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INTRODUCTION 
 

Lung cancer is a leading cause of cancer-related deaths 

in the United States of America (USA) with 228,820 

newly diagnosed cases and approximately 135,720 

deaths expected in 2020 [1, 2]. The most common 

histological type is lung adenocarcinoma (LADC), 

which accounts for approximately 49.7% of all lung 

cancer cases in the USA [3]. In recent years, the 

incidence rate of LADC has increased significantly [4, 

5]. Despite improvements in lung cancer screening and 

personalized treatment modalities, the 5-year survival 

rates for stage IV lung cancer patients is ≤10% 

compared to 68-92% for the stage I patients [6, 7]. 

Therefore, an accurate prognostic prediction nomogram 

is required for discriminating high-risk and low-risk 

patients to determine optimal targeted therapeutic 

strategies and improve survival outcomes of LADC 

patients.  

 

N6-methyladenosine (m6A) is the most common and 

conserved internal transcriptional modification in 

eukaryotic mRNAs, microRNAs (miRNAs), and long 

non-coding RNAs (lncRNAs) [8–11]. The m6A RNA 

modification is highly enriched near the stop codon and 3′ 

untranslated terminal region (3′UTR), and regulates RNA 

transcription, variable splicing, translation, and RNA 

metabolism [12, 13]. The N6 methylation of adenosine is 

mediated by three categories of m6A regulatory proteins, 

namely, readers (binding proteins), writers 

(methyltransferases), and erasers (demethylases) [11, 14, 

15]. The readers identify m6A-modified RNAs and 
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genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly 
higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues 
and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory 
gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic 
option for high-risk LADC patients. 
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include proteins such as IGF2BP1, IGF2BP2, IGF2BP3, 

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 

HNRNPG, HNRNPA2B1, and HNRNPC [16–19]. The 

writers are methyltransferases that add the methyl group 

and include proteins such as ZC3H13, RBM15, METTL3, 

METTL14, METTL16, KIAA1429, and WTAP [18–20]. 

The erasers are demethylases that remove the methylation 

group and include proteins such as FTO and ALKBH5 

[14, 18, 19, 21]. These three categories of proteins 

regulate the dynamics of reversible m6A methylation and 

influence the expression of several genes [11].  

 

The changes in the expression of m6A regulatory genes 

modulate various physiological processes including 

self-renewal, circadian rhythm, embryonic 

development, stem cell differentiation, and cell death 

[22]. Aberrant m6A modification of RNA is also 

associated with tumorigenesis [11, 23]. METTL3 is 

overexpressed in hepatocellular carcinoma tissues; 

knockdown of METTL3 significantly reduced liver 

cancer cell proliferation, migration, and colony 

formation in vitro, and remarkably suppressed liver 

cancer tumorigenicity and lung metastasis in vivo [24]. 

Moreover, overexpression of METTL3 significantly 

suppresses proliferation, migration, and invasion of 

colorectal carcinoma (CRC) cells [25]. Therefore, m6A 

regulatory genes are promising candidates as diagnostic 

and prognostic markers for various cancers as well as 

anti-cancer therapy targets [26–28]. Several studies 

have investigated the role of several m6A regulatory 

genes in lung cancer [29–34]. However, the role of 

newly discovered m6A regulatory genes has not been 

investigated in lung cancer [29–34]. Furthermore, a 

prognostic risk nomogram including m6A regulatory 

genes is seldom constructed for lung cancer patients 

[29–31, 33, 34]. Moreover, association between m6A 

regulatory genes and tumor immunity has not been 

explored in lung cancer patients.  

 

Therefore, in this study, we systematically evaluated the 

prognostic value of m6A regulatory genes in lung 

adenocarcinoma (LADC) using patient data from the 

TCGA and GEO databases. Furthermore, we evaluated 

the association between prognostic m6A regulatory genes 

and tumor immunity including infiltration status of 

immune cell types, expression of immune checkpoint 

proteins, status of tumor mutational burden (TMB), and 

response to immune checkpoint blockade (ICB) therapy.  

 

RESULTS 
 

Seventeen m6A regulatory genes are differentially 

expressed in lung adenocarcinoma samples 

 

We systematically analyzed the transcript levels of 

twenty m6A regulatory genes in 59 normal lung and 

535 LADC tissue samples. The heat map showed that 

the expression levels of 17 m6A regulatory genes were 

significantly upregulated or downregulated in LADC 

tissues compared to normal lung tissues (Figure 1A). 

HNRNPA2B1, HNRNPC, HNRNPG, IGF2BP1, 

IGF2BP2, IGF2BP3, KIAA1429, METTL3, RBM15, 
YTHDF1, YTHDF2, and YTHDF3 were significantly 

upregulated, whereas, FTO, METTL14, METTL16, 

WTAP, and ZC3H13 were significantly downregulated 

in LADC tissues compared to the normal lung tissues 

(Figure 1A, 1B). However, expression levels of 

YTHDC1, YTHDC2, and ALKBH5 were similar in 

LADC and normal lung tissue samples (Figure 1A, 1B). 

We then analyzed single nucleotide variations (SNVs) 

in the seventeen differentially expressed m6A 

regulatory genes and found that the mutation frequency 

was ≤3% (Figure 1C). This suggested that differential 

expression of the 17 m6A regulatory genes was less 

likely to be caused by SNVs.  

 

PPI network and correlation analysis of 17 

differentially expressed m6A regulatory genes 

 

Protein-protein interaction (PPI) network analysis of the 

17 m6A regulatory genes suggested that METTL3 and 

METTL14 were hub genes (Figure 1D, 1E), whereas, 

YTHDF3, IGF2BP2, and METTL16 were not linked to 

any other m6A regulatory genes (Figure 1D, 1E). In 

general, the ‘writer’ m6A regulatory genes showed 

significantly higher number of links and the ‘reader’ 

m6A regulatory genes showed significantly lower 

number of interacting partners (Figure 1D, 1E). 

