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Abstract
Background: Head movement in the scanner causes spurious signal changes in the 
blood‐oxygen‐level‐dependent (BOLD) signal, confounding resting state functional 
connectivity (RSFC) estimates obtained from functional magnetic resonance imaging 
(fMRI). We examined the effectiveness of Prospective Acquisition CorrEction (PACE) 
in reducing motion artifacts in BOLD data.
Methods: Using PACE‐corrected RS‐fMRI data obtained from 44 subjects and subdi‐
viding them into low‐ and high‐motion cohorts, we investigated voxel‐wise motion‐
BOLD relationships, the distance‐dependent functional connectivity artifact and the 
correlation between head motion and connectivity metrics such as posterior cingu‐
late seed‐based connectivity and network degree centrality.
Results: Our results indicate that, when PACE is used in combination with standard 
retrospective motion correction strategies, it provides two principal advantages over 
conventional echo‐planar imaging (EPI) RS‐fMRI data: (a) PACE was effective in elimi‐
nating significant negative motion‐BOLD relationships, shown to be associated with 
signal dropouts caused by head motion, and (b) Censoring with a lower threshold 
(framewise displacement >0.5  mm) and a smaller window around the motion cor‐
rupted time point provided qualitatively equivalent reductions in the motion artifact 
with PACE when compared to a more conservative threshold of 0.2 mm required 
with conventional EPI data.
Conclusions: PACE when used in conjunction with retrospective motion correction 
methods including nuisance signal and motion parameter regression, and censoring, 
did prove effective in almost eliminating head motion artifacts, even with a lower 
censoring threshold. Use of a lower censoring threshold could provide substantial 
savings in data that would otherwise be lost to censoring. Three‐dimensional PACE 
has negligible overhead in terms of scan time, sequence modifications or additional 
and hence presents an attractive option for head motion correction in high‐through‐
put resting‐state BOLD imaging.
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1  | INTRODUC TION

Head motion is one of the major sources of artifacts in functional 
magnetic resonance imaging (fMRI). Head motion is said to cause 
large spatially varying signal changes across the brain. Realignment 
corrects the changes in brain position, but it does not take into con‐
sideration the changes in the image intensity associated with mo‐
tion. Head motion, particularly in the direction perpendicular to the 
slice selection is susceptible to artifacts due to magnetic field in‐
homogeneity and spin‐excitation history effects (Friston, Williams, 
Howard, Frackowiak, & Turner, 1996).

Resting state functional connectivity (RSFC) measures the syn‐
chronicity of the brain activity in different regions of the brain and 
has become quite popular in the last decade due to its sensitivity to 
development, aging, and pathology. However, motion can severely 
affect the validity of resting‐state fMRI (rs‐fMRI) studies, particu‐
larly in hyperkinetic populations with large head movements such 
as children, diseased, and the elderly (Satterthwaite et al., 2013; Yan 
et al., 2013). The motion‐induced variance changes in the blood‐ox‐
ygen‐level‐dependent (BOLD) signal could potentially drive RSFC 
metrics in the same direction as one would expect due to disease or 
aging, thus confounding its effects.

Most motion correction approaches are typically classified into 
prospective motion correction and retrospective motion correction. 
In prospective motion correction, the motion is corrected for be‐
fore or during the acquisition of the volumes, whereas retrospective 
motion correction methods correct for motion after the acquisition 
of the volumes. Rigid‐body realignment, nuisance signal regression, 
modeling the effects of the head motion on the BOLD signal using 
motion parameters and removing the fitted response, temporal 
band‐pass filtering, motion censoring or spike regression, group‐
level correction or some combinations of the above approaches are 
routinely used with varying degrees of success in retrospective mo‐
tion correction (Power et al., 2014; Satterthwaite et al., 2013; Yan 
et al., 2013).

Realignment is the first step in retrospective motion correction. 
Though it aims to make each voxel correspond to the same region in 
the brain in the fMRI time series by selecting a suitable rigid‐body 
transformation, it does not eliminate the changes in the image inten‐
sity associated with head motion. In nuisance signal regression, we 
regress out the mean signal corresponding to areas of cerebrospinal 
fluid (CSF), white matter (WM), and the global signal (GS) from the 
BOLD signal, with the hope that we would remove the variance of 
nonneural origin attributable to head motion, heartbeat, respiration, 
and other sources of scanner noise. Unlike regression of WM and 
CSF, global signal regression (GSR) has been reported in previous 
studies to remove significant amount of variance associated with 

head motion from the BOLD signal (Power et al., 2014; Satterthwaite 
et al., 2013; Yan et al., 2013). However, there have been some con‐
cerns that GSR introduces an artificial negative bias in the correla‐
tion coefficients, driving them downward everywhere in the brain 
to the point of introducing spurious anticorrelations (Murphy, Birn, 
Handwerker, Jones, & Bandettini, 2009) and is also said to create 
artifactual group differences in functional connectivity (Saad et al., 
2012).

Spin history effects result in the signal intensity of the current 
acquisition to become a complex nonlinear function of the current 
position, as well as previous positions (Friston et al., 1996). In order 
to address this, one could model the effects of head movement on 
the BOLD signal by using a second order polynomial containing the 
current motion parameters and few previous (in time) motion param‐
eters and remove the fitted response from the BOLD signal. Twenty‐
four parameters (Rt, R
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t
, Rt‐1, R2

t−1
) and 36 parameters (Rt, R
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t
, Rt‐1, R2

t−1
,  

Rt‐2, R2
t−2

) models, where R indicates the six realignment parame‐
ters, and t and the corresponding subscript indicates the number 
of volumes back in time used to correct for motion. The justifica‐
tion for using complex models is that it increases the fit compared 
to models using a lower number of parameters (Satterthwaite et al., 
2013). However, going further back in time results in loss of degrees 
of freedom and may sometimes not justify the increase in fit. Also, 
fewer number of parameters might be appropriate for low‐motion 
subjects as increasing the number of parameters causes the model 
to over‐fit the data and thereby reduce the sensitivity to the under‐
lying neural activity (Satterthwaite et al., 2013).

Finally, in motion censoring or scrubbing, the motion corrupted 
time points and the adjacent time points that exceed a threshold 
defined by a quality control metric derived from the data such as 
derivative of root mean squared variance over voxels (DVARS) or 
framewise displacement (FD, Power, Barnes, Snyder, Schlaggar, & 
Petersen, 2012; Power et al., 2014; Power, Schlaggar, & Petersen, 
2012) are marked. Either the data for those time points are removed, 
or they are interpolated from the adjacent time points and removed 
after preprocessing. Similar to scrubbing, spike regression models 
the motion‐induced spikes in fMRI data and removes the fitted re‐
sponse, effectively eliminating the influence of the corrupted time 
points in the fMRI time series (Lemieux, Salek‐Haddadi, Lund, Laufs, 
& Carmichael, 2007; Satterthwaite et al., 2013). Scrubbing/censor‐
ing/spike regression, especially in high‐motion datasets could poten‐
tially lead to loss of a large quantity of data (Zeng et al., 2014) and in 
turn result in noisy estimates of the functional connectivity (Fair et 
al., 2013). Furthermore, scrubbing could introduce discontinuities in 
the data, which may invalidate many analysis methods used thereaf‐
ter. Even though interpolation has been suggested as a way to avoid 
these discontinuities, interpolation is at best an approximation and 
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still amounts to loss of original data. A summary of currently avail‐
able retrospective motion correction methods and their effective‐
ness can be found in other papers (Goto et al., 2016; Power et al., 
2012).

