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ABSTRACT The chicken microbiota is often analyzed
to address questions about the effects of diet or disease
on poultry health. To analyze the microbiota, bioinfor-
matic platforms such as QIIME 2 and mothur are used,
which incorporate public taxonomic databases such as
Greengenes, the ribosomal database project (RDP),
and SILVA to assign taxonomies to bacterial sequences.
Many chicken microbiota studies continue to incorpo-
rate the Greengenes database, which has not been
updated since 2013. To determine whether a choice of
database could affect results, this study compared the
results of bioinformatic analyses obtained using the
Greengenes, RDP, and SILVA databases on a cecal
luminal microbiome dataset. The QIIME 2 platform was
used to process 16S bacterial sequences and assign tax-
onomies with Greengenes, RDP, and SILVA. Linear dis-
criminant analysis effect size (LEfSe) was performed,
allowing for the comparison of taxonomies considered
significantly differentially abundant between the three
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databases. Some notable differences between databases
were observed in results, in particular the ability of
SILVA database to classify members of the family Lach-
nospiraceae into separate genera, while these members
remained in one group of unclassified Lachnospiraceae
through Greengenes and RDP. LEfSe analyses showed
that the SILVA database produced more differentially
abundant genera, in large part due to the classification
of these separate Lachnospiraceae genera. Additionally,
the relative abundance of unclassified Lachnospiraceae
in SILVA results was significantly lower than in RDP
results. Our results show the choice of taxonomic data-
base can influence the results of a microbiota study at
the genus level, potentially affecting the interpretation
of the results. The use of the SILVA database is recom-
mended over Greengenes in chicken microbiota studies,
as more specific classifications at the genus level may
provide more accurate interpretations of changes in the
microbiota.
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INTRODUCTION

The chicken microbiota is often analyzed in studies
addressing the effects of diet or disease on the health of
poultry. The bacteria that make up the chicken gastro-
intestinal tract (GIT) microbiota can influence nutrient
exchange, digestive system physiology, immune system
modulation, and pathogen exclusion within hosts
(Stanley et al., 2014). The bacterial composition of
microbiota may be affected by host-related factors,
including age, sex, breed, and the location of the GIT, in
addition to environmental factors, including biosecurity
level, housing, litter, feed access, and climate
(Kers et al., 2018). A healthy gut microbiota may assist
in limiting the spread of diseases such as coccidiosis, a
parasitic disease that affects poultry production by caus-
ing weight loss and reduced efficiency in feed use. The
microbiota of the cecum is thought to play a role in
response to diseases, with the cecum being associated
with the production of polysaccharides and short-chain
fatty acids (Stanley et al., 2014).
Developments in next-generation sequencing and bio-

informatics have led to more widespread use of these
techniques to analyze GIT microbiota data. Microbiota
can be characterized using bacterial 16S rRNA, which
contains 9 hypervariable regions where similarities and
differences between species are determined and highly
conserved regions where polymerase chain reaction
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(PCR) primers can be attached. Despite the usefulness
of 16S rRNA sequencing, differences in DNA isolation,
library preparation, and PCR methodology, such as the
difference in the choice of PCR primers in chicken micro-
biota studies (Darwish et al., 2021), can introduce biases
that affect the representation of bacterial groups.

In addition to biases introduced during sequencing,
choices made during bioinformatic processing may also
influence taxonomic composition results. Bioinformatic
processing is typically performed using an open-source
platform such as QIIME 2 (Quantitative Insights Into
Microbial Ecology) (https://qiime2.org/) or mothur
(https://mothur.org/), which involves a step where tax-
onomy is assigned to bacterial sequences found in sam-
ples. Taxonomic assignments are reliant on public
databases such as Greengenes (https://greengenes.sec
ondgenome.com/), the ribosomal database project
(RDP) (http://rdp.cme.msu.edu/), and SILVA
(https://arb-silva.de/). The majority of studies on the
chicken microbiota rely on classifications by the Green-
genes database, which poses an advantage in allowing
for the comparison of results between different studies.
However, there may be a disadvantage in the continued
use of Greengenes in future studies, as the Greengenes
database was last updated in August 2013, potentially
leading to studies presenting less accurate results than if
they used RDP or SILVA, both of which have released
updated versions in 2020.