Moreover, all ‘writers’ except METTL16 interacted with 

each other, whereas, METTL16 did not show any 

interaction with the other writers (Figure 1D). 

Correlation analysis showed weak to moderate 

association between the seventeen m6A regulatory 

genes (Figure 1F). The highest correlation was between 

KIAA1429 and YTHDF3 (r = 0.66), whereas, the 

correlation between FTO and HNRNPC was most 

negative (r = -0.29) (Figure 1F). Besides, KIAA1429 

was the only m6A regulatory gene that significantly 

correlated with all the other sixteen m6A regulatory 

genes in the PPI network (Figure 1F).  

 

Construction of a m6A-gene based prognostic 

signature  

 

Univariate Cox regression analysis of the 398 training 

set LADC patients showed that six out of seventeen 

m6A regulatory genes, namely, IGF2BP1, IGF2BP2, 

IGF2BP3, HNRNPA2B1, METTL3, and HNRNPC were 

associated with OS (P < 0.05) (Figure 2A). Then, we 
analyzed these six genes using the LASSO Cox 

regression model and selected five genes, namely, 

IGF2BP1, IGF2BP2, HNRNPA2B1, METTL3, and 
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Figure 1. Expression patterns of twenty m6A regulatory genes in LDAC tissues and protein-protein interaction network 
analysis of m6A regulatory genes. (A) Heat map shows expression levels of 20 m6A regulatory genes in 59 normal lung and 535 LADC 
tissues. Note: *0.01 ≤ P < 0.05, **0.001 ≤ P < 0.01, ***P < 0.001. (B) Boxplot shows differential expression of the 20 m6A regulatory genes in 
LADC tissues compared to normal lung tissues. Note: *0.01 ≤ P < 0.05, **0.001 ≤ P < 0.01, ***P < 0.001. (C) Single nucleotide variations in  
seventeen m6A regulatory genes based on analysis of 561 LADC patient tissues. (D) PPI network analysis of seventeen m6A regulatory genes 
using STRING database. (E) The interacting numbers of each gene with the other sixteen genes. If the value of one gene is equal to 1, it means 
that only one of the other sixteen genes was interacted with this gene. (F) Spearman correlation analysis between 17 m6A regulatory genes. 
Blue indicates negative correlation in comparison with red indicating positive correlation. All the correlation coefficients are shown in the 
squares, and the areas of circles in the squares are positive correlated with the absolute value of corresponding correlation coefficients. 
Squares containing crosses denotes the P-values of correlation analyses are above 0.05. 
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HNRNPC to construct a five-gene prognostic signature 

(Figure 2B, 2C). We calculated their coefficients  

based on the lambda.min via 10-fold cross validation 

(Figure 2B–2D). The risk score was  

calculated as 0.037*IGF2BP1 + 0.004*IGF2BP2 + 

0.007*HNRNPA2B1 + 0.022*HNRNPC + (-

0.125)*METTL3. Then, we classified the training set 

LADC patients into high-risk and low-risk groups 

based on the median risk score value of 0.060. We 

then analyzed the distributions of risk scores and 

survival status of the training set LADC patients and 

found that survival times were significantly shorter for 

the high-risk patients compared to the low-risk group 

(Figure 2E, 2F).  

 

Kaplan-Meier survival curve analysis confirmed that 

OS of the high-risk LADC patients in the training set 

was significantly shorter than the low-risk LADC 

patients (P < 0.0001) (Figure 3A). This suggested that 

the five-gene prognostic risk signature successfully 

distinguished high-risk and low-risk LADC patients. 

Furthermore, we performed ROC curve analysis and

 

 
 

Figure 2. Development of a five-gene prognostic signature. (A) The forest plots show association between expression levels of 
seventeen m6A regulatory genes and OS of LADC patients as determined by the univariate Cox regression model. (B) LASSO coefficients 
profiles of the six potentially prognostic m6A regulatory genes. (C) The coefficients of five prognostic m6A regulatory genes based on 
lambda.min using 10-fold cross validation. (D) The co-efficient distributions of the five prognostic m6A regulatory genes. (E) The distribution 
of risk scores in the training set LADC patients from the TCGA database. (F) The distribution of risk scores of the training set TCGA-LADC 
patients relative to their OS status. 
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found that the AUC values of the five-gene prognostic 

signature for 3-year and 5-year survival of LADC 

patients were 0.684 and 0.646, respectively (Figure 3B). 

These AUC values were slightly lower than those 

considered as acceptable [35]. However, the AUC 

values for the five-gene prognostic signature were 

similar to the AUC values for the AJCC stages, which is 

a commonly used clinical prognostic indicator (Figure 

3B). We then analyzed the association between the risk 

groups and their clinicopathological characteristics. The 

heat map showed significant differences in gender 

(P=0.041) and AJCC stages (P=0.028) between the low- 

and high-risk groups (Figure 3C). We then performed 

functional enrichment analysis of the differentially 

expressed genes between the low-risk and high-risk 

groups. GSEA results showed that the high-risk group 

was strongly associated with cancer-related pathways 

including mismatch repair (NES = 2.045, normalized P 

= 0.004, FDR q-val = 0.005), cell cycle (NES = 2.382, 

normalized P < 0.0001, FDR q-val < 0.0001), 

nucleotide excision repair (NES = 2.017, normalized P 

= 0.006, FDR q-val = 0.006), p53 signaling pathway 

(NES = 2.069, normalized P < 0.0001, FDR q-val = 

0.004), and pathways in cancer (NES = 1.585, 

normalized P = 0.021, FDR q-val = 0.109) (Figure 3D).  

