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Abstract

Dysregulation of the renin-angiotensin system leads to systemic hypertension and mal-

adaptive fibrosis in various organs. We showed recently that myocardial fibrosis and

the loss of cardiac function in mice with transverse aortic constriction (TAC) could be

averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we

used angiotensin II (AngII) infusion (2.1 mg/kg/day for 2 wk) in mice as a second model

to confirm and extend our observations on the beneficial effects of CSD on heart and kid-

ney disease. AngII caused cardiac hypertrophy (increased heart weight to body weight

ratio (HW/BW) and cardiomyocyte cross-sectional area); fibrosis in heart and kidney

(increased levels of collagen I and heat shock protein-47 (HSP47)); and vascular leakage

(increased levels of IgG in heart and kidney). Echocardiograms of AngII-infused mice

showed increased left ventricular posterior wall thickness (pWTh) and isovolumic relaxa-

tion time (IVRT), and decreased ejection fraction (EF), stroke volume (SV), and cardiac

output (CO). CSD treatment (i.p. injections, 50 μg/mouse/day) of AngII-infused mice sig-

nificantly suppressed all of these pathological changes in fibrosis, hypertrophy, vascular

leakage, and ventricular function. AngII infusion increased β1 and β3 integrin levels and

activated Pyk2 in both heart and kidney. These changes were also suppressed by CSD.

Finally, bone marrow cell (BMC) isolated from AngII-infused mice showed hyper-migration

toward SDF1. When AngII-infused mice were treated with CSD, BMC migration was

reduced to the basal level observed in cells from control mice. Importantly, CSD did not

affect the AngII-induced increase in blood pressure (BP), indicating that the beneficial

effects of CSD were not mediated via normalization of BP. These results strongly indicate

that CSD suppresses AngII-induced pathological changes in mice, suggesting that CSD
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can be developed as a treatment for patients with hypertension and pressure overload-

induced heart failure.

Introduction

Metabolic syndromes such as hypertension, obesity, and/or diabetes mellitus often cause

organ fibrosis, primarily affecting the heart and kidney and contribute to the development of

congestive heart failure (CHF). Elevated angiotensin-II (AngII) causes hypertension that

results in endothelial dysfunction resulting in impaired vasodilation, vascular inflammation

due to leucocyte-endothelial cell interaction, and increased vascular permeability [1]. The acti-

vation of angiotensin receptor 1 (AT1) by AngII also mediates the development of cardiac and

renal fibrosis [2–4] by stimulating synthesis of proinflammatory cytokines, chemokines, adhe-

sion molecules, and growth factors that in turn activate their cognate receptors to promote the

proliferation and differentiation of fibroblasts into myofibroblasts that express extracellular

matrix (ECM) proteins at high levels [5]. These processes involve AngII upregulation of TGFβ
expression in both cardiomyocytes and cardiac fibroblasts and the resulting contributions of

AngII and TGFβ signaling to fibrosis and cardiac hypertrophy as part of pathological ventricu-

lar remodeling [4].

Myocardial fibrosis is a major pathological feature associated with ventricular remodeling

in patients with congestive heart failure (CHF) [6–8]. It impairs cardiac compliance by increas-

ing ventricular wall stiffness and reducing oxygen diffusion and electrical coupling leading to

compromised diastolic and systolic functions. Unlike reparative fibrosis, which is essential for

myocardial infarct healing subsequent to cardiomyocyte loss; interstitial fibrosis, as occurs due

to increased levels of AngII, proceeds mostly as a maladaptive response and compromises ven-

tricular performance. Recent studies point to cardiac fibroblasts as the major cell type that

contributes to myocardial fibrosis and the associated maladaptive remodeling of chronic PO

myocardium [6, 9, 10]. Although fibroblasts are considered to be the primary cell type respon-

sible for collagen turnover [10, 11], the origin of these cells during organ fibrosis remains

controversial [3, 12]. Several studies show that fibrosis results from the activation of resident

fibroblasts [13, 14] by cytokines produced by inflammatory cells, particularly macrophages

recruited into the injured tissue [15]. However, cells of intermediate phenotypes between

monocytes and fibroblasts (i.e., referred to as fibrocytes) [16–19] are present at high levels in

hypertrophic cardiomyopathy [5, 20–26], suggesting that the hematopoietic lineage contrib-

utes to fibroblasts present in fibrotic disease. Furthermore, other independent studies show

proliferating fibroblast-like cells near blood vessels, suggesting the possible role of endothelial

cells and pericytes as precursors of myofibroblasts [27, 28].

Increased levels of AngII are also known to affect renal perfusion, cause kidney fibrosis,

and decrease glomerular function [2, 29]. Decreased renal perfusion releases renin in the kid-

ney that cleaves angiotensinogen to angiotensin I. Angiotensin-converting enzyme (ACE) con-

verts angiotensin I to AngII causing a further increase in AngII levels [30]. Therefore, AngII is

an important mediator in the progression of both renal and myocardial fibrosis, and ACE

inhibitors have been shown to have beneficial effects in patients with heart, kidney, and other

organ fibrosis [2, 31, 32].

