storey q-value was applied and a q-value
< 0.05 was considered significant61.

Colocalization of the tissue-specific eQTL results from the GTEx project and
our longevity meta-analyses results was performed using the ‘coloc.abf’ function
implemented in the R-package coloc62.

Genetic correlation analysis. To estimate the genetic correlation between the
different phenotypes used in this study, we used LD score regression24. The genetic
correlation between the results from the 90th and 99th percentile cases versus all
controls meta-analyses and 246 diseases and traits were estimated using the LD
Hub web portal (http://ldsc.broadinstitute.org/ldhub/)26. Since LD score regression
is currently only possible with data from individuals of European ancestry, we used
our meta-analyses results based on the cohorts from populations of European
descent only.

Power calculation. The power calculations for the validation in the UK Biobank
and for the replication of previously identified loci associated with human lifespan
were performed using the Genetic Association Study Power Calculator (http://csg.
sph.umich.edu/abecasis/cats/gas_power_calculator/index.html) using an additive
disease model and a disease prevalence of 0.1 (90th percentile) or 0.01 (99th
percentile).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The full meta-analyses summary statistics are available for download at www.
longevitygenomics.org/downloads and through GRASP (https://grasp.nhlbi.nih.gov/
FullResults.aspx) and the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/
downloads/summary-statistics). All other data that supports the findings of this study are
available from the corresponding authors upon request.
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