 

The five m6A prognostic proteins are overexpressed 

in LADC samples 

 

Western blot analysis of ten pairs of matched LADC 

and adjacent normal lung tissues showed that the 

expression levels of IGF2BP1, IGF2BP2, 

HNRNPA2B1, HNRNPC, and METTL3 proteins were 

significantly upregulated in LADC tissues compared to 

 

 
 

Figure 3. The association of risk score with OS and clinicopathological characteristics. (A) Kaplan-Meier survival curve analysis of 
high-risk and low-risk LADC patients from the training set. (B) ROC curves show prediction accuracy of the prognostic signature and AJCC 
stages in the training set TCGA-LADC patients. (C) Heat map shows association between the expression levels of the five prognostic m6A 
regulatory genes and clinicopathological characteristics of high- and low-risk LADC patient subgroups. *0.01 ≤ P < 0.05, **0.001 ≤ P < 0.01, 
***P < 0.001. (D) The positive correlation between cancer-related pathways and high-risk LADC patients. 
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the corresponding normal lung tissues (Figure 4). This 

was consistent with the bioinformatics results for the 

TCGA-LADC dataset. 

 

Evaluation of the five-m6A regulatory gene 

signature risk score as an independent prognostic 

predictor and construction of a predictive 

nomogram 

 

Next, we performed univariate and multivariate Cox 

regression analysis to determine if the five-gene 

signature-derived risk score was an independent 

prognostic marker using the training cohort (n = 398) 

LADC patient data. The clinicopathological 

characteristics of the training cohort are shown in Table 

1. Univariate Cox regression model showed that AJCC 

stage (HR, 1.629; 95% confidence interval (CI), 1.400-

1.894; P < 0.0001) and the five-m6A regulatory gene 

signature risk score (HR, 3.332; 95% CI, 2.242-4.952; P 

< 0.0001) were prognostic factors for LADC patients 

(Figure 5A). Furthermore, multivariate Cox regression 

model also showed that AJCC stage (HR, 1.574; 95% 

CI, 1.353-1.831; P < 0.0001) and the five m6A 

regulatory gene signature risk score (HR, 3.119; 95% 

CI, 2.059-4.724; P < 0.0001) were independent 

prognostic factors for LADC patients (Figure 5B).  

 

We then constructed a nomogram based on coefficients 

from multivariate Cox regression model for the AJCC 

stage and the five m6A regulatory gene signature risk 

score and predicted the 1-year, 3-year and 5-year 

survival probabilities of LADC patients by calculating 

the total score for each patients by adding the variable 

values for AJCC stage and risk score (Figure 5C).  

 

Next, we estimated the discrimination efficacy and 

prediction accuracy of the nomogram in the training set 

by evaluating c-index and AUC values as well as 

calibration curves. Our results showed that the 

nomogram was well calibrated because the curves were 

close to the diagonal line (Figure 5D). The c-index 

value for the nomogram was 0.71 (CI, 0.66-0.76) 

(Figure 5D), and the AUC value was 0.75 in the follow-

up period (Figure 5E). Thus, the nomogram showed a 

higher discrimination power than the conventionally 

used prognostic index—AJCC stage (Figure 5E). 

Furthermore, decision curve analysis (DCA) showed 

that the threshold probabilities for 1-year, 3-year, and 5-

year OS based on the nomogram were 0.06-0.48, 0.18-

0.81, and 0.42-0.80, respectively (Figure 5F). The net 

clinical benefit gained from the nomogram was higher 

than hypothetical treat-all-patients or treat-none 

scenarios. These data showed that, the nomogram 
including AJCC stage and risk score was clinically 

beneficial for predicting 1-year, 3-year, and 5-year OS 

of LADC patients. 

Validation of the prognostic model in LADC patient 

datasets from the GEO database 

 

We further verified the reliability of the prognostic 

model using two validation LADC patient cohorts, 

GSE72094 (n=320) and GSE41271 (n=168). The 

clinicopathologic characteristics of the validation 

cohorts are shown in Table 1. We calculated the risk 

scores of all patients and classified them into high-risk 

and low-risk groups based on the previously determined 

cutoff value of 0.060. Kaplan Meier survival curve 

analyses showed that the OS was significantly shorter 

for LADC patients in the high-risk group compared to 

the low-risk group in both GSE72094 (P = 0.0006) and 

GSE41271 (P < 0.0001) datasets (Figure 6A, 6B). 

Furthermore, multivariate Cox regression analysis 

showed that the risk score was an independent 

prognostic factor for both the GSE72094 (HR, 6.772; 

95% CI, 3.331-13.767; P < 0.0001) and GSE41271 

(HR, 2.809; 95% CI, 1.791-4.406; P < 0.0001) datasets 

(Figure 6C, 6D). ROC curve analysis of the prognostic 

signature showed that the AUC values were 0.695 and 

0.656, respectively, for the 3-year and 5-year OS of 

LADC patients in the GSE72094 dataset and 0.704 and 

0.684, respectively, for the 3-year and 5-year OS of 

LADC patients in the GSE41271 dataset (Figure 6E, 

6F). Furthermore, calibration curves for the 1-year, 3-

year, and 5-year OS based on the nomogram were close 

to the diagonal line with a c-index value of 0.72 (CI, 

0.67-0.77) for the GSE72094 dataset and 0.70 (CI, 0.63-

0.77) for the GSE41271 dataset (Figure 6G, 6H). This 

suggested satisfactory performance of the prognostic 

model. The AUC values for both the GSE72094 and 

GSE41271 datasets were approximately 0.75 for the 

prognostic model in the 1-year, 3-year and 5-year 

follow-up period (Figure 5E). These values were higher 

than the AUC values of approximately 0.65 for the 

AJCC stage only. 