Given the difficulty in properly modeling the motion effects 
on the BOLD signal, prospective motion correction methods have 
gained increasing prominence. Although prospective motion correc‐
tion has been in vogue for more than a decade, recent research (the 
flurry of articles that have appeared since Power et al., 2012) demon‐
strating the inadequacy of retrospective methods (most glaringly the 
rigid body realignment approach and motion parameter regression) 
suggests that it is imperative to evaluate prospective motion correc‐
tion approaches in the context of motion effects on rs‐fMRI. Most 
prospective methods estimate the position of the head during scan‐
ning by using external‐tracking devices (Forman, Aksoy, Hornegger, 
& Bammer, 2011; Ooi, Krueger, Muraskin, Thomas, & Brown, 2011; 
Rotenberg et al., 2013; Todd, Josephs, Callaghan, Lutti, & Weiskopf, 
2015; Zaitsev, Dold, Sakas, Hennig, & Speck, 2006). A review of pro‐
spective motion correction methods in fMRI can be found in Zaitsev, 
Akin, LeVan, & Knowles, 2017. Since these methods use an external 
device to independently record head motion and correct the gradi‐
ents in near real‐time, they require elaborate setups, the subjects 
to wear a “marker” and sequence modification. Consequently, they 
are unsuitable for high‐throughput routine scanning. Alternatively, 
Prospective Acquisition CorrEction (PACE) is an image‐based online 
motion detection and correction sequence which tracks the sub‐
ject's head location to keep the head position fixed relative to the 
scanner coordinate frame thereby reducing spin history effects as‐
sociated with head motion (Thesen, Heid, Mueller, & Schad, 2000). 
Using an image‐based motion detection algorithm, the head motion 
parameters are estimated and fed back into the scanner so that the 
slice positioning and orientation are adjusted before the acquisition 
of the next volume. PACE accounts for motion based on the current 
volume realignment parameters and adjusts the position for the next 
volume acquisition by feeding back the calculated changes in head 
position to the measurement system. Since the position of the pre‐
vious volume is used to acquire the current volume, there is a resid‐
ual motion that cannot be accounted by PACE. That said, it requires 
no additional setup in terms of external devices, does not require 
subjects to wear any “targets” and is a functionality that is in‐built 
in FDA‐approved echo‐planar imaging (EPI) sequences on Siemens 
scanners (and hence does not require a sequence modification). For 
all these reasons, EPI‐PACE is suitable for high‐throughput routine 
imaging and therefore is worthy of being evaluated in the context of 
head motion artifacts in rs‐fMRI.

We had two main goals for this paper. First, we were particularly 
interested in understanding the effects of high and low head motion 
on RS‐fMRI data acquired using an EPI‐PACE sequence, using (a) the 
spurious motion‐BOLD relationships (Yan et al., 2013), (b) the mo‐
tion‐induced distance‐dependent functional connectivity artifact 
(Power et al., 2012, 2014; Satterthwaite et al., 2012, 2013), and (c) 
the effect of motion on RS‐fMRI connectivity based metrics such 
as network degree centrality (DC) and posterior cingulate cortex 

seed‐based functional connectivity (PCC‐FC). Second, we examined 
if a combination of prospective and retrospective motion correction 
methods could do a better job of reducing motion artifacts in the 
BOLD data.

2  | METHODS

2.1 | Subjects

A total of 47 healthy adult subjects (20 males/27 females, age 
25.1 ± 5 years) with no history of any neurological disorders were 
selected for this study. The subjects were instructed to relax, keep 
their eyes open, not think about anything in specific and keep their 
head as still as possible for the duration of the scans. Appropriate 
padding was provided to keep the head as still as possible in the 
scanner. All subjects gave informed consent, and the scanning pro‐
cedure was performed in accordance with the guidelines and the ap‐
proval of the Institutional Review Board at Auburn University.

2.2 | Data acquisition

All subjects were scanned with a 3T MAGNETOM Verio scanner 
(Siemens Healthcare, Erlangen, Germany) using an EPI‐PACE se‐
quence with a 32 channel head coil and the following acquisition 
parameters: TR of 1,000 ms, TE of 29 ms, Flip Angle of 90° with 16 
slices, matrix = 64 × 64, voxel size = 3.5 × 3.5 × 5 mm3. The number 
of time points acquired for each subject ranged from 250 to 1,000. 
A T1 weighted MPRAGE anatomical image (TE = 2 ms, TR = 1900 ms, 
176 slices with 1 × 1 × 1 mm3 voxel size) was also acquired for all the 
subjects to aid in spatial normalization.

2.3 | Preprocessing of the RS‐fMRI data

The preprocessing of the RS‐ fMRI data was performed using Data 
Processing Assistant for Resting‐State fMRI (DPARSF) toolbox 
(Yan & Zang, 2010). The first five time points were removed from 
the time series to allow for T1 equilibration. Slice timing correc‐
tion was applied to each slice in every volume to account for the 
different acquisition times of the slices. The volumes were then 
realigned using a six‐parameter (three translations, three rota‐
tions) rigid body transformation to account for the head motion 
by optimizing the minimum squared difference cost function by a 
two‐pass procedure. After realignment, the T1‐weighted anatomi‐
cal image from each subject was registered to the mean functional 
image. Linear and quadratic detrending were performed to remove 
low‐frequency drift. Mean WM and CSF signals were regressed 
from the time series to remove non‐BOLD related signal variance. 
Also, the 24‐parameter motion regression proposed by Friston 
(Friston‐24) consisting of the six realignment parameters, their 
temporal derivatives and the squares of them, were regressed 
from the resting state fMRI BOLD time series. The preprocessed 
data are released publicly and can be obtained from Lanka & 
Deshpande, 2018.
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2.4 | Calculation of DVARS and head motion metrics

DVARS is the square root of mean square value of the temporal de‐
rivative of the intensities of the BOLD signal, calculated backward 
from the current time point to the previous time point over a voxel, 
ROI or the entire brain (Power et al., 2012, 2014). Traditionally, mo‐
tion metrics are calculated from the realignment parameters, and 
their accuracy is limited by the accuracy of the estimates of the rea‐
lignment parameters. Common metrics which capture subject head 
motion are the total displacement (TD) and FD. TD is measure of 
the change in the position of the head from its initial position, while 
FD is a measure of the change in the position of the head from the 
previous time point to the current time point and is calculated using 
realignment parameters of both the time points. It measures relative 
displacement rather than the absolute displacement of the head. In 
the case of motion correction by PACE, since the slice positioning is 
adjusted on the fly for every volume, these realignment parameters, 
and the FD metrics are a measure of the residual motion, relative 
to the scanner that is uncorrected by PACE rather than the actual 
motion of the head. Since all voxels in the brain do not move in a 
similar direction, it is essential to capture the individual movements 
of the voxel to understand the localized changes in signal intensities. 
So, along with volumetric measures the head's FD which assigns a 
single value of head motion to the entire brain, we also calculated 
the voxel‐specific framewise displacement (FDvox) which uses the 
six realignment parameters to estimate the relative displacement 
of every voxel at each time point. This enabled the computation of 
the displacement of each voxel with respect to the previous time 
point. More details on this approach are available in other papers 
(Satterthwaite et al., 2013; Yan et al., 2013). The following motion 
metrics were calculated for each subject for every time point: FDFSL 
(Jenkinson, Bannister, Brady, & Smith, 2002) and FDPower (Power  
et al., 2012), which are volume specific metrics. FDPower and FDFSL 
uses both translation and rotational parameters to estimate head 
motion. FDPower assumes the radius of the head as 50  mm while 
FDFSL assumes it to be 80 mm (Yan et al., 2013). We also estimated 
the spatial mean of FDvox all voxels in the brain for every time 
point to calculate the voxel‐wise mean of framewise displacement 
(meanspFDvox, Yan et al., 2013). Compared to FDPower, FDFSL is more 
correlated with meanspFDvox, indicating that it is a more appropriate 
summary statistic of the subject's head motion between two time 
points, though FDPower has been used more often for marking and 
removing high‐motion time points from the data (Power et al., 2012, 
2014). We also calculated the meanspTDvox, which is the voxel‐wise 
mean of the TD of the brain in the scanner. Comparisons of different 
FD measures can be found in Yan et al., 2013.