Of the three databases, SILVA is the largest based on
16S taxonomies, followed by RDP and lastly Greengenes
(Balvo�ciut _e and Huson, 2017). SILVA is commonly used
as a reference database in modern microbiota studies of
other systems, for example, the gut microbiota of
humans and other animals, as well as non-animal sys-
tems such as soybean and soil microbiota. The aim of
this study was to compare taxonomic classifications of
bacteria and relative abundance results from poultry
cecal microbiota by the Greengenes, RDP, and SILVA
databases. This study uses a cecal luminal microbiota
dataset to demonstrate the differences in results that
may occur from choosing one database over the other.
MATERIALS AND METHODS

Animal care, experimental design, DNA isolation, and
DNA sequencing procedures were performed as
described in Campos et al. (2022). The 16S rRNA gene
sequences determined in this study were deposited in the
NCBI Sequence Read Archive database (SRA accession
#PRJNA736980). The QIIME 2 platform (https://
qiime2.org/) version 2020.11 was used to perform micro-
biome bioinformatics. Demultiplexed, paired-end
sequence data from 48 samples was denoised with
DADA2 via the q2-dada2 plugin using a quality cutoff
of 25. Feature classifiers for each database were trained
with q2-feature-classifier fit-classifier-naive-bayes using
the Greengenes 13_8 97% OTUs reference sequences
and taxonomy, the RDP Release 11 unaligned Bacteria
16S reference sequences and taxonomy, and the SILVA
138 99% OTUs reference sequences and taxonomy. The
SILVA reference sequences and taxonomy were obtained
as pre-formatted files that were processed using
RESCRIPt from the QIIME 2 data resources page
(https://docs.qiime2.org/2022.2/data-resources/). The
RESCRIPt process involves filtering sequences based on
length of the amplicon and associated species, ambigu-
ous nucleotide content, and/or homopolymers, and dere-
plicating sequences, a method that removes duplicate
sequences that may be assigned different taxonomies,
resulting in fewer inconsistencies and improved process-
ing (Robeson et al., 2021). While running RESCRIPt
manually may introduce bias depending on selected
parameters (e.g., if the minimum length cutoff for an
amplicon is too long, the dataset may be biased
towards bacteria that have been fully sequenced), the
files provided by the QIIME 2 developers are a way of
standardizing this process. Taxonomy was assigned
to amplicon sequence variants (ASVs) using the
q2�feature�classifier classify�sklearn nai ̈ve Bayes
taxonomy classifier.
To analyze relative abundance data produced by each

database, feature tables were collapsed to the genus
taxonomic level via q2-taxa, where ASV counts were
normalized by total sum scaling normalization. Cen-
tered-log ratio transformation was applied to relative
abundance data in R 4.0.3 (https://r-project.org/).
Statistical analysis was performed using ANOVA and
Tukey’s Honest Significant Difference (Tukey HSD)
test to determine significance between relative abun-
dance data of taxonomic groups in the Greengenes,
RDP, and SILVA databases. Where Greengenes, RDP,
and SILVA produced the same taxonomic classification
(e.g., results from both databases contained unclassified
Lachnospiraceae), relative abundances of the same clas-
sification were compared. In other cases, identical ASVs
were found to be classified as different taxa (e.g., Green-
genes classified a group of ASVs as Faecalibacterium
while SILVA classified this group as Subdoligranulum).
Feature IDs representing DNA sequences were cross-ref-
erenced between the QIIME 2 taxonomy results of the
three databases to confirm that different classifications
were being produced by the databases for identical DNA
sequences, and the relative abundances of these classifi-
cations were compared.
To determine whether the choice of database could

affect other analyses that use relative abundance data as
input, the Linear Discriminant Analysis Effect Size
(LEfSe) algorithm was performed on data from each
database using the Huttenhower Galaxy Server (Galaxy
version 1.0, http://huttenhower.sph.harvard.edu/gal
axy/). The LEfSe analysis is used to identify taxa with
significant differential abundance between groups of 2 or
more biological conditions. In the case of this study, the
cecal luminal microbiota from 2 groups were compared,
with the treatment group including 24 chickens infected
with 1.0 £ 104 oocysts of the parasitic disease Eimeria
tenella, and the control group including 24 chickens
sham infected with water. Default parameters, including
a 0.05 alpha value for the Kruskal-Wallis test and a 2.0
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threshold on the logarithmic LDA score for discrimina-
tive features, were selected for the analyses.
RESULTS AND DISCUSSION