 

Identification of co-expression modules and hub 

genes related to the five prognostic m6A regulatory 

genes using WGCNA 

 

We compared 199 high-risk and 199 low-risk LADC 

patient groups in the training set and identified 741 

differentially expressed genes (DEGs; 335 up-regulated 

and 406 down-regulated) (Figure 7A). We then 

developed a co-expression network of the DEGs using 

WGCNA. We achieved a higher scale-free topology fit 

index (> 0.8) and higher mean connectivity by 

constructing a scale-free network with the soft threshold 

power set as 8 (Figure 7B, 7C). These genes were 

classified by average linkage hierarchical clustering into 
three modules, namely, blue (209 genes), brown (173 

genes), and turquoise (337 genes) (Figure 7D). We then 

investigated the association between clinicopathological  
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Figure 4. Expression levels of the five prognostic proteins in LADC patient samples. (A) Western blot analysis shows expression 
levels of IGF2BP1, IGF2BP2, HNRNPA2B1, HNRNPC, and METTL3 proteins in 10 paired normal lung and LADC tissue samples. (B–F) Relative 
expression levels of the five potentially prognostic m6A regulatory proteins, namely, IGF2BP1, IGF2BP2, HNRNPA2B1, HNRNPC, and METTL3 
in 10 LADC tissues. GAPDH was used as loading control. The values were normalized by log2 fold change (ratio of tumor to normal tissue 
expression) of the target proteins. 
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Table 1. Clinicopathological characteristics of patients in the training cohort and validation cohort.  

Clinical characteristics 
Training cohort  Validation cohort 

TCGA (No. (% ))  GSE72094 (No. (% )) GSE41271 (No. (% )) 

Total 398  320 168 

Age at diagnosis     

   Median (IQR), years 65 (58-72)  71 (64-77) 64 (57-72) 

Gender     

   Female 215 (54.0)  170 (53.1) 81 (48.2) 

   Male 183 (46.0)  150 (46.9) 87 (51.8) 

Race     

   Black 45 (11.3)  9 (2.8) 11 (6.5) 

   White 353 (88.7)  311 (97.2) 157 (93.5) 

AJCC Stages     

   Stage I 219 (55.0)  212 (66.2) 93 (55.4) 

   Stage II 92 (23.1)  52 (16.2) 27 (16.1) 

   Stage III 64 (16.1)  46 (14.4) 44 (26.2) 

   Stage IV 23 (5.8)  10 (3.1) 4 (2.4) 

Smoking History     

   No 60 (15.1)  30 (9.4) 16 (9.5) 

   Yes 338 (84.9)  290 (90.6) 152 (90.5) 

Survival Status     

   Alive 257 (64.6)  233 (72.8) 103 (61.3) 

   Dead 141 (35.4)  87 (27.2) 65 (38.7) 

Survival Time (months) 21.0 (13.9-35.2)  28.1 (19.3-34.4) 39.0 (20.0-64.5) 

Abbreviations: IQR: interquartile range; AJCC: American Joint Committee on Cancer. 

characteristics and modules by calculating the 

correlation coefficients between module eigengenes 

(MEs) and clinicopathological characteristics. The 

turquoise module showed highest correlation with the 

prognostic risk score (Figure 7E, 7F).  

 

GO and KEGG enrichment analysis of the turquoise 

module genes showed enrichment of genes involved in 

biological processes such as cell division, cell 

proliferation, and cell cycle, as well as, signaling 

pathways related to cell cycle, and p53 signaling 

pathway (Figure 8A, 8B).  

 

We identified 22 genes as potential hub genes because 

they showed highly significant correlation with the risk 

score (GS > 0.55) and turquoise module (MM > 0.85) 

(Figure 8C). Based on connectivity of the weighted 

network, the top fifteen genes (top 10%) of the 

turquoise module were designated as the hub gene 

candidates. Furthermore, we performed PPI analysis of 

the 337 genes in the turquoise module using STRING 

database and cytoscape software, and identified the top 

15 genes (top 10%) with the highest degree as the hub 

gene candidates (Figure 8D). By intersecting the three 

lists of candidate hub genes, we identified six common 

genes (CCNA2, CCNB1, BUB1B, BUB1, KIF2C, and 

KIF11) (Figure 8E). Moreover, the expression levels of 

these six genes was associated with the overall survival 

of LADC patients according to the univariate Cox 

regression model, thereby suggesting that these six hub 

genes were potential prognostic factors for LADC 

(Figure 8F).  

 

Association of m6A regulatory gene prognostic 

signature with tumor immunity 

 

We used the ESTIMATE algorithm [36] to evaluate 

tumor immune microenvironment in all LADC patient 

samples, including immune scores, stromal scores, and 

tumor purity. In general, we did not observe any 

significant differences in the immune scores, stromal 

scores, and tumor purity between the low-risk and high-

risk groups (all P > 0.05, Figure 9A). Moreover, the 

correlation coefficients between the prognostic 

signature-based risk scores and tumor immune 

microenvironment scores were all below 0.2 (Figure 

9B), which are regarded as negligible [37, 38]. We then 

investigated the association between the m6A 

prognostic signature and immune infiltration by 

evaluating the proportions of 21 immune cell types. The 

results showed significantly lower proportions of M1 

macrophages, activated memory CD4+ activated T cells,  
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Figure 5. Construction of a prognostic risk signature-based nomogram and evaluation of its performance in the TCGA 
dataset. (A, B) The forest plot shows association of clinicopathological parameters including risk score and the OS status of TCGA-LADC 
dataset as assessed by univariate and multivariate Cox regression models. (C) The nomogram with risk score and AJCC stages to predict 1-
year, 3-year and 5-year OS of individual LADC patients. (D) The calibration curves and c-index values for the predicted 1-year, 3-year, and 5-
year OS based on the nomogram for the TCGA-LADC patients from the training set. (E) ROC curve analysis shows the variations in the AUC 
values for the nomogram and AJCC stages in the training and validation cohorts for the 1-year to 5-year follow-up period. (F) The DCA analysis 
shows 1-year, 3-year and 5-year OS for LADC patients based on the nomogram. 
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Figure 6. Validation of the risk signature and nomogram using GEO datasets. (A, B) Kaplan-Meier survival curves show OS of high-
risk and low-risk LADC patients in the GSE72094 and GSE41271 datasets. (C, D) The forest plot shows association between clinicopathological 
characteristics including risk score and OS status as assessed by the multivariate Cox regression model for the GSE72094 and GSE41271 
datasets. (E, F) ROC curve analysis shows the prediction accuracy of the prognostic signature in the GSE72094 and GSE41271 datasets. (G, H) 
The calibration curves and c-index values for the predicted 1-year, 3-year, and 5-year OS in the LADC patients from the GSE72094 and 
GSE41271 datasets based on the nomogram. 
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Figure 7. Identification of gene modules using WGCNA. (A) Volcano plot shows 741 differentially expressed genes or DEGs (335 up-