Studies involving fibrosis in other organs have demonstrated that a deficiency of the caveo-

lae structural protein caveolin-1 in monocytes and fibroblasts contributes to organ fibrosis

[33–38] and that administration of the caveolin-1 scaffolding domain peptide (CSD, a

CSD peptide suppresses AngII-induced organ disease
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20-amino acid segment of caveolin-1 that enters cells and acts as a functional surrogate) can

block the development of organ fibrosis [35–37, 39–43].

In earlier studies, we used a transverse aortic constriction (TAC) mouse model to demon-

strate that the activation of β3 integrin and nonreceptor tyrosine kinases (NTKs such as c-Src

and Pyk2) play critical roles in pressure overload-induced myocardial fibrosis [44, 45]. Fur-

thermore, TAC-induced β3 integrin/NTKs signaling, myocardial fibrosis, and compromised

ventricular function were substantially reduced when mice were treated with CSD [43]. To

explore CSD’s effect in other models of organ fibrosis, we used an AngII infusion mouse

model to study the antifibrotic effect of CSD in both the heart and kidney. Our present work

shows that AngII infusion for 2 wk results in the development of heart and kidney fibrosis

with increased levels of collagen I and HSP47. AngII-induced effects were substantially

reduced in mice treated with CSD. Further, AngII infusion caused cardiac hypertrophy with

increased LV mass and pWTh with compromised ventricular function, vascular leakage result-

ing in the release of IgG into heart and kidney, and hyper-migration of BMC. These abnormal-

ities were significantly reduced in CSD treated mice, indicating the therapeutic potentials of

CSD as treatment targeting several aspects of heart failure.

Materials and methods

Animals

Wild-type C57BL/6J male mice (10–12 wk old) were purchased from Jackson Laboratory (Bar

Harbor, Maine). All animal experiments were performed under a protocol approved by the

Medical University of South Carolina (MUSC) Institutional Animal Care and Use Committee

(IACUC).

AngII infusion

Mini-osmotic pumps (ALZET 1002; DURECT Corporation, Cupertino, CA) were implanted

during isofluorane anesthesia under the loose skin slightly posterior to the scapulae as

described previously [46]. The pumps contained either 100 μl saline or AngII (2.1 mg/kg/day)

and were designed to deliver their contents at 0.25 μl/h for 2 wk. CSD (amino acids 82–101 of

caveolin-1, DGIWKASFTTFTVTKYWFYR-NH2) was purchased from Elim Biopharmaceuti-

cals (Hayward, CA). CSD and vehicle treatments (100 μl of daily i.p. injections of CSD (50 μg/

mouse) or vehicle (1% DMSO in water)) were initiated on the day of surgery. At the end of 2

wk, heart function was evaluated by echocardiography and the mice were sacrificed under

deep anesthesia. Mice were systemically perfused via the left ventricle (LV) with PBS and heart

and kidney samples were processed for Western blot, histochemical, and immunohistochemi-

cal studies.

Echocardiography

Echocardiography (Echo) was performed at 2 wk after surgery using a Vevo2100 imaging sys-

tem (VisualSonics, Toronto) as previously described [43, 44]. Heart rate was maintained at

400–500 bpm during isoflurane anesthesia. The 22–55 MHz linear transducer probe was used

for two-dimensional B- and M-mode analyses. Offline analyses of M-mode images of the para-

sternal short-axis view at papillary level, was performed using 1.2.0 software to calculate ejec-

tion fraction (EF), LV mass (corrected), and posterior wall thickness in diastole (pWTh). B-

mode images of the parasternal long axis were used to calculate cardiac output (CO) and stroke

volume (SV), and end-diastolic volume (EDV) and end-systolic volume (ESV). Tissue Doppler

imaging was used to measure velocity of posterior left ventricular (LV) wall motion at the

CSD peptide suppresses AngII-induced organ disease
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papillary muscle level in short-axis view. 5 to 10 cycles were recorded to calculate both isovolu-

mic relaxation time (IVRT) and isovolumic contraction time (IVCT). Blood pressure (BP) was

measured on conscious mice using a computerized non-invasive CODA tail-cuff blood pres-

sure system (Kent Scientific Corp., Torrington, CT) which automatically performs rapid,

simultaneous measurements of both systolic and diastolic BP.

Western blotting

Analyses were carried out as previously described [43, 44] with minor changes. Soluble and

insoluble fractions of LV were prepared. Briefly, 50 mg LV or kidney tissue were homogenized

using a T25 Ultra-Turrax homogenizer for 1 min on ice in 1 ml of radioimmunoprecipitation

assay (RIPA) buffer (50 mM Tris-HCl (pH 7.4), 1% NP-40, 0.5% sodium deoxycholate, 150

mM NaCl, 0.1% sodium dodecyl sulfate and protease and phosphatase inhibitors). The

homogenate was kept on ice for 15 min, then centrifuged at 10,000 g for 15 min. The soluble

fraction was mixed with an equal volume of 2X Sample Buffer and boiled; the insoluble pellet

fraction was suspended in 0.5 ml of 1X Sample Buffer and boiled and clarified. Samples were

resolved by SDS-PAGE at 4˚C (Invitrogen 4–12% Bis-Tris Gels, 1X MOPS buffer) and trans-

ferred to Invitrolon™ PVDF membranes (ThermoFisher Scientific (Invitrogen), Waltham,

MA). Membranes were blocked with 5% milk protein, then incubated with primary antibodies

overnight. After washing in Tris-buffered saline, the membranes were incubated with HRP-

labeled secondary antibodies and target proteins detected by enhanced chemiluminescence.