2.5 | Examination of motion‐BOLD relationships in 
PACE data

As voxel displacement is not spatially constant across the brain 
due to the combination of head rotations and head translations, 
voxel‐wise analysis of the motion‐BOLD relationships would be 

more appropriate to study the localized effect of head motion 
on BOLD signal intensity. Therefore, to understand the spatially 
varying relationships between head motion and the BOLD sig‐
nal, the BOLD signal was preprocessed with several combina‐
tions of nuisance signal regressors: (a) CSF  + WM regression, (b) 
CSF  + WM  +  GS regression, (c) CSF  + WM  +  Friston‐24 motion 
regression, (d) CSF  +  WM  +  GS  +  Friston‐24 motion regression, 
(d) CSF + WM + Friston‐24 motion regression + motion censoring 
(FDPower threshold >0.5 mm and one back and two forward volumes 
regressed from the model), and (e) CSF + WM+GS + Friston‐24 mo‐
tion regression + motion censoring. These pipelines were evaluated 
for each of the 44 subjects. Three of the subjects out of a the total 47 
subjects, were eliminated because they did not have the necessary 
3 min of data required for stable estimation of RSFC metrics after 
censoring (Yan et al., 2013). The Pearson's correlation coefficient 
was calculated between FDvox and the BOLD signal for every voxel 
(preprocessed using the six pipelines mentioned above), and for all 
the volumes in the time series as described by Yan et al., 2013. With 
motion censoring, the same volumes which were removed from the 
BOLD signal were also removed from the FDvox to calculate voxel‐
wise correlation between motion and BOLD. Fischer's z transforma‐
tion was performed on the resultant correlation maps to improve 
the normality of the data distribution. The resultant z‐maps were 
then normalized to the standard MNI template (3 mm3 cubic voxels) 
and the resulting volumes were smoothed with a 4.5 mm3 Gaussian 
kernel. A one‐sample t test was performed on the normalized cor‐
relation maps with a significance level of p < 0.05 (FDR corrected) to 
investigate consistent patterns of motion‐BOLD relationships within 
the group.

In order to further investigate the nature of the motion‐BOLD re‐
lationships for different levels of head motion, we divided our dataset 
into two subsets, a higher motion group (FDFSL = 0.152 ± 0.062 mm) 
and a lower motion group (FDFSL = 0.077 ± 0.014 mm) containing 22 
subjects each based on their mean [FDFSL] with similar sex and age 
profiles in both the subgroups. We could have used any FD metric 
as they are highly correlated with each other, but used FDFSL be‐
cause of its relative convenience and accuracy (Yan et al., 2013). We 
then proceeded to repeat the procedure described above for both 
the datasets separately to understand the nature of the mostly ar‐
tifactual motion‐BOLD signal relationships in the high‐motion and 
low‐motion datasets, with the expectation that motion‐BOLD rela‐
tionships would be larger in magnitude and spatially distributed in 
the high‐motion group compared to the low‐motion group.

2.6 | Examining the motion‐induced distance‐
dependent artifact in functional connectivity

Head motion tends to distort functional connectivity metrics by in‐
flating connectivity estimates between closer regions and reducing 
the connectivity between farther regions, as the voxels which are far 
from each other are less likely to experience similar movements, thus 
giving rise to the decaying effect of functional connectivity as a func‐
tion of the head motion and the distance between them (Power et 
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al., 2012; Satterthwaite et al., 2012). This is called as motion‐induced 
distance‐dependent artifact in functional connectivity throughout 
the paper. Power et al., (2012) reported that online motion correc‐
tion by PACE did not ameliorate the distance‐dependent changes in 
functional connectivity induced by head motion. However, they did 
not show the corresponding results and did not elaborate it further. 
Therefore, to understand the effect of online motion correction on 
functional connectivity and to reveal the distance‐dependence arti‐
fact, we followed a procedure used previously (Satterthwaite et al., 
2012, 2013) to characterize the effects of head motion artifacts in 
PACE data. After preprocessing the data, the volumes were normal‐
ized to the standard MNI template (3 mm3 cubic voxels) and were 
smoothed with a 4.5  mm3 Gaussian kernel, following which, the 
time series were filtered with a band‐pass filter with bandwidth of 
0.01–0.1 Hz.

The 160 Regions of Interest (ROIs), as defined by the Dosenbach 
160 atlas (Dosenbach et al., 2010), were extracted from the brain. 
Each ROI was modeled as a sphere with 10 mm diameter and the 
mean resting‐state preprocessed BOLD signal was obtained for 
each ROI. Functional connectivity was calculated as the correla‐
tion between the time series of every pair of ROIs, resulting in a 
functional connectivity matrix consisting of 12,720 elements 
((160  ×  160  – 160)/2) for each of the 44 subjects. These connec‐
tivity values were then correlated with the mean head motion ob‐
tained from each subject, that is, mean (FDFSL). These correlations 
were plotted on the y‐axis of a scatter plot with the Euclidean dis‐
tance between ROIs on the x‐axis. The estimated correlation be‐
tween FD and RSFC was then used to compare the success of PACE 
with a combination of retrospective motion correction methods                                                                                                                                          
to correct for spurious changes caused in functional connectiv‐
ity due to head motion. This procedure was repeated for all the 
combinations of nuisance, motion, and spike regressors discussed 
previously, and the results compared for the high‐motion and the 
low‐motion subgroups.

2.7 | Impact of head motion censoring threshold 
on the removal of motion‐induced artifacts

Motion censoring is a trade‐off between the quality and quantity of 
data. If PACE does correct for the lingering effects of spin history 
in the BOLD time series after the motion has ended, then a mod‐
est threshold with a small censoring window around the motion 
corrupted time points would provide us with a good compromise. 
Therefore, to understand the impact of motion censoring on the re‐
duction of motion artifacts, we considered four cases of motion cen‐
soring using a lenient threshold of 0.5 mm and a stricter threshold of 
0.2 mm: (a) Censoring of volumes whose FDPower >0.5 mm and one 
volume after the motion corrupted volume (denoted as FD >0.5 mm, 
0B + 1F, i.e., zero backward and one forward volumes are removed), 
(b) Censoring of volumes whose FDPower >0.5  mm as well as one 
volume before and two volumes after the motion corrupted vol‐
ume (FD >0.5 mm, 1B + 2F) (c) Censoring of volumes whose FDPower 
>0.2 mm as well as one volume after the motion corrupted volume 

(FD >0.2 mm, 0B + 1F), and (d) Censoring of volumes whose FDPower 
>0.2 mm as well as one volume before and two volumes after the 
motion corrupted volume (FD >0.5 mm, 1B + 2F). We examined both 
the motion‐BOLD relationships and the distance‐dependent con‐
nectivity artifact for each of the four cases to make a sound judg‐
ment on the appropriate motion threshold that prevents excessive 
loss of data, while still removing motion artifacts.

2.8 | Calculation of RS‐fMRI based 
connectivity metrics

We calculated two RS‐fMRI based metrics: (a) Network DC and 
(b) PCC‐FC. These were chosen in order to (a) Evaluate the spatial 
relationship between functional connectivity metrics and motion 
and, (b) Compare the effectiveness of the motion correction strat‐
egies in high‐motion and low‐motion subgroups. Network DC was 
calculated as the weighted sum of significant positive connections 
for every voxel in the brain (Buckner, Andrews‐Hanna, & Schacter, 
2008; Yan et al., 2013; Zuo et al., 2012). A connection was deemed 
significant if the correlation coefficient exceeded a threshold of 0.25 
(p < 0.0001). A subject level z‐score was calculated by subtracting 
the mean for all voxels in the volume of a subject and dividing it by 
the standard deviation, to standardize the DC scores for group‐level 
analyses. These subject level z‐maps were registered to the MNI 
template and smoothed with a 4.5  mm3 Gaussian kernel. PCC‐FC 
was estimated by extracting the mean time series from the PCC: 0, 
−53, 26; diameter = 10 mm and then calculating the Pearson's corre‐
lation coefficient with other voxels in the brain as was done in other 
studies (Satterthwaite et al., 2013; Yan et al., 2013). This was done 
in the standardized space after preprocessing, filtering, normaliza‐
tion, and smoothing. These correlation values were transformed 
to z values using Fischer's r to z transformation. We calculated the 
correlation between the DC/PCC‐FC maps and FDvox for each sub‐
ject across every voxel to obtain maps indicating the relationships 
between motion and FC metrics for both high‐motion and low‐mo‐
tion subgroups. To compare the effectiveness of the motion correc‐
tion strategy across preprocessing pipelines with various nuisance 
regressors, we performed a t test for high‐motion and low‐motion 
subgroups separately. A flowchart summarizing our processing pipe‐
line can be found in Figure 1.