regulated and 406 down-regulated) in 199 high-risk and 199 low-risk LADC patient groups. (B) Analysis of scale-free topology fit index for 
various soft threshold powers (β). (C) Analysis of mean connectivity for various soft threshold powers. (D) Dendrogram of all differentially 
expressed genes clustered into various gene modules on the basis of a topological overlap-derived dissimilarity measure. The modules are 
displayed with different colors in the horizontal bar below the dendrogram. (E) Distribution of gene significance values in different modules. 
(F) The module-trait relationship heat map shows the correlation between module eigengenes (MEs) and clinicopathological characteristics. 
The correlation coefficients and p values are shown in the column for each ME and the corresponding clinicopathological characteristic. 
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Figure 8. Gene enrichment analysis in the turquoise module and determination of hub genes in the PPI network. (A) GO 
enrichment analysis of genes in the turquoise module. (B) KEGG pathway enrichment analysis of genes in the turquoise module. (C) 
Correlation analysis of genes in the turquoise module and the risk score. The cutoff values were set as gene significance (GS) > 0.55 and 
module membership (MM) > 0.85. (D) PPI network of all genes in the turquoise module including top 15 hub genes with the highest degree. 
PPI network was constructed using the STRING database and the Cytoscape software. (E) Venn diagram shows six common genes in the three 
lists of candidate hub genes. (F) The forest plot shows association between expression levels of the six hub genes and the OS status of LADC 
patients as assessed by the univariate Cox regression model. 
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Figure 9. The association between m6A regulatory gene risk signature and tumor immunity of LADC patients. (A) Boxplot 

shows differences in immune scores, stromal scores and tumor purity between high-risk and low-risk LADC patient groups. (B) Spearman 
analysis shows the correlation between risk scores and immune microenvironment parameters such as the immune scores, stromal scores 
and tumor purity. (C) Relative proportions of infiltrating immune cell types in the high-risk and low-risk LADC patient groups. (D) Boxplot 
shows differences in expression levels of  the immune checkpoint proteins between high-risk and low-risk LADC patient groups. (E) Spearman 
analysis shows correlation between TMB and risk scores. (F) Violin plot shows differences in TMB between high-risk and low-risk LADC 
patient groups. (G) Box plot shows the response to immune checkpoint therapy in high-risk and low-risk LADC patient groups. 
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CD8+ T cells, and neutrophils (Figure 9C). We also 

explored the association between immune checkpoint 

proteins and the m6A prognostic signature. The results 

showed significantly higher levels of PD-L1 and PD-L2 

in high-risk patients compared to the low-risk patients 

(Figure 9D). Tumor mutational burden (TMB) is an 

important biomarker that is useful to predict response to 

PD-1/PD-L1 targeted immunotherapy in multiple 

cancer types [39–42]. We observed that the correlation 

between risk score and TMB was low (r = 0.28) (Figure 

9E). Moreover, high-risk patients demonstrated 

significantly higher TMB (Figure 9F). This suggested 

that ICB therapy was potentially beneficial for high-risk 

LADC patients. Finally, in order to assess potential 

responses of different risk groups to ICB therapy, 

including CTLA-4 and PD-1 targeted therapy, we 

performed TIDE algorithm analysis and found that ICB 

response was significantly higher in the high-risk 

patients compared to the low-risk patients (Figure 9G). 

In summary, these findings demonstrate that ICB 

therapy is potentially beneficial for the high-risk LADC 

patients.  

 

DISCUSSION 
 

The prognosis of advanced stage lung adenocarcinoma 

(LADC) patients is poor [2, 6, 43, 44]. Therefore, a 

robust prognostic signature that distinguishes high-risk 

and low-risk patients is essential for determining 

optimal therapeutic strategies and improving survival 

outcomes of LADC patients. Previously, studies have 

investigated the role of thirteen m6A regulatory genes 

in lung cancer [29–34], but the roles of seven newly 

discovered ones, namely, METTL16, YTHDF3, 

IGF2BP1, IGF2BP2, IGF2BP3, HNRNPG, and 

HNRNPA2B1 has not been determined [29–34]. 

Furthermore, performance of a robust m6A regulatory 

gene-based nomogram has not been evaluated with c-

index values and calibration curves using training and 

validation LADC patient cohorts [29–34].  

 

In the present study, we found that seventeen out of 

twenty m6A regulatory genes were differentially 

expressed in LADC samples. This suggested their 

probable role in lung carcinogenesis. Aberrant 

expression of several m6A regulatory genes is reported 

in several cancers. WTAP, an m6A writer, is up-

regulated in hepatocellular carcinoma (HCC) [45], acute 

myelogenous leukemia (AML) [46], and glioblastoma 

[47]. Silencing of ALKBH5, an m6A eraser, suppresses 

proliferation and invasion of ovarian cancer cells by 

enhancing autophagy [48]. YTHDF1, an m6A reader, is 

significantly upregulated in CRC; knockdown of 

YTHDF1 significantly inhibits tumorigenicity and 

colony formation ability of CRC cells [49]. Therefore, 

dysregulation of m6A regulatory genes is associated 

with tumor growth, progression, and prognosis of 

various cancers.  

 

GSEA results showed that m6A regulatory genes were 

significantly associated with several tumorigenesis-

related pathways such as p53 signaling pathway, cell 

cycle, mismatch repair, and nucleotide excision repair. 