Histochemistry and immunohistochemistry. Mouse heart and kidney tissue samples

perfused as described above were fixed with 4% formaldehyde for 18 h, then dehydrated with

ethanol and xylene washes for embedding in paraffin [43, 45]. To detect collagen deposition,

tissue sections (7 μm thick) were stained with Picrosirius Red and viewed by polarized light

microscopy. To detect HSP47, paraffin-embedded tissue sections were deparaffinized in an

oven at 60˚ C for 1 h followed by rehydration in water. Antigen retrieval was performed using

citrate buffer (10 mM citric acid, 0.05% Tween 20, pH 6.0) at 90˚C-100˚C in a water bath for

20 min. After cooling, slides were washed in water followed by PBS and then blocked with 10%

Normal Donkey Serum in PBS for 1 h at room temperature in a humid chamber. Slides were

incubated with HRP-labeled anti-HSP47 antibody (final concentration 2 μg/ml) in humid con-

ditions at room temperature for 5 h. Slides were then washed with 1X PBS and stained with

the nuclear stain DAPI at RT for 30 min. The slides were washed with PBS, mounted on cover-

slips and viewed using laser scanning confocal microscopy.

Myocyte hypertrophy

In addition to measuring heart weight to body weight ratio, the extent of cardiac hypertrophy

was analyzed by measuring myocyte cross-sectional area on hematoxylin-eosin stained sec-

tions. Hearts were fixed with 4% formaldehyde and embedded in paraffin. 7-μm thick LV sec-

tions were stained with hematoxylin-eosin and viewed using a 20X lens. The circumference of

myocytes in five random fields was traced, providing a calculation of their cross-sectional area

using SigmaScan Pro image analysis [47].

BMC migration assay

To isolate bone marrow cells (BMC) for migration experiments, femurs and tibias are dis-

sected, the end of the bones snipped off, and bone marrow cells flushed from the shafts with

PBS pH 7.2/ 0.5% BSA/ 2 mM EDTA. The cells are then disaggregated by gentle pipetting,

passed through a 40 μm cell strainer, washed by centrifugation in the same buffer, and

counted. Flow cytometry showed that 65% of BMC were monocytes. Migration experiments

CSD peptide suppresses AngII-induced organ disease
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are performed as described [48] using SDF-1 (100 ng/ml) as the chemoattractant. Cells that

have migrated are counted in six high power fields per filter.

Statistical analyses

Values are presented as mean ± SEM. Differences were analyzed between groups using one-

way analysis of variance (ANOVA) followed by a post hoc Tukey’s multiple comparison to

determine statistical significance.

Results

Suppression of cardiac hypertrophy by CSD in AngII-infused mice

Several studies show that continuous infusion of AngII in vivo increases cardiac mass and

extracellular matrix (ECM) deposition. Therefore, we explored whether these changes induced

by AngII infusion are suppressed in mice treated with CSD. We first determined heart weight

to body weight ratio (HW/BW ratio) for: Sham mice treated with vehicle (Sham+Veh), Sham

mice treated with CSD (Sham+CSD), AngII mice treated with vehicle (AngII+Veh), and

AngII mice treated with CSD (AngII+CSD). Compared to Sham+Veh mice, AngII+Veh mice

showed a highly significant increase in HW/BW ratio (Fig 1A). CSD treatment suppressed this

effect. As expected, CSD did not affect HW/BW ratio in sham mice. The change in HW/BW

ratio was entirely due to changes in heart weight as significant changes did not occur in body

weight among the four groups.

To further confirm that CSD suppresses AngII-induced myocyte hypertrophy, we mea-

sured cardiomyocyte cress-sectional area. Compared to Sham mice, AngII infusion caused a

significant increase in myocyte cross-sectional area (Fig 1B). While CSD treatment in Sham

mice show no appreciable change, it significantly suppressed cardiomyocyte cross-sectional

area in AngII infused mice.

Suppression of cardiac and renal fibrosis by CSD in AngII-infused mice

We evaluated cardiac fibrosis in terms of the levels of collagen I and the collagen chaperone

HSP47 in LV samples. (Fig 2). We previously showed that in the TAC model, HSP47 and colla-

gen I were increased and that these changes were suppressed in CSD treated mice [43]. Similar

findings were observed in AngII-treated mice in the present study. Western blot analyses (Fig

2A) clearly showed significant increases in HSP47 and collagen levels in AngII-treated mice

that were effectively blocked by CSD. IHC also showed a robust increase in the number of

HSP47-positive cells in AngII-infused mice treated with vehicle (Fig 2B, left panel) that was

reduced to the Sham baseline level when mice were treated with CSD. Similarly, Picrosirius

Red staining showed a robust increase in collagen deposition both in the perivascular and

interstitial areas in AngII treated mice that was decreased to baseline with CSD treatment

(Fig 2B, right panel).