Bacterial Abundance Overview

The data utilized in this analysis was as reported in
Campos et al. (2022), with 4,198,119 reads remaining
after sequence quality control on 48 cecal luminal sam-
ples, an average of 87,461 reads per sample, an average
read length of 428 bp per sample, a total of 521 unique
ASVs observed overall, and an average of 148 ASVs
observed per sample. At the genus level, the 10 most
abundant taxa were Faecalibacterium, unclassified
Lachnospiraceae (2 separate classifications), [Rumino-
coccus] (names in square brackets are contested names),
Escherichia, Lactobacillus, Oscillospira, unclassified
Clostridiales, Ruminococcus, and Butyricicoccus
according to Greengenes. According to RDP, the 10
most abundant taxa were unclassified Lachnospiraceae
(one classification), Gemmiger, Escherichia-Shigella,
Lactobacillus, Anaerobacterium, Butryicicoccus, Clos-
tridium IV, unclassified Ruminococcaceae, unclassified
Bacillales, and Coprobacillus. According to SILVA, the
ten most abundant taxa were unclassified Lachnospira-
ceae (one classification), Subdoligranulum, Escherichia-
Shigella, [Ruminococcus] (torques group), Lactobacillus,
Figure 1. Relative abundance of taxonomic groups compared between
(Greengenes) was classified as Gemmiger in RDP and Subdoligranulum in S
coccus 2 from RDP and [Ruminococcus] torques group from SILVA. *** = R
caceae from RDP and Ruminococcaceae incertae sedis from SILVA. *
Anaerobacterium from RDP and Clostridia UCG-014 from SILVA. ***** =
ceae from SILVA. Significant differences (P < 0.05) are denoted with: x = b
z = between RDP and SILVA.
Clostridia UCG-014, Eisenbergiella, Erysipelatoclostri-
dium, Butryicicoccus, and unclassified Oscillospiraceae.
One discrepancy observed in these results that could

affect the interpretation of chicken microbiota analyses is
the difference in a taxon’s name for the same ASV. For
example, sequences in our study were classified as Faecali-
bacterium by Greengenes at the genus level were named as
Gemmiger by RDP and as Subdoligranulum by SILVA.
These sequences had same average relative abundance of
15.8% in each set of results, with only the taxonomy
assigned differing. Recent genetic analysis has suggested
Faecalibacterium prausnitzii are a separate group from
Gemmiger/Subdoligranulum (Fitzgerald et al., 2018).
Given the RDP and SILVA databases have separate classi-
fications available for Faecalibacterium but did not identify
any bacteria in our study as Faecalibacterium, the Green-
genes classification of Faecalibacterium may be outdated.
Though the Faecalibacterium and Gemmiger/Subdoligran-
ulum groups are closely related and both are known for
butyrate production, Faecalibacterium prausnitzii is specif-
ically known for anti-inflammatory effects (Sokol et al.,
2008), which could impact the interpretation of results.
Comparisons of Relative Abundance

The relative abundance values of the most abundant
taxa were compared between results from the 3 data-
bases where possible (Figure 1). The relative abundance
the Greengenes, RDP, and SILVA databases. * = Faecalibacterium
ILVA. ** = [Ruminococcus] (Greengenes) was compared with Rumino-
uminococcus (Greengenes) was compared with unclassified Ruminococ-
*** = Unclassified Clostridiales (Greengenes) was compared with
Oscillospira (Greengenes) was compared with unclassified Oscillospira-
etween Greengenes and RDP, y = between Greengenes and SILVA, and
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of unclassified Lachnospiraceae differed between data-
bases (P < 0.001), with RDP having a significantly
higher (P < 0.001) average (28.8%) in comparison with
both Greengenes (21.5%) and SILVA (16.8%), though
Greengenes was not considered significantly higher than
SILVA (P > 0.05). SILVA producing the lowest percent-
age is best explained by SILVA’s ability to separate the
Lachnospiraceae family into many genera that are not
present in Greengenes or RDP, including Eisenbergiella,
Sellimonas, Shuttleworthia, Lachnoclostridium, and
Tyzzerella. Although the Greengenes and SILVA results
were not considered significantly different, the gap of
4.7% in relative abundance could also be accounted for
by the additional genera found by SILVA. These results
are one example where relative abundance numbers for
certain taxa may differ based on the taxonomic data-
base. Considering that Lachnospiraceae was the most
abundant family on average in our samples, the choice
of database could affect the interpretation of the results.
Lachnospiraceae has important implications in research
of the effects of diet and disease on poultry, with mem-
bers of the Lachnospiraceae family being known for the
production of short-chain fatty acids (SCFAs), of
which certain SCFAs such as butyrate are thought to
improve weight gain in chickens challenged with E. max-
ima infection (Hansen et al., 2021). Using the Green-
genes or RDP databases would still allow for a general
interpretation of the potential links between Lachnospir-
aceae and disease, however, the more specific classifica-
tions from SILVA would allow for a more nuanced
interpretation. In our study, Eisenbergiella decreased in
abundance in infected chickens compared to the control,
and a previous study has shown reductions in Eisenber-
giella are associated with reduced production of meta-
bolic products such as butyrate (Luo et al., 2018). As
butyrate’s importance has been shown, the specificity
SILVA provides at the genus level in this case would be
beneficial in identifying specific taxonomic groups that
impact poultry health.