These results are consistent with previous findings that 

demonstrate association of m6A regulatory genes with 

several cancer-related pathways such as p53 signaling 

pathway [50, 51], cell cycle [50, 52, 53], Ras [52], 

inflammatory response [50, 51], and PPAR signaling 

pathway [51].  

 

In the present study, we identified a five-m6A 

regulatory gene prognostic signature including 

IGF2BP1, IGF2BP2, HNRNPA2B1, METTL3, and 

HNRNPC. This prognostic risk signature accurately 

predicted the prognosis of LADC patients. Furthermore, 

we calculated risk scores of LADC patients based on 

the prognostic signature and stratified LADC patients 

into low-risk and high-risk groups. Survival analysis 

demonstrated that the overall survival of high-risk 

LADC patients was significantly shorter than the low-

risk patients.  

 

Previous studies have reported several genetic 

signature-based nomograms to predict survival 

outcomes or prognosis of lung adenocarcinoma patients 

with AUC values between 0.61-0.77 and c-index values 

between 0.68-0.73 [54–58]. In our study, the AUC 

value was around 0.75 and c-index value was 0.71 for 

the nomogram based on the five-m6A regulatory gene 

based prognostic signature. This demonstrates that the 

m6A regulatory gene-based risk signature was 

comparable to previously reported risk signatures based 

on autophagy-associated genes [54], oxidative 

phosphorylation-related genes [55], hypoxia-associated 

genes [56], metabolic-related genes [57], and immune-

related genes [58].  

 

Our study identified IGF2BP1, IGF2BP2, 

HNRNPA2B1, and HNRNPC as adverse prognostic 

genes, and METTL3 as a favorable prognostic gene. 

These five prognostic genes were highly expressed in 

LADC tissues. Yan et al. demonstrated that HNRNPC 

was significantly up-regulated in non-small cell lung 

cancer (NSCLC) tissues and promoted proliferation, 

migration, and invasion of lung cancer cells; high 

HNRNPC expression was also associated with advanced 

tumor stages, metastasis, and shorter survival time [59]. 

High expression of IGF2BP1 promoted proliferation, 

migration, and invasion of NSCLC cells [60] and liver 
cancer cells [61]. Zhu et al. reported that high 

expression of METTL3 was associated with better OS in 

lung adenocarcinoma patients [24]. Similarly, another 
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study reported that CRC patients with elevated 

expression of METTL3 showed significantly better 

survival than those with lower METTL3 expression; up-

regulation of METTL3 significantly reduced tumor 

proliferation, migration and invasion of CRC cells [25, 

62]. Our study results are in agreement with these 

reports. However, other studies have shown 

contradictory results for METTL3 in bladder cancer 

[63], NSCLC [64], and liver cancer [24]. Du et al. 
reported that METTL3 silencing inhibited the 

proliferation of lung cancer cells [64]. Another study 

reported that METTL3 was significantly up-regulated in 

bladder cancer, and its knockdown suppressed in vitro 

proliferation, invasion, and survival as well as in vivo 

tumorigenicity of bladder cancer cells [63]. These 

findings suggest contradictory role of METTL3 in 

different cancers [65]. IGF2BP2, a direct target of miR-

485-5p, is significantly up-regulated in NSCLC, and its 

depletion significantly suppresses NSCLC cell 

proliferation and invasion [66]. IGF2BP2 

overexpression is associated with worse OS in 

pancreatic cancer patients and promotes growth of 

pancreatic cancer cells by activating the PI3K/Akt 

signaling pathway [67]. HNRNPA2B1 is involved in 

RNA-binding and pre-RNA processing and its high 

expression is associated with worse prognosis in 

NSCLC patients; overexpression of HNRNPA2B1 

promotes NSCLC cell growth by activating the COX-2 

signaling pathway [68].  

 

We developed a prognostic nomogram based on 

multivariate Cox regression analysis to predict 1-year, 

3-year and 5-year OS probability of LADC patients. 

The nomogram showed robust prediction performance 

in both training and validation cohorts. We then 

performed DCA to ascertain if the nomogram-based 

clinical decisions could improve patient survival 

outcomes. The threshold probabilities for 1-year, 3-

year, and 5-year OS based on DCA were 0.06-0.48, 

0.18-0.81, and 0.42-0.80, respectively, and were more 

accurate than the hypothetical treat-all-patients or treat-

none scenarios. Moreover, the nomogram showed 

higher predictive accuracy than the traditional 

prognostic index—AJCC stage. Overall, our findings 

suggested that the five-m6A regulatory gene signature-

based nomogram accurately predicted survival 

probabilities of all LADC patients and offered a better 

reference for treatment guidance than AJCC stage alone 

as the traditional prognostic index.  

 

We then conducted WGCNA to identify the gene 

modules, hub genes, and signaling pathways associated 

with the risk signature-related m6A regulatory genes. 
Cell cycle pathway was significantly associated with the 

risk signature. We identified six genes (CCNA2, 

CCNB1, BUB1B, BUB1, KIF2C, and KIF11) as hub 

genes, all of which regulated cell cycle progression [69–

75]. This suggests that the five m6A regulatory genes 

(IGF2BP1, IGF2BP2, HNRNPA2B1, METTL3, and 

HNRNPC) of the prognostic risk signature regulate cell 

cycle through the six hub genes. This relationship needs 

to be experimentally verified in future studies. 

However, knockdown of FTO, an m6A regulatory gene, 

inhibits cell cycle progression by increasing m6A levels 

of BUB1B and CCNA2 genes, thereby inhibiting their 

expression [76, 77]. Interaction between IGF2BP1 and 

KIF11 alters localization of β-actin mRNA, thereby 

inhibiting cell migration [78]. Several studies have 

demonstrated that these five m6A regulator genes 

(IGF2BP1, IGF2BP2, HNRNPA2B1, METTL3, and 

HNRNPC) promote cell cycle progression [66, 79–82], 

but further experimental studies are required to unravel 

the underlying molecular mechanisms. 