3  | RESULTS

3.1 | Examination of BOLD time‐series data

Figure 2 shows PACE‐corrected resting state BOLD time‐series ex‐
tracted from the PCC in a representative high‐motion subject as well 
as a low‐motion subject and provides an insight into the effect of 
head motion on prospectively motion‐corrected BOLD signal. The 
effect of each of the preprocessing steps on the time courses of the 
BOLD signal (PCC), DVARS (PCC), and DVARS (whole brain), each 
of which are obtained from PACE‐corrected data, can be discerned. 
Figure 2 also displays motion metrics such as mean (TDvox [PCC]) (TD 
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of PCC), meanspTDvox (TD of the brain), mean (FDvox [PCC]), meansp‐

FDvox, FDFSL, FDPower, and the six realignment parameters. There is 
a linear relationship between residual motion metrics, and FDPower 
seems to have the highest of all the FDvol measures and that FDFSL 
and meanspFDvox, closely align with each other.

Looking at the impact of the motion on the PACE‐corrected 
BOLD time series in Figure 2, we observe that large changes in the 
head position roughly correspond to the significant changes in the 
PACE‐corrected BOLD time series. While this has been shown to be 
true for non‐PACE data (Power et al., 2012, 2014; Satterthwaite et 
al., 2013), we show here that the same is true for PACE‐corrected 
data as well although the magnitude of such changes may be dif‐
ferent in PACE data. DVARS, which measures the change in the 
BOLD signal, approximately follows the sharp rise and fall in head 
motion (as captured in the FD). It is also worth noting that some 
head movements were associated with larger signal changes in the 
PCC compared to the whole brain signal and in some cases, it was 
other way around. This points to the differential impact of head 
motion on the PACE‐corrected BOLD signal in different regions of 
the brain. In the high‐motion subject who was relatively still except 
for two large head movements, a ringing effect (rapid changes) in 
the PACE‐corrected BOLD signal and associated FD metrics can be 
observed. One possible reason for this could be that, due to the 
prospective correction by PACE, the scanner seems to be adjust‐
ing to the motion, thus causing a distinct effect on the BOLD time 
courses. Of course, these patterns appear to have reduced after 
WM, CSF, and GSR, and motion parameter regression but is still 
distinctly present after nuisance covariate regression, giving merit 
to the argument that censoring the motion corrupted volumes is the 
best way to eliminate the artifactual effects of residual head motion 
on the PACE‐corrected BOLD signal. Although the data are shown 
for just two subjects, it effectively demonstrates the limitations of 
nuisance signal regression in preprocessing rs‐fMRI data obtained 
with PACE. To understand how much variance is explained by the 
Friston‐24 motion parameters and the six realignment parameters, 
we estimated the average PACE‐corrected BOLD signal variance 
explained by the 24 motion parameters and six realignment param‐
eters for each subject and averaged the results over all subjects as 
shown in Figure 3a,b, respectively. This result is pretty similar to 
figure 1B in Satterthwaite et al., 2013, who used adjusted R2 maps 
to illustrate the signal varaince explained by using six realignment 
parameters. The BOLD signal from regions which are farthest from 
the center of the brain are affected the most by head motion and 
consequntly more variance in the PACE‐corrected BOLD signal 
is explained by the 24 motion parameters. Also, compared to six 
realignment parameters (Figure 3b) use of 24 motion parameters 
(Figure 3a) explained a lot more variance (as observed by their ad‐
justed R2 values) across the brain.

3.2 | Voxel‐wise relationships between FD and 
PACE‐corrected BOLD signal

The sensitivity of the BOLD time series to head motion artifacts 
is spatially varying and this can be characterized by the FD‐BOLD 
relationship. Consistent linear relationships (or correlations) be‐
tween FDvox and the BOLD signal across the brain is indicative 
of the motion artifact and can affect the estimation of functional 
connectivity between brain regions. Figure 4 shows the raw FDvox‐
BOLD correlation maps as well as maps thresholded at (T > 4.95, 
p  <  0.05, FDR corrected). As was observed with the PACE‐cor‐
rected time‐series data, WM, CSF, and motion regression did not 
remove significant motion‐BOLD relationships. An interesting ob‐
servation is that negative motion‐BOLD relationships which are 
associated with large head movements (Yan et al., 2013) were ab‐
sent in the thresholded maps obtained from PACE‐corrected data. 
It can be seen from Figure 4 that none of the voxels exceed the 
negative threshold, implying no significant negative motion‐BOLD 
relationships were present. It is noteworthy that results from non 
PACE‐corrected data reported before show significant negative 
motion‐BOLD relationships (Yan et al., 2013). With the addition of 
GSR, the large positive relationships were reduced across the brain, 
but negative correlations were introduced. However, it should be 
noted that none of the negative motion‐BOLD correlations were 
significant. With relatively modest motion censoring (FD >0.5 mm, 
1B  +  2F) and without GSR, motion BOLD relationships were not 
significant (p > 0.05), and very few positive relationships survived 
the thresholds. In order to obtain an equivalent result with non‐
PACE data, Yan et al., had to use a much stricter censoring thresh‐
old of FDPower >0.2 mm coupled with GSR (Yan et al., 2013). If we 
used GSR or increased the censoring threshold to those used by 
Yan et al., 2013, all motion‐BOLD relationships were eliminated. 
This indicates that one could use liberal censoring (thereby retain‐
ing more data) and avoid the confounding effects of GSR and yet 
eliminate all negative, and most positive motion‐BOLD relation‐
ships using PACE data.

To better understand the patterns of these relationships be‐
tween high‐motion and low‐motion subjects, we repeated the 
analysis separately for high‐motion and low‐motion subgroups. 
The result is shown in Figure 5 and the corresponding thresholded 
T‐maps for high‐ and low‐motion subgroups shown in Figure 6. 
The results show small motion‐BOLD correlations for low‐motion 
subgroup as expected, with significant correlations (p < 0.05, FDR 
corrected) only restricted to the visual areas after WM and CSF 
regression. Further steps of preprocessing eliminated even those 
correlations to below significance. However, the relationships 
for high‐motion subgroup relationships reduced to below chance 
levels in most areas only after motion censoring. Qualitatively, 

F I G U R E  1  Flowchart summarizing our processing pipeline. Picture of the gradient coil taken from MRI: A Guided Tour, 2018 (Coyne, 
2012). Reproduced with permission from the author. B, number of backward frames from the motion corrupted time points removed due 
to censoring; BOLD, blood-oxygen‐level‐dependent signal; CSF, cerebrospinal fluid signal; EPI, echo‐planar imaging; F, number of forward 
frames from the motion corrupted time points removed due to censoring; FD, framewise displacement; GS, global signal; PCC, posterior 
cingulate cortex; TD, total displacement; WM, white matter signal
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motion‐BOLD correlations obtained from PACE data appear to be 
smaller in magnitude and spatial extent when compared to those 
obtained from non‐PACE data (in both low‐ and high‐motion sub‐
jects) reported previously (Yan et al., 2013).

3.3 | Motion‐induced distance‐dependent artifact 
in resting‐state functional connectivity

When functional connectivity is estimated with motion‐corrupted 
data, connectivity strengths between two brain regions can be 