AngII infusion and the associated development of systemic hypertension affect multiple

organs, in particular heart and kidney [2–4, 28, 49, 50]. Therefore, we explored whether fibro-

sis could be also observed in the kidney following the 2-wk AngII infusion period, and whether

CSD treatment suppresses the development of kidney fibrosis. Similar to our findings with the

heart samples, Western blot analyses kidney samples showed a substantial increase in HSP47

and collagen I levels in AngII+Veh mice that was significantly reduced in AngII+CSD mice

(Fig 3A). Sham+Veh and Sham+CSD mice showed similar levels of collagen I and HSP47.

These results were validated for HSP47 by IHC and for collagen I by Picrosirius Red staining

(Fig 3B). IHC studies for HSP47 showed low levels of HSP47 in Sham+Veh mice (Fig 3B, left

CSD peptide suppresses AngII-induced organ disease
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panel). AngII infusion resulted in a substantial increase in HSP47 levels that was spread evenly

in the tissue. CSD treatment blocked significantly the HSP47 increase in AngII infused mice.

Similarly, Picrosirius Red staining (Fig 3B, right panel) showed a substantial increase in ECM

deposition that was present mostly in the perivascular area. This AngII-induced ECM deposi-

tion was significantly suppressed in CSD treated mice.

Suppression of profibrotic signaling by CSD

We have previously shown that β1 and β3 integrin and the tyrosine kinase Pyk2 regulate colla-

gen expression in PO mouse myocardium [44, 45]. The enhanced expression of these integrins

and the activation of Pyk2 in the TAC model are suppressed by CSD [43]. Similarly, AngII

Fig 1. CSD reverses AngII-induced cardiac hypertrophy. Mice infused with AngII or saline for 2 wk received daily i.p. injections of CSD or vehicle.

(A) Prior to sacrifice, body weight (BW) was measured. Heart tissue was weighed after sacrifice. HW to body weight ratio for each group of mice. (B)

Cardiomyocyte cross-sectional area was calculated by staining LV tissue sections with hematoxylin-eosin. Quantitative analysis of cross-sectional area

was determined by measuring at least 50 cardiomyocytes for each group (n = 3) using SigmaScan Pro image analysis. Statistical significance is shown as
�p< 0.05 and ���p< 0.001 for Sham+Veh vs AngII+Veh and ^p< 0.05 and ^^p< 0.01 for AngII+Veh vs AngII+CSD.

https://doi.org/10.1371/journal.pone.0207844.g001

CSD peptide suppresses AngII-induced organ disease
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Fig 2. CSD reverses AngII-induced cardiac fibrosis. Mice infused with AngII or saline for 2 wk received daily i.p. injections of CSD or vehicle. (A)

RIPA buffer-solubilized (left panel) and sample buffer-solubilized (right panel) protein samples from LV tissue were prepared as described in the

Methods and used in Western blotting experiments for HSP47, Col I, and the indicted loading controls. Graphs show quantitation of Western blots

from 4 independent mice for each group. Statistically significance is shown as ���p< 0.001 for Sham+Veh vs AngII+Veh and ^^^p< 0.001 for AngII

+Veh vs AngII+CSD. (B) Histochemical analyses: Left: LV tissue sections from the indicated mice were stained with anti-HSP47 (red), and with DAPI

(blue) to detect nuclei. The graph quantifies total HSP47 staining intensity per field in arbitrary units. Three or four mice per category were used and at

least four randomly selected fields for each mouse were used for quantitation. Right: LV tissue sections were stained with Picrosirius Red to detect

collagen. The graph quantifies collagen volume fraction, calculated from photomicrographs using SigmaScan Pro-5. Three or four mice per category

CSD peptide suppresses AngII-induced organ disease
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caused a significant increase in β1 and β3 integrin levels (both the 90 kD and 130 kD isoforms)

and Pyk2 activation (Tyr-402 phosphorylated Pyk2) in the heart that was blocked in CSD

treated mice (Fig 4A). As fibrosis was observed in both heart and kidney of AngII-infused

mice, we also analyzed whether there are changes in the levels of these signaling proteins in the

kidney (Fig 4B). Indeed, AngII infusion increased β1 integrin level and activated Pyk2 in the

kidney and these effects were suppressed by CSD. The results obtained with β3 integrin were

more complex. While AngII decreased the levels of the major 90 kD isoform, it increased the

levels of 130 kD high molecular weight β3 integrin (Fig 4B) which we previously showed to be

phosphorylated. Both the decrease in the major isoform and the increase in the high molecular

weight isoform were suppressed by CSD.

We also analyzed caveolin and calpain levels in the heart and kidney. Both caveolin-1 and

the muscle specific isoform caveolin-3 were expressed in the heart whereas only caveolin-1

was detected in the kidney (Fig 5A). Because calpains have been shown to be downstream

mediators of cardiovascular remodeling in a 4-wk AngII infusion study [51], we quantified the

levels of the μ- and m-calpain in the heart and kidney (Fig 5B). Neither AngII nor CSD, either

alone or together, showed a significant effect on the levels of any caveolin or calpain isoform in

the heart or kidney.