In many cases, there was agreement between the three
databases in relative abundance and taxonomy, such as
with Escherichia (11.8%), Lactobacillus (4.9%), and
Butyricicoccus (2.7%), however, there were additional
examples where database choice resulted in differences
that may be of concern in chicken microbiota studies.
Significant differences between Greengenes’s [Rumino-
coccus] (10.0%), RDP’s Ruminococcus 2 (1.9%), and
SILVA’s [Ruminococcus] torques group (6.7%) could be
explained by some ASVs from Greengenes’s [Rumino-
coccus] instead being classified as unclassified Lachno-
spiraceae by RDP and as either Lachnospiraceae
(uncultured or unclassified) or Sellimonas by SILVA.
Oscillospira in Greengenes (5.5%) was significantly
higher than unclassified Oscillospiraceae in SILVA
(1.9%; P < 0.001), explained by Greengenes’s Oscillo-
spira being classified as Oscillibacter, Flavonifractor,
Intestimonas, Colidextribacter, uncultured Oscillospira-
ceae, or unclassified Oscillospirales by SILVA, and no
appropriate group was found for comparison within the
RDP database as RDP classified these ASVs as
Oscillibacter, Flavonifractor, Pseudoflavonifractor,
Intestimonas, or unclassified Ruminococcaceae. Some
bacterial groups did not differ (P > 0.05) in abundance
between the three databases but were classified as differ-
ent taxa. For example, an unclassified Clostridiales in
Greengenes (4.1%) appeared to be more specifically
classed as Clostridia UCG-014 (3.8%) in SILVA, while
being classed as Anaerobacteria (3.8%) in RDP.
LEfSe Analyses

With the Greengenes database, 12 genera and the
order Burkholderiales were determined as more abun-
dant in birds infected with Eimeria tenella, while 13 gen-
era were more abundant in control birds (Figure 2A).
With the RDP database, 10 genera and the order Bur-
kholderiales were determined as more abundant in
infected birds, while 16 genera and a phylum of unclassi-
fied bacteria were more abundant in control birds
(Figure 2B). With the SILVA database, 9 genera and
the order Burkholderiales were determined as more
abundant in infected birds, while 25 genera were more
abundant in control birds (Figure 2C). Again, the
greater number of specific genera being identified by the
SILVA database, including genera in the Lachnospira-
ceae family, appeared to be a factor in our results by
increasing the number of genera determined as differen-
tially abundant by LEfSe. With the SILVA database,
LEfSe identified some of these genera, which could pro-
vide additional insight towards understanding the
effects on infection on chicken microbiota.
Comparing the Greengenes and SILVA
Databases

In addition to database choice, it should be noted that
% identity at which the database is clustered to is
another factor that may introduce bias. Many chicken
microbiota studies, including those published in the past
4 years, have continued to utilize the Greengenes 97%
identity database, and this widespread use allows for
comparison between studies. Our study compared the
Greengenes database at 97% identity to SILVA at 99%
identity (the recommended option), possibly introduc-
ing bias through the % identity difference that could
affect certain sensitive classifications. However, our
results show that Greengenes produced the same results
as SILVA in many cases, despite the difference in %
identity. Most importantly, in the cases where results
were not the same, there were fundamental differences
in the databases due to SILVA being more up to date,
such as the presence of additional genera in the Lachno-
spiraceae family in SILVA or updates in taxonomy
because of recent phylogenetic studies, both of which
changing the % identity would have no influence. SILVA
has been shown in other studies to be a larger database
compared to Greengenes (Balvo�ciut _e and Huson, 2017),
therefore, chicken microbiota researchers using



Figure 2. Linear Discriminant Analysis effect size (LEfSe) using the (A) Greengenes, (B) RDP, and (C) SILVA databases to determine differen-
tially abundant bacteria in the chicken cecal luminal microbiota of Eimeria tenella infected birds and control birds.
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Greengenes at any % identity are recommended to con-
sider the use of SILVA.

In conclusion, taxonomic classifications and relative
abundance numbers of certain taxonomic groups may be
affected by the choice of reference database during
bioinformatic processing of chicken microbiota. In
genus-level analyses, database choice can affect the
number of differentially abundant taxa between treat-
ment groups, further affecting the interpretation of
results. Although Greengenes is commonly used in
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chicken microbiota studies, future studies should con-
sider the use of the SILVA database to avoid outdated
taxonomic classifications and produce greater specificity
in results at the genus level.
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