F I G U R E  2  The PACE‐corrected time‐series extracted from the posterior cingulate cortex (PCC 0, −53, 26; 10 mm diameter sphere) at 
every step in the preprocessing pipeline for a representative subject in the high‐motion (right) and low‐motion (left) subgroups. Please note 
that the range of the y‐axis for both the groups is the same for blood‐oxygen‐level‐dependent (BOLD) time series and range from −5 to 5. 
However, for the motion metrics plots the range on the y‐axes are different in the left and right panels in order to better visualize the type 
of motion in low‐motion subjects. Large changes in the head position are associated with large changes in the BOLD signal. Regression 
of nuisance variables was not successful in eliminating large spikes in head motion in the high‐motion subject, but they were relatively 
successful in the low‐motion subject. The head motion can sometimes only selectively affect PCC, but not the whole brain. DVARS: 
Derivative of root mean squared variance over voxels. CSF, cerebrospinal fluid signal; FD, framewise displacement; FDFSL, FD calculated as 
described in Jenkinson et al. (2002); FDPower, FD calculated according to Power et al., (2012); FDvox, voxel‐specific framewise displacement 
calculated as detailed in Yan et al. (2013); GS, global signal; TDvox, voxel‐specific total displacement; WM, white matter signal
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dependent on the relative location of the regions and the similar‐
ity in magnitude and the direction of the displacement experienced 
by head motion. This artifact helps us in evaluating the success of 
a motion correction strategy and the absence of the motion arti‐
fact in the data. We plot the 12,720 connectivity values (obtained 
from PACE‐corrected BOLD time series) which were correlated with 
each subject's summary head motion (mean [FDFSL]) as a function of 
distance. This was done for all combination of nuisance regressors 
and motion censoring, and we show the results for the high‐motion 
and the low‐motion subgroups separately in Figure 7. Ideally, if head 
motion was not artifactually modulating the connectivity values, we 
expect the plot to be a flat (zero slope) line and a zero intercept, since 
there must be no relationship between most connectivity paths and 
head motion. But as Figure 7 illustrates, the distance‐dependent ar‐
tifact was present for all combinations of nuisance variable regres‐
sion including WM, CSF, GS, and Friston‐24 motion regression. The 

correlation of head movement with the connectivity metrics exhib‐
ited positive values for all distances and only with the introduction 
of GSR, were the correlation with motion became negative for func‐
tional connectivity between farther regions. With motion censor‐
ing, this artifact did not seem to have been completely eliminated, 
especially in high‐motion subjects, with a small slope and a positive 
intercept when fitted by a linear trend line. There was a positive cor‐
relation between FC and head motion at all distances in high‐motion 
subjects. The artifact almost seems absent in low‐motion subjects 
for all combinations of nuisance variable regression and censoring as 
the slope is small and the line is relatively flat. In contrast, previous 
reports with non‐PACE data indicate that the distance‐dependent 
artifact could not be eliminated (unless censoring thresholds were 
more severe than what we have used) even in low‐motion subjects 
(Satterthwaite et al., 2012). A few more observations from the fig‐
ure are that GSR appears to distort the distance‐dependent artifact 
and makes the artifact worse by increasing the slope in high‐motion 
subjects and the variance in low‐motion subjects. This result is in 
agreement with the observations made by Jo et al. that GSR distorts 
functional connectivity values (Jo et al., 2013). However, when GSR 
was combined with censoring, it did seem to eliminate the distance‐
dependent artifact even in subjects with high motion. Since we used 
a relatively modest threshold of 0.5 mm with a censoring window of 
one previous volume and two forward volumes, we wanted to see 
if a more severe threshold of FDPower >0.2 mm, would have any ad‐
ditional benefits at the cost of substantial loss of data.

3.4 | Impact of censoring threshold on the 
existence of motion artifacts

In order to better understand the dynamics between the removal 
of motion artifacts and preservation of noncorrupted PACE‐cor‐
rected BOLD data, we experimented by using two different censor‐
ing thresholds (0.5 and 0.2 mm) and two censoring windows around 
the motion corrupted volumes (0B  +  1F and 1B  +  2F). This gave 
rise to four scenarios of motion censoring (a) FDPower >0.5, 0B + 1F, 
(b) FDPower >0.5, 1B + 2F, (c) FDPower >0.2, 0B + 1F, and (d) FDPower 
>0.2, 1B + 2F. Figure 8 shows the fraction of time points marked for 
excessive head motion and removed for each of the above censor‐
ing scenarios. As expected, there was huge loss in data when we 
used censoring at 0.2 mm compared to 0.5 mm. In fact, the num‐
ber of subjects, who had at least 3 min of good data or 180 time 
points in our case was reduced from 47 to 24, when the threshold 
was greater than 0.2 mm and one volume before and two volumes 
after the motion were removed. We used the presence of the sig‐
nificant (p < 0.05, FDR corrected) motion‐BOLD relationships and 
the existence of the motion‐induced distance‐dependent functional 
connectivity artifact (FD‐RSFC correlations) to assess the quality of 
nonmotion corrupted data. To be fair in the comparison, we used the 
same 24 remaining subjects for all the four censoring cases. Since 
most of the subjects left had pretty low motion, we expected results 
similar to those obtained by the low‐motion dataset. It is notewor‐
thy that several subjects were common to both the subsets of data 

F I G U R E  3   The average BOLD signal variance (adjusted R2) 
explained by the 24 regressors used in the Friston‐24 motion 
regression model (a) and the six realignment parameters (b). Figures 
(a and b) are similar, except for that fact that 24 motion regressors 
(a) explain far more variance across the brain compared to using 
just six motion parameters (b). These motion regressors explain 
a modest amount of variance in the brain, with more variance 
explained in the frontal regions and less variance explained in other 
(especially posterior) regions. This is to be expected given that 
frontal regions experience more displacement than other regions of 
the brain Yan et al., (2013). BOLD, blood‐oxygen‐level‐dependent; 
L, left view; R, right view
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and there was relative absence of motion artifacts in the low‐motion 
subgroup even with relatively less preprocessing. The unthresholded 
T‐maps are shown in Figure 9a and the thresholded T‐maps (p < 0.05, 
FDR corrected) are shown in Figure 9b. As Figure 9b shows, mo‐
tion‐BOLD relationships were below significance for all voxels in all 
the four scenarios of motion censoring, though the values of few 
motion‐BOLD relationships in the visual areas are removed with the 
more stringent threshold. The motion‐induced distance‐dependent 
connectivity artifact appeared to be appeared to be considerably 
reduced (Figure 9c) in the four cases as the slope was very small. 

But the slope was not significant (p > 0.05) for the case with censor‐
ing FDPower >0.5, 0B + 1F. The slope was small as well as significant 
(p < 0.05) for other censoring scenarios, indicating that motion‐in‐
duced distance‐dependent connectivity artifact is eliminated after 
censoring the data at FDPower >0.5, 1B + 2F. Increasing the censor‐
ing window size beyond the motion corrupted volume and a single 
volume after the corrupted volume, did not seem to have any effect 
on the data even after filtering the time series. Our results indicate 
that censoring volumes at a more stringent threshold of 0.2 mm or 
increasing the censoring window size to include more volumes did 

F I G U R E  4   Illustration of the reduction in the relationship between motion and PACE‐corrected BOLD data for different nuisance 
variable regressors. The unthresholded T‐maps are shown in (a) and the thresholded (p < 0.05, FDR corrected) maps are shown in (b). The 
results indicate that motion regression did not remove motion‐BOLD relationships visibly. However, GS regression did seem to reduce 
these relationships, with some regions now showing a negative correlation. (b) After the nuisance variance regressions, some regions did 
exhibit significant positive relationships with the BOLD signal, though no negative relationships remained. With censoring, both positive 
and negative relationships are almost absent. BOLD, blood‐oxygen‐level‐dependent; CSF, cerebrospinal fluid signal; GS, global signal; L, left 
view; PACE, Prospective Acquisition CorrEction; WM, white matter signal
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not have a detectable improvement in the data quality as the arti‐
facts were almost eliminated at 0.5 mm, but it came at the cost of 
substantial loss of data. This indicates that PACE when combined 
with retrospective motion correction methods including motion cen‐
soring at 0.5 mm was effective in removing head motion artifacts 
while still saving data.