Improvement of cardiac function by CSD in AngII treated mice

Chronic AngII infusion causes multiple changes including ventricular wall thickening, fibro-

sis, and compromised ventricular function [3, 4, 28, 49, 50]. When we compared echocardio-

graphic measurements for the four groups of mice (Table 1), AngII+Veh mice showed several

pathological effects compared to Sham+Veh mice including a significant loss in LV function

with reduced levels of EF, FS, CO, and SV and increased IVRT, but not IVCT.

Further, pWTh at diastole was significantly increased. These pathological effects were

all inhibited in AngII+CSD mice. In addition, AngII decreased EDV and this effect was also

suppressed by CSD, but these changes did not achieve statistical significance. Compared to

the Sham+Veh group, Sham+CSD mice showed no significant changes in any parameter

examined.

Measurements were performed to determine whether the beneficial effects of CSD might

be downstream from effects on BP. In fact, as well known, AngII significantly increased BP.

However, this effect was not at all suppressed by CSD (Table 2), indicating that the various

beneficial effects by CSD are not related to effects on BP.

CSD suppresses AngII-induced hypermigration of bone marrow cells

(BMC) and hyper-permeability of heart and kidney vasculature

Earlier studies have shown that CSD suppresses the hypermigration of BMC in a mouse model

of lung fibrosis [35, 36, 39, 52]. To determine whether BMC from AngII-infused mice also

have a hypermigratory phenotype and whether this phenotype is suppressed by CSD treatment

in vivo, we isolated BMC from mouse femurs, and used them in migration experiments with

SDF-1 as the chemoattractant. AngII infusion caused a significant increase in BMC migration

while CSD treatment almost completely suppressed the enhanced migration (Fig 6A). CSD

did not affect the basal migration of BMC in mice treated with saline vehicle.

were used and at least four randomly selected fields for each mouse were used for quantitation. ��p<0.01, ���p< 0.001 for AngII+Veh vs Sham+Veh;

^^p<0.01, ^^^p< 0.001 for AngII+CSD vs AngII+Veh.

https://doi.org/10.1371/journal.pone.0207844.g002

CSD peptide suppresses AngII-induced organ disease
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Fig 3. CSD reverses AngII-induced kidney fibrosis. Mice infused with AngII or saline for 2 wk received daily i.p. injections of CSD or vehicle.

(A) RIPA buffer-solubilized (left panel) and sample buffer-solubilized (right panel) protein samples from kidney tissue were prepared as described

in the Methods and used in Western blotting experiments for HSP47, Col I, and the indicted loading controls. Graphs show quantitation of

Western blots from 4 independent mice for each group. Statistically significance is shown as ���p< 0.001 for Sham+Veh vs AngII+Veh and

^^^p< 0.001 for AngII+Veh vs AngII+CSD. (B) Histochemical analyses: Left: Kidney tissue sections from the indicated mice were stained with

anti-HSP47 (red), and with DAPI (blue) to detect nuclei. The graph quantifies total HSP47 staining intensity per field in arbitrary units. Three or

four mice per category were used and at least four randomly selected fields for each mouse were used for quantitation. Right: Kidney tissue sections

were stained with Picrosirius Red to detect collagen. The graph quantifies collagen volume fraction, calculated from photomicrographs using

CSD peptide suppresses AngII-induced organ disease
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Vascular hyperpermeability (leakage) occurs due to AngII treatment [53, 54]. We evaluated

whether this effect was suppressed when mice were treated with CSD by performing Western

blot analysis of IgG levels in heart and kidney tissue. Our studies show a robust release of IgG

both into the heart and kidney of AngII treated mice (Fig 6B) that was almost completely sup-

pressed by CSD treatment in vivo.

Discussion

We recently used a murine TAC model to induce LV hypertrophy and fibrosis by PO and

showed that CSD treatment can block myocardial fibrosis and improve ventricular function

[43]. In addition, the beneficial effects of CSD were found to be accompanied by reduced

expression of collagen I, HSP47 (a collagen chaperone protein), and integrins (β1 and β3), and

by the reduced activation of NTKs (Pyk2 and c-Src). To test the antifibrotic effect of CSD in an

independent model, here we have used AngII infusion, a common model for inducing heart

and renal disease [5, 19, 29, 55–57]. These studies, besides providing a second model for heart

failure and a model for kidney disease, have expanded our knowledge of the cell types involved

in the beneficial effects of CSD on heart failure.

In the present study, we show several beneficial effects of CSD in AngII-infused mice: (i)

CSD suppressed AngII-induced fibrosis (evaluated in terms of Col I and HSP47 levels) in the

heart and kidney, (ii) CSD suppressed AngII-induced morphological changes in the heart

(evaluated in terms of pWTh, cardiac mass, and myocyte hypertrophy), (iii) CSD suppressed

the usual AngII-induced pathological changes in ventricular function (EF, FS, SV, CO, IVRT)

as determined by echocardiography, (iv) CSD suppressed the AngII-induced hypermigratory

behavior of BMC towards SDF-1, and (v) CSD suppressed AngII-induced vascular leakage of

IgG into the heart and kidney.