 

Immune checkpoint blockade (ICB) therapy has 

revolutionized traditional treatment strategies for 

NSCLC and other cancers. Patients with advanced 

NSCLC and other cancers demonstrate better prognosis 

upon treatment with anti-PD-1 and anti-CTLA-4 

therapies [83, 84]. Previous studies have also reported 

that m6A levels play a critical role in immune cell 

regulation and autoimmune diseases [85, 86]. In this 

study, we investigated the association of the five-m6A 

regulatory gene risk signature and tumor immunity. 

Previous reports suggest that higher PD-L1 expression 

in tumor cells is closely associated with improved 

efficacy of immunotherapy [40, 87]. Moreover, 

stimulation of the PD-1/ PD-L1 pathway promotes 

apoptosis of CD8+ T cells [88, 89]. In this study, we 

found higher expression levels of PD-L1 and PD-L2, 

and lower proportions of CD8+ T cells in tumor tissues 

of high-risk LADC patients. This suggested that ICB 

therapy may be potentially beneficial for the high-risk 

LADC patients. Moreover, we found higher TMB in 

high-risk LADC patients. Higher TMB is associated 

with increased progression-free survival and improved 

response to PD-1/PD-L1 blockade therapy in multiple 

cancer types [39–42]. TIDE algorithm analysis 

demonstrated that ICB response was significantly 

higher in high-risk LADC patients compared to the low-

risk patients. These findings suggest that high-risk 

LADC patients, as identified by the m6A regulatory 

gene risk signature, may benefit from ICB therapy. 

 

Our study has several limitations. Firstly, our results 

were based on data from existing public databases. 

Therefore, large-scale, prospective, multicenter studies 

are necessary to further validate our results. Secondly, 

our study population was mainly white and black 
patients from the US. Hence, our findings may not be 

optimal to patients from other countries and races. 

Thirdly, c-index value of our nomogram was 0.7 and 
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the AUC value of the risk signature was 0.6-0.7. It is 

plausible that addition of other known prognostic 

factors such as tumor grade, radiation therapy, 

chemotherapy, operation modes, and immunotherapy 

may enhance the prediction accuracy of the present 

nomogram. Finally, our results were based on data 

mining and need to be experimentally verified.  

 

In conclusion, we systematically evaluated the 

expression of 20 m6A regulatory genes in LADC 

patient tissues and identified a five-gene prognostic 

signature that can accurately distinguish high-risk and 

low-risk LADC patients. Furthermore, the nomogram 

with risk score and AJCC stages accurately 

distinguished high- and low-risk LADC patients and 

predicted the survival probability of the LADC patients. 

We used WGCNA and identified six hub genes that are 

associated with the cell cycle and related to the five risk 

signature m6A regulatory genes. We also demonstrated 

that high-risk LADC patients may benefit from ICB 

therapy. Further clinical and experimental studies are 

required to confirm our findings.  

 

MATERIALS AND METHODS 
 

Human lung adenocarcinoma tissue samples 

 

We obtained paired LADC and adjacent noncancerous 

lung tissues from ten patients that were diagnosed 

through pathological examination at the First Affiliated 

Hospital of Zhejiang University. We obtained written 

informed consent from all patients before the tissues 

were collected. This study was approved by the Ethics 

Committee of the First Affiliated Hospital of Zhejiang 

University. The patient samples were frozen in liquid 

nitrogen and stored at −80° C before further use.  

 

Human LADC patient datasets 

 

The study design and strategy is shown in Figure 10. 

RNA-seq, clinicopathological, and single nucleotide 

variation data for 535, 398, and 561 LADC patients 

were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov), respectively. RNA-seq 

data was normalized by the Fragment Per Kilobase 

Million (FPKM) method to obtain expression values of 

all genes. We used five LADC datasets from the GEO 

database (GSE72094, GSE41271, GSE31908, 

GSE26939, and GSE29013) for validation. Among 

these, the largest two datasets, namely, GSE72094 and 

GSE41271 were chosen for independent external 

validation. The gene expression profiles and 

clinicopathological data for these datasets were obtained 

from the Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) database. Since 

only a small number of patients were classified as 

“Asian” or “American Indian/ Alaskan Native”, we 

focused our analysis on white and black patients.  

 

Identification of differentially expressed m6A 

regulatory genes 

 

We systematically compared the mRNA expression 

levels of twenty m6A regulatory genes, namely, FTO, 

ALKBH5, ZC3H13, RBM15, METTL3, METTL14, 

METTL16, KIAA1429, WTAP, YTHDF1, YTHDF2, 

YTHDF3, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, 

IGF2BP3, HNRNPC, HNRNPG, and HNRNPA2B1 

[18, 19, 50, 90] in 535 LADC samples and 59 normal 

lung tissue samples in the TCGA dataset. The 

differentially expressed genes were determined using 

the raw p-value corrected for false discovery rate (FDR) 

and visualized using heat maps and box plots.  

 

Western blotting 

 

Western blot analysis was performed as described 

previously [91] using anti-METTL3 (Cat. no. 15073-1-

AP; 1:1,000), anti-IGF2BP1 (Cat. no. 22803-1-AP; 

1:1,000), anti-IGF2BP2 (Cat. no. 11601-1-AP; 1:1,000), 

anti-HNRNPC (Cat. no. 11760-1-AP; 1:5,000), and anti-

HNRNPA2B1 (Cat. no. 14813-1-AP; 1:2,000) antibodies, 

all of which were purchased from Proteintech. Anti-

GADPH antibody (Affinity; Cat. no. #T0004; 1:3,000) 

was used to determine GAPDH protein levels. The target 

protein bands were quantified using the ImageJ v1.53a 

software (NIH, Bethesda, Maryland, USA). Differential 

expression was determined by calculating the ratios of 

target protein values for tumor tissues relative to the 

corresponding paired adjacent noncancerous lung tissues 

followed by log2FoldChange for each patient.  