3.5 | Impact of motion on functional connectivity 
estimates of DC and PCC‐FC

As seen earlier, motion does affect functional connectivity and 
other measures derived from it even with EPI‐PACE acquisition. In 
order to understand the residual relationships between functional 
connectivity metrics and motion, we calculated the Pearson's cor‐
relation coefficient between head motion, that is, mean [FDvox], and 

DC (Figure 10) separately for the high‐motion and the low‐motion 
subgroups. As shown in Figure 10, DC was relatively robust to the in‐
fluence of motion artifact due to Z‐standardization (Yan et al., 2013). 
This implies that nuisance variable regression and censoring did not 
have much impact on the FD‐DC correlations. However, we found 
large positive correlations in the sensorimotor cortex, and the corre‐
lations increased after motion artifacts were removed from the data 
via motion regression and censoring. A more detailed image of mo‐
tion‐DC correlation after in the sensorimotor cortex, after threshold‐
ing at (p < 0.05, FDR corrected) is shown in Figure 11. This effect was 
observed both in the high‐motion and the low‐motion subgroups. A 
similar result was reported by Pujol et al., indicating that there is a 
component of motion‐related connectivity changes that may have a 
neural basis and may not be just a consequence of the motion artifact 
(Pujol et al., 2014). The FD‐PCC functional connectivity correlation 

F I G U R E  5   The unthresholded T‐maps illustrating the relationship between the PACE‐corrected BOLD signal and voxel‐specific 
framewise displacement for the high‐motion and the low‐motion subgroups. Cerebrospinal fluid, white matter, and motion regression 
are relatively ineffective in reducing the motion‐BOLD relationships both in high‐motion and low‐motion subjects. Large motion‐BOLD 
relationships are comparatively fewer in low‐motion subjects, as expected. Global signal regression significantly increased negative motion‐
BOLD relationships in high‐motion subgroup, but not by much in the low‐motion subgroup. With motion censoring, GSR has a relatively 
negligible effect on the motion‐BOLD relationships in both the subgroups. BOLD, blood‐oxygen‐level‐dependent; CSF, cerebrospinal fluid 
signal; GS, global signal; HM, high‐motion cohort; L, left view; LM, low‐motion cohort; PACE, Prospective Acquisition CorrEction; WM, white 
matter signal
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map (shown in Figure 12) identifies the regions whose correlation 
with PCC varies as a function of subject head motion. We observed 
significant (p < 0.05, FDR corrected) negative correlations between 
residual motion and PCC‐FC in the frontal regions in the low‐motion 
subgroup and a significant reduction in the positive correlations es‐
pecially in subjects with high motion as GS, motion regression, and 
censoring were performed. This highlights their relative effective‐
ness in reducing motion artifacts, particularly in subjects with high 
head motion.

A two‐tailed t test was performed across subjects in the high‐ 
and low‐motion subgroups separately by using individual subject 
DC maps as the sample to find consistent patterns across the 
motion subgroups (results not shown). This further demonstrates 
that DC is robust to various motion correction strategies, and sim‐
ilar results can be obtained with different motion populations. In 
Figure 13, we show a similar result with PCC seed‐based functional 
connectivity. The regions commonly associated with the default 

mode network (DMN) were observed in the PCC seed‐based FC 
map including regions such as the medial prefrontal cortex (mPFC), 
inferior parietal lobe, and lateral temporal cortex, without the GSR 
(Buckner et al., 2008; Koshino, Minamoto, Yaoi, Osaka, & Osaka, 
2014; Raichle et al., 2001). But with GSR, anticorrelated and task‐
positive networks such as the dorsal attention system and the 
hippocampal‐cortical memory system were observed as expected 
(Fox, Zhang, Snyder, & Raichle, 2009). However, it is important to 
note that in the high‐motion subjects with GSR, the mPFC which 
is an integral part of DMN, was absent, whereas it was present in 
the low‐motion subjects even after GSR. This illustrates that GSR 
is also likely removing neural components along with motion‐in‐
duced artifacts. Other than mPFC, other significant regions were 
commonly found in both the low‐motion and the high‐motion sub‐
groups. Therefore, care must be taken when GSR is used in the 
preprocessing pipeline in the context of PACE‐corrected BOLD 
data as well.

F I G U R E  6   Thresholded correlation maps between the PACE‐corrected BOLD signal and voxel‐specific framewise displacement across 
the brain. The figure shows the relative absence of significant (p < 0.05, FDR corrected) motion‐BOLD relationships in low‐motion subjects 
compared to the high‐motion subjects. The reduction in motion‐BOLD relationships after GS and motion regression in high‐motion subjects 
is stark, although residual correlations in the visual cortex are only eliminated after motion censoring. BOLD, blood‐oxygen‐level‐dependent; 
CSF, cerebrospinal fluid signal; GS, global signal; HM, high‐motion cohort; L, left view; LM, low‐motion cohort; PACE, Prospective 
Acquisition CorrEction; WM, white matter signal
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4  | DISCUSSION

This section is organized as follows. First, we discuss the principal 
advantages of using PACE in combination with retrospective motion 
correction strategies for controlling head motion artifacts in rest‐
ing state fMRI data. Next, we discuss the effectiveness of various 
retrospective motion correction strategies when used in combina‐
tion with PACE. Subsequently, we discuss identifying and separating 
neural correlates of head motion from motion artifacts using decon‐
volved PACE‐corrected BOLD data. This is followed by a discussion 
of other potential retrospective motion correction strategies which 
might be beneficial when used in combination with PACE, but which 
we have not been investigated here. Finally, we discuss some limi‐
tations of the current study which need to be kept in mind while 
interpreting our results.

4.1 | The principal advantages of prospective 
motion correction (PACE)

In this study, we examined the effectiveness of PACE in reducing 
motion artifacts in resting state fMRI data. In combination with the 
retrospective motion correction methods, using PACE‐corrected EPI 
sequence eliminated most of the motion artifacts. Specifically, we 
found that PACE provides two primary advantages over conventional 
EPI sequences. First, PACE was effective in eliminating significant 
negative motion‐BOLD relationships. Significant voxel‐wise negative 
motion‐BOLD relationships are typically associated with large signal 
dropouts caused by relatively large head motion (Satterthwaite et al., 
2013; Yan et al., 2013) when scanned with a typical EPI sequence. 
Given the general difficulty in reducing these negative motion‐BOLD 
relationships, PACE may provide a solution to this issue. However, 

F I G U R E  7   The figure shows the framewise displacement–resting state functional connectivity (FD‐RSFC) correlations for subjects in 
the high‐ and low‐motion subgroups (a) without global signal regression (GSR), and (b) with GSR. The motion‐induced distance‐dependent 
RSFC artifact is almost absent in the low‐motion subgroup for all stages and all combinations of nuisance signal regression. The color bar on 
the right indicates the density of points. The high‐motion subgroup does show the artifact which is only reduced after motion censoring. 
GSR distorts the FD‐RSFC relationships significantly, especially in the high‐motion subgroup, though after motion censoring, the data are 
relatively free from the artifact in both the subgroups, with and without GSR. CSF, cerebrospinal fluid signal; GS, global signal; WM, white 
matter signal
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F I G U R E  8   A boxplot shows the 
percent loss of data for four different 
censoring scenarios with framewise 
displacement (FDPower) used to quantify 
head motion. In the four scenarios a 
head motion threshold (FDPower either 
>0.2 mm or >0.5 mm) was used to mark 
time points corrupted with head motion, 
and the time point, along with either one 
forward (0B + 1F) or two forward and one 
backward (1B + 2F), were also removed 
with the motion corrupted time points. 
The boxplot indicates a large loss of data, 
with data from many subjects completely 
unusable when using a stricter censoring 
threshold (FDPower >0.2 mm), compared 
to a more lenient threshold (FDPower 
>0.5 mm).

FIGURE 7 (Continued)
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these results should be interpreted with caution as the relatively small 
sample sizes of our data compared to the large sample sizes of previ‐
ous studies could limit the utility of such direct comparisons. Second, 
previous reports have suggested a stringent censoring threshold 
(FDPower >0.2  mm) for satisfactorily controlling the level of motion 
artifacts in resting state fMRI data (Power et al., 2014; Satterthwaite 
et al., 2013; Yan et al., 2013). However, with PACE, we found that cen‐
soring with a less stringent threshold (FDPower >0.5 mm) and a smaller 
window around the motion corrupted time point, provided qualita‐
tively equivalent reductions in the motion artifact. Unfortunately, it is 
very difficult to directly compare our results on PACE‐EPI with those 
on typical EPI sequences, as the same subjects were not scanned 
with typical EPI sequences. With that caveat in mind, using a lib‐
eral censoring strategy, we were able to reduce motion artifacts to 
almost chance levels even in subjects with relatively large residual 

head motion. This will likely provide significant savings in data which 
would otherwise be lost to censoring. Given this scenario, acquiring 
data with EPI‐PACE might result in larger amount of usable data and 
hence more robust analyses. The EPI‐PACE data used for analysis 
and processing in this paper is being made publicly available (Lanka 
& Deshpande, 2018). We invite other researchers to contribute EPI‐
PACE resting state fMRI data to this sample so that our inferences 
can be verified in a larger cohort.