Multiple cell types appear to contribute to the beneficial effects of CSD (Table 3). Fibro-

blasts and monocytes from patients and mice with fibrotic disease have been found to be defi-

cient in caveolin-1 [35, 36, 48]. The deficiency in fibroblasts results in their overexpression of

Col I and results in organ fibrosis [58, 59]. In addition, the development of lung, skin, and car-

diac fibrosis occurs in caveolin-1 null mice due to effects involving fibroblasts and M2 macro-

phages [33, 34, 37, 38]. The deficiency in monocytes leads to their enhanced expression of

chemokine receptors resulting in hypermigration toward the cognate ligands for these recep-

tors in an in vitro assay [48]. In vivo, this enhanced migration is observed as the enhanced

recruitment of monocytes into stressed organs. These effects of caveolin-1 deficiency in fibro-

blasts and monocytes are suppressed by CSD (Figs 2, 3 and 6A and Table 3), strongly suggest-

ing that in these cells CSD is acting as a caveolin-1 surrogate.

Recruited monocytes can contribute to fibrosis by differentiating into macrophages that

secrete factors that promote resident fibroblasts to become myofibroblasts [2, 6, 13, 14].

Some of these secretory factors include vasoactive agents (angiotensin, endothelin), growth

factors (PDGF, TGF-β, FGF, etc.), hormones (aldosterone, corticosterone), and cytokines

(interleukins). These agents in turn promote fibroblast proliferation and ECM secretion via a

mechanism involving integrins [49, 56, 60]. Recruited monocytes may also serve as direct

myofibroblast precursors. Monocytes differentiate into CD45+/ Col I+ fibroblast-like cells

(often referred to as fibrocytes) that express the myofibroblast marker ASMA and contribute

to fibrosis [5, 16–26]. The differentiation of monocytes into myofibroblastic cells is enhanced

SigmaScan Pro-5. Three or four mice per category were used and at least four randomly selected fields for each mouse were used for quantitation.
��p<0.01, ���p< 0.001 for AngII+Veh vs Sham+Veh; ^^p<0.01, ^^^p< 0.001 for AngII+CSD vs AngII+Veh.

https://doi.org/10.1371/journal.pone.0207844.g003
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Fig 4. CSD inhibits AngII-induced increases in integrin levels and NTK activation in the heart and kidney. Mice

were infused with AngII or saline for 2 wk and received daily i.p. injections of CSD or vehicle. (A) RIPA extracts of LV

tissue were used in Western blotting experiments with antibodies against β1 and β3 integrins, phospho-Pyk2-Y402,

and GAPDH (loading control). Graphs show quantitation of Western blots using 4 independent mice for each group.

Statistically significant changes are shown as ��p< 0.01, ���p< 0.001 for Sham+Veh vs AngII+Veh and ^^p< 0.01,

^^^p< 0.001 for AngII+Veh vs AngII+CSD. (B) RIPA extracts of kidney tissue were used in Western blotting

experiments with antibodies against β1 and β3 integrins, phospho-Pyk2-Y402, and GAPDH (loading control). Graphs

show quantitation of Western blots using 4 independent mice for each group. Statistically significant changes are
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when their caveolin-1 levels are depressed, but is suppressed by CSD, again indicating that

CSD is acting as a caveolin-1 surrogate [34–36, 39, 52, 61].

AngII infusion increases ROS levels by activing NADPH oxidase [62], resulting in endo-

thelial damage and leakage of plasma proteins into tissues [53, 54]. Our present data clearly

show leakage of IgG into both the heart and kidney, suggesting that other serum proteins are

also released into the tissues including growth factors and cytokines that will alter cell behav-

ior. Importantly, CSD treatment of AngII-infused mice completely blocked IgG leakage,

consistent with the idea that reversal of vascular leakage by CSD is one major cause of its

beneficial effects.

This beneficial effect of CSD in endothelial cells appears to involve CSD functioning as a

competitor of caveolin-1 rather than as a surrogate (Table 3). Caveolin-1 is expressed at high

levels in vascular endothelial cells. Caveolin-1 deletion prevents AngII-induced vascular

abnormalities [63]. We find that CSD prevents AngII-induced vascular leakage (Fig 6B). For

caveolin-1 KO animals and wild-type animals treated with CSD to show a similar phenotype,

shown as ��p< 0.01, ���p< 0.001 for Sham+Veh vs AngII+Veh and ^p< 0.05, ^^p< 0.01, ^^^p< 0.001 for AngII

+Veh vs AngII+CSD.

https://doi.org/10.1371/journal.pone.0207844.g004

Fig 5. Effect of AngII-infusion and CSD treatment on caveolin and calpain isoforms in the heart and kidney. Mice were infused

with AngII or saline for 2 wk and received daily i.p. injections of CSD or vehicle. Extracts were prepared as described in the previous

figure legends. (A) RIPA extracts of LV and kidney tissues were used in Western blotting experiments with antibodies against

caveolin-1 (cav-1), caveolin-3 (cav-3) and β-actin (loading control). (B) RIPA extracts of LV tissue and kidney tissues were used in

Western blotting experiments with antibodies against μ-calpain (μ-Calp), m-calpain (m-Calp), and β-actin (loading control). No

statistically significant effects of AngII or CSD were observed.

https://doi.org/10.1371/journal.pone.0207844.g005
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it must be that CSD is acting as a competitor of caveolin-1 in certain cell types, rather than as a

surrogate. This is not a novel concept in that similar observations have already been reported

on the function of caveolin-1 in endothelial cells [64–66]. Indeed, in one of these studies, CSD

was shown to inhibit VEGF-induced vascular leakage [66].