 

Bioinformatics analysis 

 

Gene set enrichment analysis (GSEA) was performed 

using the GSEA version 3.0 software (Broad Institute, 

Uc San Diego) to functionally annotate gene sets that 

show significant differences between high-risk and low-

risk LADC patient groups which were classified based 

on the m6A signature. The cancer-related pathways 

were extracted based on the following criteria: (1) 

|normalized enrichment score (NES)|>1; (2) normalized 

P value < 0.05; (3) FDR q-value < 0.25 [92, 93]. The 

protein-protein interaction network between m6A 

regulatory genes was constructed and analyzed using 

the STRING database (https://string-db.org/).  

 

Statistical analysis 

 
We compared the expression levels of 20 m6A 

regulatory genes in 535 LADC samples and 59 normal 

lung tissue samples using Wilcoxon-Mann-Whitney 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
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test. We also used Wilcoxon-Mann-Whitney test to 

compare expression levels of m6A regulatory genes 

based on age, gender, race, and smoking history of 

LADC patients. Kruskal-wallis test was to compare 

expression levels of m6A regulatory genes based on 

American Joint Committee on Cancer (AJCC) stages. 

Spearman correlation analysis was performed to 

investigate the relationships between different m6A 

regulatory genes.  

 

Univariate Cox regression model was used to determine 

prognostic m6A regulatory genes. Least absolute 

shrinkage and selection operator (LASSO) Cox 

regression model was used to construct optimal 

prognostic risk signature. We calculated the lambda 

value corresponding to minimum mean error 

(lambda.min) for the five prognostic m6A regulatory 

genes and evaluated their coefficients using10-fold 

cross validation. The risk score of all patients in the 

training and validation cohorts was calculated as the 

sum of expression level of each gene multiplied by its 

corresponding coefficient. The patients were 

dichotomized into low-risk and high-risk groups 

according to the median value of risk scores. The

 

 
 

Figure 10. Schematic representation of study strategy. The flow diagram shows five main sub-sections of this study—(1) 
bioinformatics analysis of m6A regulatory gene expression; (2) identification of a five-m6A regulatory gene prognostic signature and 
construction of a prognostic prediction nomogram; (3) external validation using two GEO patient datasets (GSE72094 and GSE41271); (4) 
WGCNA, and (5) correlation analysis of the prognostic signature with tumor immunity and immunotherapy response. 
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prediction accuracies of the prognostic risk signature 

and AJCC stages were assessed by the Receiver 

operating characteristic (ROC) curve analysis.  

 

Chi-square tests were used to compare the frequency 

distributions of grouped variables (including age, 

gender, race, smoking history, and AJCC stage) 

between the low- and high-risk groups. Kaplan-Meier 

survival curves and log-rank test were used to compare 

survival times of low- and high-risk groups. Univariate 

Cox regression model was used to assess the association 

between variables including risk score, 

clinicopathological characteristics and OS in the 

training set. Multivariate Cox regression model was 

used to identify variables independently associated with 

overall survival (P < 0.05). For continuous variables 

such as the prognostic risk score, the restricted cubic 

splines (RCS) with three knots located at the empirical 

quantiles (10%, 50%, and 90 %) were fitted to relax the 

linearity assumption of the model [94]. Then, forest 

plots were drawn to better visualize the association 

between each prognostic variable and OS. A nomogram 

was constructed to predict the 1-year, 3-year, and 5-year 

survival probability of LADC patients. Furthermore, 

prognostic model performance in the training and 

validation sets was evaluated by concordance index (c-

index) values, area under the ROC curve (AUC) values, 

and calibration curves. A decision curve analysis (DCA) 

was performed to assess the clinical utility of the 

nomogram [95]. All statistical analyses were performed 

using the R statistical software version 3.5.2 (R 

Foundation, Vienna, Austria). A two-tailed P<0.05 

was considered statistically significant.  

 

Weighted gene co-expression network analysis 

 

Differentially expressed genes (DEGs) between the 

high-risk and low-risk groups were screened using false 

discovery rate (FDR) < 0.05 and |logFoldChange| > 1 as 

cut-off parameters. A co-expression network of the 

DEGs was then constructed using WGCNA. A 

weighted adjacency matrix was constructed based on 

the power value β, and transformed into a topological 

overlap matrix (TOM). Subsequently, gene modules 

were identified by the dynamic shear approach. The 

most risk-related modules were determined according to 

module significance (MS) and correlation coefficients 

between module eigengenes (MEs) and risk scores. 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analyses were 

performed using the DAVID database 

(https://david.ncifcrf.gov/). The hub genes were 

determined according to the following criteria: (1) 

module membership (MM) > 0.85 and gene significance 

(GS) > 0.55); (2) top ten percent genes based on 

connectivity of the weighted network; (3) top ten 

percent genes based on degree of protein-protein 

interactions (PPI); (4) genes significantly associated 

with overall survival (P < 0.05).  

 

Tumor immunity analysis 

 

ESTIMATE algorithm was used to calculate immune 

score, stromal score, and tumor purity of all LADC 

patients [36]. CIBERSORT was used to determine 

proportions of 22 immune cell subtypes in each sample 

[96] using P-value < 0.05 as the threshold value. 

Wilcoxon-Mann-Whitney test was used to evaluate the 

association between m6A regulatory gene prognostic 

signature and expression levels of ten immune 

checkpoint proteins, namely, PD-L1, PD-1, PD-L2, 

CTLA-4, IDO1, LAG3, TIM-3, TIGIT, CD27, and 

ICOS. TMB was defined as the total number of the 

mutations in the somatic coding region per million 

bases. In this study, the mutational frequency of each 

sample was computed based on the number of variants 

divided by 38. As the length of exons was 38 million, 

the number of variants divided by 38 was just equal to 

the number of variants per million bases (TMB). Tumor 

Immune Dysfunction and Exclusion (TIDE) algorithm 

was used to evaluate the potential response to CTLA-4 

and PD-1 targeting ICBs in the high- and low-risk 

patient groups [97]. 
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