4.2 | Effectiveness of retrospective motion 
correction methods when used in combination 
with PACE

Since PACE is a prospective motion correction sequence, the best 
advances in retrospective motion correction can still be used with 

F I G U R E  9   The absence of motion artifacts for the four cases of motion censoring. (a) The motion‐BOLD relationships indicate very small 
positive motion‐BOLD relationships in the visual cortex, which are removed by censoring the volumes at a lower (more stringent) threshold. 
(b) Thresholded motion‐BOLD relationships for the figures shown in (a). It must be noted that none of the volumes exhibited significant 
correlations for all the four scenarios of censoring. (c) The framewise displacement—resting state functional connectivity correlations, which 
can be used to detect the presence of the motion‐induced distance‐dependent functional connectivity artifact, shows that for all the cases 
of censoring, the artifact was absent. The color bar on the right indicates the density of points. A stricter threshold for censoring or a larger 
censoring window does not seem to have a detectable improvement in data quality. When taken in light of findings from the Figure 8, it 
appears that PACE, when combined with retrospective motion correction allows us to obtain same quality data with a more liberal threshold, 
thereby saving data. B, number of backward frames from the motion corrupted time points removed due to censoring; BOLD, blood‐oxygen‐
level‐dependent; F, number of forward frames from the motion corrupted time points removed due to censoring; L, left view; R, right view
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equal or greater effectiveness when they are combined with PACE. 
The motion parameters captured are residual motion parameters 
after motion correction by PACE, not the actual subject motion. The 
ability of CSF and WM regression in removing the motion‐induced 
signal variance in resting state fMRI data is limited as reported by pre‐
vious studies (Satterthwaite et al., 2013; Yan et al., 2013), a fact con‐
firmed by our results. We used motion regression by the Friston‐24 
model, which was shown to be the best performing model previously 
(Satterthwaite et al., 2013; Yan et al., 2013) and our results confirm 
the same. Obviously, higher‐order motion models might explain 
larger amount of variance for high‐motion datasets across the brain, 
but it comes at the cost of significant loss of degrees of freedom and 
result in a drop in the BOLD sensitivity (Beall & Lowe, 2014).

Although several previous studies recommend the use of GSR 
for reducing motion artifacts (Power et al., 2012, 2014; Pujol et al., 
2014; Yan et al., 2013), the effectiveness of GSR in reducing motion 
artifacts in the BOLD signal as well as lowering FD‐RSFC correlations 
is mixed. Our results (Figure 4) are in agreement with the previous 
studies indicating that GSR effectively reduces the positive mo‐
tion‐BOLD relationships but increases the negative motion‐BOLD 
relationships (Yan et al., 2013). GSR also distorted the FD‐RSFC 
correlations (Figure 7) considerably (Jo et al., 2013). GSR reduced 
the functional connectivity of mPFC with the PCC seed (Figure 13), 

a key component of the DMN, in the high‐motion subgroup. Other 
issues with GSR include the fact that it distorts the distribution of 
correlation values (Murphy et al., 2009), and could alter interindi‐
vidual differences at the group level (Gotts et al., 2013; Saad et al., 
2012). Given that PACE provides an additional strategy for motion 
correction, it could be used without GSR to achieve better quality 
data compared to conventional EPI coupled with no GSR. On the 
other hand, for the proponents of GSR, PACE's tendency to remove 
negative motion‐BOLD relationships may at least partially cancel out 
the negative motion‐BOLD relationships introduced by GSR.

We found censoring high‐motion time points from the data to be 
the most effective retrospective motion correction. With censoring, 
spurious motion‐BOLD relationships (Figure 6) and distance‐depen‐
dent functional connectivity artifacts (Figure 7) were almost elimi‐
nated in high‐motion subjects. An extremely important issue, when 
performing censoring is to determine how much resting state data 
is sufficient for stable and reliable estimation of resting‐state func‐
tional connectivity (RSFC) metrics. Some have suggested at least 
4 min (Satterthwaite et al., 2013) and others believe that 3 min of RS‐
fMRI data to be sufficient (Yan et al., 2013). While comparing usable 
data available after censoring (Figure 8), we have assumed that one 
has to have at least 3 min of data. In addition to scan time, the sam‐
pling period (TR) is also an important consideration. The value of the 

F I G U R E  1 0   Unthresholded spatial map of the Pearson's correlation coefficient between the degree centrality obtained from PACE‐
corrected BOLD data and residual head motion as captured by mean voxel‐wise framewise displacement across subjects, shown for subjects 
in high‐motion (left) and low‐motion (right) groups separately. Large positive correlations were observed in the sensorimotor cortex in the 
low‐motion subgroup as well as in the high‐motion subgroup with nuisance variable regression and censoring. This illustrates that some 
changes in functional connectivity might have a neural origin and it could be confounded with changes due to motion artifact as even motion 
artifact causes changes in functional connectivity. BOLD, blood‐oxygen‐level‐dependent; CSF, cerebrospinal fluid signal; GS, global signal; L, 
left view; PACE, Prospective Acquisition CorrEction; R, right view; WM, white matter signal;
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FD, used for identifying motion corrupted time points is paramount 
while censoring as it is heavily dependent on TR. Sampling the brain 
at a smaller TR tends to divide larger motion into smaller compo‐
nents, hence might have different effects on the presence of motion 
artifacts and motion correction. Also, censoring alters the temporal 
structure of the data even if the censored time points are interpo‐
lated. This affects frequency‐based analyses, moving window‐based 
dynamic functional connectivity (DFC), and effective connectivity 
(EC) calculations. So, all analyses which require an intact temporal 
structure of the data might want to avoid censoring. In such cases, 
PACE offers a way of obtaining relatively cleaner data without cen‐
soring, although motion artifacts cannot be completely eliminated 
without at least liberal censoring even when using PACE.

The effectiveness of group‐level motion correction by includ‐
ing individual motion estimates in group‐level analyses has been 
reported before (Power et al., 2014; Yan et al., 2013). Group‐level 
regression with individual motion estimates effectively removes po‐
tential motion‐related artifacts but may also remove changes related 
to neural activity (Pujol et al., 2014). Many pathological conditions 
are associated with changes in regional functional connectivity. 
These changes in connectivity might be biased by the group effects 

of the subject head motion especially in hyperkinetic populations. 
So, it might be difficult to separate motion artifacts from disease 
effects, especially since the effect of interest is correlated with head 
motion. Unfortunately, in these cases group‐level motion correction 
cannot be performed, so motion correction has to be limited to sub‐
ject‐level motion correction methods.

As recommended by several previous papers, we think that there 
are merits to having different preprocessing pipelines for groups 
with different motion profiles as well as when performing different 
analyses, as no single preprocessing procedure is ideal for all cases. 
Some factors which need to be considered for the acquisition and 
processing of rs‐fMRI data include the repetition time TR, use of 
slice time correction, the imaging sequence to capture the BOLD sig‐
nal, head motion criteria to include a subject fMRI data in the study, 
the motion profile of the sample and the population to be studied, 
the model complexity for modeling head motion, the use of GSR, the 
threshold used to decide motion corrupted volumes, the number of 
time points left after motion censoring required for the stable esti‐
mation of RSFC metrics, the use of subject‐level motion correction 
versus group‐level motion correction, and the use of group‐level 
motion correction, if the variable of interest is correlated with head 
motion. The second important factor to consider is the objective and 
analysis of the study. As we have discussed earlier, motion censoring 
effectively precludes many types of analyses such as the ones that 
use hemodynamic deconvolution. Although interpolation has been 
suggested to reconstruct the removed time points, the fit could 
be unreliable as the neighboring points of a motion corrupted time 
point may also be corrupted by motion since multiple time points 
are affected by head motion. Another example relates to the use of 
group‐level motion correction in analyses involving clinical popula‐
tions, especially in hyperkinetic populations where disease status is 
associated with head motion. Group‐level correction of head motion 
might remove some of the disease‐related variance. Therefore, a 
proper choice of the processing pipeline based on the motion pro‐
file and the planned analyses can reduce motion artifacts while still 
achieving study objectives.