In AngII-infused mice, the increased cardiac mass is primarily due to myocyte hypertrophy

rather than fibrosis. Our findings show that CSD suppresses the AngII-induced increase in

heart weight, ventricular wall thickness, and cardiomyocyte cross-sectional area (Fig 1 and

Table 1). Interestingly, although caveolin-1 is expressed in multiple cell types both in the heart

and kidney, the muscle specific isoform caveolin-3 is expressed only in cardiomyocytes in

the heart and is not expressed in the kidney (Fig 5A). Caveolin-3 contains a sequence highly

homologous to CSD (Fig 7). Therefore, the decrease in the myocyte cross-sectional area that

we observed when AngII mice were treated with CSD (Fig 1) may result from the effect of

CSD on caveolin-3 signaling [67].

At the molecular level, CSD has been shown to affect several signaling mechanisms, includ-

ing G-protein and MEK/ERK signaling [52, 68, 69]. Our earlier studies show the importance

Table 1. CSD reverses AngII-induced hypertrophy and deficits in ventricular function.

Sham

(n = 4)

Sham+CSD

(n = 4)

AngII+Veh

(n = 7)

AngII+CSD

(n = 6)

SAX M mode

EF (%) 56.12 ± 2.0 56.67 ± 1.5 44.23 ± 3.3� 58.86 ± 1.68^^

FS (%) 29.03 ± 1.3 29.05 ± 1.1 21.45 ± 1.8�� 30.26 ± 1.21^^

LV Mass (mg) 124.1 ± 7.6 104.2 ± 11 143.9 ± 6.2� 110.4 ± 8.4^^

pWTh (mm) 0.92 ± 0.05 1.00 ± 0.04 1.27 ± 0.06�� 1.13 ± 0.05^

PSLAX B Mode

CO (ml/min) 16.29 ± 1.40 13.59 ± 0.44 12.03 ± 0.80�� 14.61 ± 1.11^

EF (%) 57.83 ± 1.48 57.2 ± 1.46 46.36 ± 2.65�� 53.6 ± 2.28^

SV (μl) 36.33 ± 1.63 32.8 ± 1.81 24.98 ± 1.67��� 32.52 ± 2.09^^

EDV (μl) 62.74 ± 1.64 57.6 ± 4.31 54.91 ± 4.30 60.39 ± 1.72

ESV (μl) 26.41 ± 0.81 24.8 ± 2.59 29.92 ± 3.47 27.87 ± 0.92

Tissue Doppler

IVCT (ms) 13.73 ± 0.60 13.14 ± 0.80 13.07 ± 0.88 12.26 ± 0.46

IVRT (ms) 20.27 ± 0.59 17.76 ± 1.47 27.19 ± 2.32� 21.85 ± 1.33^

M-mode echocardiographic measurements in parasternal short-axis (PSAX) view were used to quantify changes in LV mass, pWTh (in diastole), EF, and FS. B-mode

measurements in parasternal long-axis (PSLAX) view were used to quantify changes in CO, EF, SV, EDV and ESV. Tissue Doppler measurements in PSAX view were

used to measure IVRT and IVCT. Values are shown as Mean ± SEM. Statistically significant changes are shown as �p < 0.05, ��p < 0.01 and ���p < 0.001 for Sham

+Veh vs AngII+Veh and ^p < 0.05 and ^^p < 0.01 for AngII+Veh vs AngII+CSD.

https://doi.org/10.1371/journal.pone.0207844.t001

Table 2. CSD does not affect AngII-induced blood pressure (BP) increase.

Sham+Veh AngII+Veh AngII+CSD

BP (n = 5) (n = 9) (n = 6)

DBP mmHg 117 ± 4.4 150 ± 10� 147 ± 9.8

SBP mmHg 149 ± 5.21 183 ± 10� 182 ± 10.2

BP was measured on conscious mice using a computerized non-invasive CODA tail-cuff blood pressure system (Kent

Scientific Corp., Torrington, CT) which automatically performs both systolic and diastolic BP. Values are shown as

Mean ± SEM. Statistically significant changes are shown as �p < 0.05 for Sham+Veh vs AngII+Veh.

https://doi.org/10.1371/journal.pone.0207844.t002
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of integrins, in particular β3 integrin, and the subsequent activation of NTKs for the develop-

ment of cardiac fibrosis in PO myocardium [44, 45, 47]. Furthermore, we showed that CSD

could block these changes in integrin expression and NTK activation [43]. Other laboratories

have shown the importance of β3 integrin and NTK activation for profibrogenic signaling

Fig 6. CSD suppresses both AngII-induced hypermigration of bone marrow cells (BMC) and AngII-induced vascular leakage of IgG into heart

and kidney tissues. Mice were infused with AngII or saline for 2 wk and received daily i.p. injections of CSD or vehicle. (A) Migration experiments

were performed as described in the Methods using isolated BMC. Cells that migrated towards SDF-1 were counted in six high power fields per filter.