The relationship between head motion and brain connectivity 
is a bi‐directional relationship, that is, differences in brain connec‐
tivity could be associated with head motion in the scanner (Zeng 
et al., 2014) just as head motion could cause artifactual changes 
in connectivity. Some have hypothesized that this might suggest 
that reduced connectivity in regions corresponding to the DMN 
might predict how still the person can stay in the scanner (Zeng et 
al., 2014). These neural correlates of motion can cause functional 
connectivity changes that represent genuine variations of neural 
activity in certain regions, which can be mistaken for a motion ar‐
tifact. Other areas such as the regions in the visual cortex have 
also been speculated to be a neural correlate of head motion (Pujol 
et al., 2014). Different clinical populations exhibit characteristic 
spatio‐temporal motion patterns that can be associated with dis‐
tinct motion artifacts for various pathological conditions (Spisák et 
al., 2014) thus really complicating the distinction between disease 
changes in connectivity and motion artifacts and limiting the use 

F I G U R E  11   Figure showing the thresholded (p < 0.05) 
correlation (R) map of network degree centrality (DC) with head 
motion of the brain after nuisance variable regression including 
CSF, white matter signal, Friston‐24 motion regression and motion 
censoring in all the subjects. Significant positive correlations can 
be observed between residual head motion in PACE‐corrected 
data and DC in the sensorimotor cortex. This shows that DC in 
the sensorimotor could possibly be attributed to neural processes 
responsible for head motion. A, anterior; CSF, cerebrospinal 
fluid signal; L, left; P, posterior; PACE, Prospective Acquisition 
CorrEction; R, right; S, superior
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of functional connectivity as effective disease biomarkers (Spisák 
et al., 2014). Given this scenario, it is all the more advantageous 
to prospectively correct for motion so that the resulting data un‐
dergoes as little retrospective correction as possible, so that the 
component of motion‐related changes that may represent system‐
specific neural activity are preserved.

The observed BOLD signal is a convolution of the latent neu‐
ral fluctuations with the hemodynamic response function (HRF, 
Handwerker, Ollinger, & D'Esposito, 2004; Wu et al., 2013). Resting 
state BOLD data could be deconvolved (Wu et al., 2013) to remove 
the spatial heterogeneity in the latency of the HRF. The fidelity 
of deconvolution can be affected not only by motion censoring 
(scrubbing), but also when motion artifacts are present in the data. 
Therefore, sufficient subject level motion correction must be per‐
formed at the individual level, and it should be ensured that the data 
are free from motion artifacts before deconvolution is performed to 
infer the latent neuronal activity.

4.3 | Other motion correction methods

Many advances in retrospective motion correction methods, which 
involve slight modifications in the traditional preprocessing pipe‐
line, have been reported to be beneficial in ameliorating motion 
artifacts. These methods can be used in combination with PACE 

for more effective reduction of motion artifacts. They include the 
usage of time series based or wavelet‐based despiking (Patel et 
al., 2014), using aCompCor (anatomical ComCor, Muschelli et al., 
2014), or nuisance signal regression instead of mean CSF and WM 
signals, using edge voxel information rather than traditional motion 
parameters (Patriat, Molloy, & Birn, 2015). ANATICOR, which uses 
local WM regressors coupled with despiking (Jo et al., 2013), and 
ensures uniform smoothing in the entire data to further reduce the 
effects of interindividual differences in head motion (Scheinost, 
Papademetris, & Constable, 2014). The voxel‐wise estimates of 
head motion are derived from volume‐based realignment param‐
eters and their accuracy is limited by the accuracy of the estima‐
tion of the volumetric realignment parameters. Therefore, slice 
wise parameter measures might give a better estimate of the ac‐
tual voxel‐wise motion for every voxel in the brain. As rapid head 
movements between TRs can have a differential effect on differ‐
ent slices in a single volume and cannot be adequately modeled 
by volume‐based realignment parameters, use of these slice‐wise 
estimates may aid in the calculation of voxel‐wise displacements 
and correction of motion‐induced signal changes (Beall & Lowe, 
2014). While comparing motion‐prone clinical populations with 
healthy controls at the group level, the use of regional displace‐
ment interaction, which would encapsulate motion information in 
the voxel‐wise metrics rather than use a summary motion statistic 

F I G U R E  1 2   Correlation between seed‐based functional connectivity of posterior cingulate cortex and head motion (as captured by 
mean voxel‐wise framewise displacement across subjects) shown for subjects with high head motion (left) and low head motion (right) 
groups separately. Large correlations were observed across the brain in both low‐ and high‐motion subgroups. With motion censoring and 
global signal regression, the correlations in the high‐motion group were reduced. This illustrates their relative effectiveness in reducing 
motion artifacts particularly in subjects with high head motion. CSF, cerebrospinal fluid signal; GS, global signal; L, left view; R, right view; 
WM, white matter signal
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could further correct for motion artifacts and preserving neuronal 
effects (Spisák et al., 2014).

Other methods for motion correction involve the use of multi‐
echo sequences which require slight modifications of the scanning 
sequence compared to typical EPI scans. Regressing a voxel‐wise 
short TE scan from BOLD contrast could be used to remove mo‐
tion and physiological noise from the BOLD signal (Bright & Murphy, 
2013) or use more integrated approaches combining multi‐echo 
scans, ICA and separation of BOLD related components from non‐
BOLD components (Kundu et al., 2013).

An evaluation of the acquisition strategies with a combination 
of preprocessing procedures will probably result in the best way to 
reduce motion artifacts in the BOLD data. It is also important to note 
that the success of better imaging sequences should not preclude 
the search for better retrospective motion correction methods for 
the data already collected and in cases, where prospective motion 
correction may not be possible. Since there are changes in the BOLD 
signal due to motion, it could potentially affect not just static func‐
tional connectivity measures, but also other measures such as DFC 
estimates, EC and multivariate pattern analyses results. A thorough 
investigation is required as to how the changes in signal intensity 

propagate into higher analyses to cause specific and structured 
artifacts.

4.4 | Limitations

The number of subjects we have used for this study (N = 47) is reason‐
able for typical fMRI studies, but small compared to other reports which 
have evaluated retrospective strategies using large databases (N > 100). 
Due to the nature and effect sizes of motion artifacts, sample size can 
have a bearing on the results. Therefore, our results should be confirmed 
with a larger sample. Also, phenotypic factors such as age can have a 
bearing on motion artifacts. Our sample was homogeneous in this re‐
spect (20 male/27 females, age 25.1 ± 5 years) and hence did not sam‐
ple the entire spectrum observed in the general population. Since we 
did not use external motion tracking devices to quantify head motion, 
the accuracy and reliability of image‐based motion metrics used for 
prospective and retrospective correction of head motion could not be 
independently validated. Since PACE is a prospective motion correction 
method, we might not know the actual head movement of the subject, 
but only the residual motion of the subject on the scanner coordinates. 
Another limitation of the PACE sequence owes to the fact that the types 

F I G U R E  1 3   A comparison of regions with significant correlations (p < 0.05, FDR corrected) with posterior cingulate cortex (PCC: 0, −53, 
26; 10 mm diameter sphere) as the seed region PCC‐functional connectivity. This figure is shown for both high‐motion (left) and low‐motion 
subjects (rights). With the addition of global signal regression (GSR), anticorrelated networks were observed. In high‐motion subjects with 
GSR, the correlation between medial prefrontal cortex and PCC was reduced to chance levels, while it was still present in the low‐motion 
subjects. This illustrates that GSR is also likely removing neural components along with motion‐induced noise signal. CSF, cerebrospinal fluid 
signal; GS, global signal; L, left view; R, right view; WM, white matter signal
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of head‐motion corrected by prospective image‐based motion correc‐
tion is limited. PACE is effective for slow‐drifting motion and may not be 
able to correct for short jerky movements of the head. Due to the nature 
of the sequence, the scanner may take several TRs to adjust the scan‐
ner coordinates after the head movement has subsided. In this paper, we 
only show the results for PACE‐corrected data because even if we had 
non‐PACE data from the same subjects, they would not be comparable 
with PACE data as the head motion, though correlated is not reproduc‐
ible across runs within subjects. Therefore, it is impossible to directly 
compare data with and without PACE correction in a time‐locked man‐
ner. Further studies should consider direct comparisons of prospective 
motion correction strategies with traditional EPI protocols and retro‐
spective methods.
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