Graphs show quantitation of migrated cells using three independent mice for each group. Statistically significant changes are shown as ��p< 0.01 for

Sham+Veh vs AngII+Veh and ^p< 0.05 for AngII+Veh vs AngII+CSD. (B) RIPA extracts of LV and kidney tissue were used in Western blotting

experiments. HRP-conjugated anti-mouse secondary antibody with no primary was used to detect mouse IgG. (Left) Typical Western blot results from

LV and kidney tissue showing IgGH (IgG heavy chain) and IgGL (IgG light chain). (Right) Quantification of IgGH and IgGL (n = 4). Statistically

significant changes are shown as ��p< 0.01, ���p< 0.001 for Sham+Veh vs AngII+Veh and ^^p< 0.01, ^^^p< 0.001 for AngII+Veh vs AngII+CSD.

https://doi.org/10.1371/journal.pone.0207844.g006

Table 3. Cell type specific mode of action of CSD.

Cell Types Caveolin levels CSD Action

Baseline Fibrosis

Fibroblasts Moderate Cav-1 Decrease Surrogate

Monocytes Low Cav-1 Decrease Surrogate

Endothelial cells High Cav-1 No Change Competitor

Cardiomyocytes High Cav-3 No Change Competitor

https://doi.org/10.1371/journal.pone.0207844.t003
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[49, 56, 60, 70]. In the present study, we show that AngII infusion, similar to TAC, caused an

enhanced expression of β1 and β3 integrins and Pyk2 activation in the heart and kidney that

were blunted by CSD treatment (Fig 4). These data strongly suggest that CSD has a direct effect

on profibrotic signaling in fibrotic tissue.

Our studies have also addressed whether AngII and CSD affect the levels of caveolin itself

and of calpains which have been shown to be regulated in the kidney during 4 wk of AngII

treatment [51]. Our studies on caveolin levels show that caveolin-1 and caveolin-3 are

expressed in the heart whereas only caveolin-1 is expressed in the kidney. However, their levels

were not found to be altered by AngII and, as expected, they were also not affected by CSD.

We observed no significant changes in calpain levels (neither m-calpain nor μ-calpain) in the

heart or kidney due to a 2 wk infusion of AngII or to CSD (Fig 5).

Our echocardiographic measurements using AngII model confirm our previous results in

the TAC model [43]. The effects we observed on heart function and morphology due to AngII

infusion are consistent with the literature [71–73], although some laboratories showed only

significant changes in cardiac mass and fibrosis, but not in cardiac function (EF, SV and CO)

[5, 74]. These differences could be due to variations in AngII doses [75]. Finally, the increased

IVRT that we observe in AngII-infused mice suggests compromised diastolic relaxation due to

ventricular stiffness caused by fibrosis and myocyte hypertrophy. Therefore, it follows that the

suppression of fibrosis and myocyte hypertrophy by CSD would reverse the increase in IVRT

caused by AngII.

We measured BP to explore whether CSD affects the well-known AngII-induced

increase in systolic and diastolic BP. Our studies show that, as expected, AngII infusion

caused BP to increase. However, this increase was not affected by CSD Table 2. Consistent

with our observations, caveolin-1 deletion or CSD treatment does not appear to exhibit

major effects on BP: (i) Caveolin-1 silencing in mice does not affect the basal or the

AngII-induced increase in BP [63], although low level changes are reported in another

study [76]. (ii) In the long-term, AngII inhibits eNOS [77] thereby impairing vasorelaxation

and causing increased BP. CSD treatment does not reverse the inhibitory effect of AngII

on eNOS. Rather, CSD suppresses eNOS activation [66, 78]. We also showed previously

that CSD suppresses TAC-induced eNOS activation [43]. In summary, these studies support

the concepts that CSD does not suppress the AngII-mediated increase in BP and that there-

fore the beneficial effects of CSD in AngII-infused mice must be independent of changes

in BP.

In conclusion, our studies clearly show that CSD suppresses fibrosis and vascular leakage

in the heart and kidney following AngII infusion in mice. Furthermore, the AngII-induced

increase in cardiac hypertrophy and compromised ventricular function are reduced sub-

stantially when mice are treated with CSD during AngII infusion. These data strongly

indicate the therapeutic potentials of CSD for patients with hypertensive heart and kidney

diseases.

Fig 7. Comparison of CSD sequences. Homologous amino acids in the CSD region of caveolin-1 and caveolin-3 are

shown in bold letters; amino acids with similar properties are highlighted in grey.

https://doi.org/10.1371/journal.pone.0207844.g007
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