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Abstract

Introduction—The expansion of insulin-producing beta cells
during pregnancy is critical to maintain glucose homeostasis
in the face of increasing insulin resistance. Prolactin receptor
(PRLR) signaling is one of the primary mediators of beta cell
expansion during pregnancy, and loss of PRLR signaling
results in reduced beta cell mass and gestational diabetes.
Harnessing the proliferative potential of prolactin signaling
to expand beta cell mass outside of the context of pregnancy
requires quantitative understanding of the signaling at the
molecular level.

Methods—A mechanistic computational model was con-
structed to describe prolactin-mediated JAK-STAT signaling
in pancreatic beta cells. The effect of different regulatory
modules was explored through ensemble modeling. A
Bayesian approach for likelihood estimation was used to fit
the model to experimental data from the literature.
Results—Including receptor upregulation, with either inhibi-
tion by SOCS proteins, receptor internalization, or both,
allowed the model to match experimental results for INS-1
cells treated with prolactin. The model predicts that faster
dimerization and nuclear import rates of STATS5B compared
to STATSA can explain the higher STATSB nuclear translo-
cation. The model was used to predict the dose response of
STATSB translocation in rat primary beta cells treated with
prolactin and reveal possible strategies to modulate STATS
signaling.

Conclusions—JAK-STAT signaling must be tightly con-
trolled to obtain the biphasic response in STATS activation
seen experimentally. Receptor up-regulation, combined with
SOCS inhibition, receptor internalization, or both is required
to match experimental data. Modulating reactions upstream
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in the signaling can enhance STATS activation to increase
beta cell survival.

Keywords—Intracellular  signaling, Feedback control,

Ensemble modeling, Beta cell biology.

INTRODUCTION

Metabolic diseases impair the body’s ability to
properly convert nutrients into energy. Diabetes is a
particularly harmful metabolic disease that affects over
30 million people in the United States alone.*® While
multiple factors contribute to the pathogenesis of
diabetes, a deficit of functional insulin-secreting beta
cells underlies all forms of diabetes. In cases of Type 1
diabetes, an autoimmune attack destroys the majority
of beta cells, thus leaving patients unable to produce
insulin, the key hormone that regulates the transport
of glucose from the blood to the cells where it is used to
produce energy. Patients with Type 2 or gestational
diabetes can produce some insulin, but not enough to
properly regulate blood glucose levels in the context of
insulin resistance. Recent advances in the study of
pancreatic beta cells have shed light on the body’s
ability to adapt and expand in response to changes in
metabolic demand.’® For example, in cases of high
insulin resistance, such as pregnancy or obesity, the
body maintains glucose homeostasis by increasing beta
cell mass in the pancreas. In fact, studies have shown
that over the approximately 20-day time course of
pregnancy in mice, pancreatic beta cells both replicate
and grow in size, resulting in an increased beta cell
mass.*® The ability to induce beta cell expansion could
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be a powerful step to increase the number of func-
tioning beta cells in diabetes patients.

Beta cell expansion is driven by signaling through
the prolactin receptor®'®*>>!' (PRLR). Signaling by
the lactogenic hormones prolactin and placental lac-
togen through PRLR stimulates the JAK-STAT sig-
naling cascade.®” Specifically, Janus Kinase 2 (JAK2) is
constitutively associated with the PRLR”!"*® and once
the JAK2 kinase is activated, it recruits and phos-
phorylates Signal Transducer and Activator of Tran-
scription 5 (STATS). STATS regulates the expression
of several target genes in the nucleus, including genes
related to the cell cycle®®™* and survival.>'2%° Al-
though initial discoveries were made in rodent models,
human prolactin has been shown to increase beta cell
survival as well.”

In this work, we investigate the mechanisms by
which the pregnancy-related hormone prolactin (PRL)
drives JAK-STAT signaling in pancreatic beta cells
using a mathematical model of the signaling pathway.
We focus our model on JAK2-STATS signaling that
promotes beta cell survival mediated by the protein
Bel-xL. Experimental studies performed with the beta
cell line INS-1, as well as primary cells from rodents
and humans, demonstrate that signaling through
JAK2-STATS promotes cell survival via Bcl-xL.*'*
For example, Fujinaka et al. demonstrated that Bel-xL
up-regulation induced by JAK2-STATS signaling
promotes beta cell survival. They demonstrated that in
both INS-1 cells and primary beta cells and showed
that siRNA knockout of Bcl-xL inhibits lactogen-me-
diated protection from cell death. In addition, Silva
et al*' show that nuclear localization of STAT5 pro-
motes Bcl-xL gene expression: they found direct
binding of STATS to the Bcl-xL promoter. Since beta
cell mass depends on both cell apoptosis and survival
and Bcl-xL is required to mediate pro-survival effects
in INS-1 cells and primary cells, there is a relationship
between Bcel-xL and beta cell mass.

Mathematical models have been used to elucidate
the balance between replication and apoptosis in beta
cells,*® but no molecular-detailed computational model
exists for the adaptive expansion of beta cells in
response to pregnancy. Here, we use a systems biology
approach to quantitatively analyze the beta cell
response to hormone stimulation. In particular, we use
mathematical modeling to explore the effects of vari-
ous regulatory mechanisms that control signaling.
Experimental data shows that when insulin-secreting
cells of the INS-1 cell line are treated with a constant
concentration of PRL in vitro, the amount of phos-
phorylated STATS (pSTATS) has multiple peaks
within six hours of stimulation.'®™'" The presence of
these peaks is influenced by Suppressors of Cytokine
Signaling (SOCS) genes, which are transcribed in
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response to STAT signaling and exert negative feed-
back on the system. Modeling the cytokine IFN-y in
liver cells, Yamada ez al. found that the presence of a
nuclear phosphatase, in addition to SOCS negative
feedback, are sufficient to cause a decrease in phos-
phorylated STAT after the initial peak, leading to
multiple peaks in phosphorylated STAT dimer in the
nucleus.>” The role of SOCS protein in inhibiting JAK-
STAT signaling was further elucidated by Singh et al.
through joint modeling of JAK-STAT and MAPK
pathways in hepatocytes in response to IL-6.** Par-
ticular to our system of study, JAK-STAT signaling
through the prolactin receptor (PRLR) has been
shown to include positive feedback as nuclear STATS
promotes transcription of PRLR mRNA 2283436

We hypothesize that positive feedback could play a
role in explaining the initial peak, subsequent decline,
then prolonged activation of STATS5 activity in INS-1
cells discovered by Brelje er al. Although these regu-
latory mechanisms significantly influence beta cell sig-
naling, no model to our knowledge explores the
interplay between SOCS feedback and positive regu-
lation of PRL signaling. Therefore, we built upon prior
work in the field to create a computational model of
signaling that promotes adaptive expansion of beta cell
mass in response to pregnancy driven by JAK-STAT
signaling in pancreatic beta cells through PRLR. Our
work is distinct from previous research because we
focus on a different cell type and calibrate our model
using experimental data. Since the kinetics of the sig-
naling pathways and the importance of different reg-
ulatory mechanisms are cell type-dependent, it is
important to fit models to data from the cell type of
interest. We fit our model directly to experimental data
for STATS5 phosphorylation and localization in the
INS-1 cell line. Additionally, we explored up-regula-
tion of the prolactin receptor due to transcriptional
activity of STATS, a control mechanism that is par-
ticularly relevant to pancreatic beta cells and is shown
in the experimental data from Brelje er al.'®'" This
regulatory mechanism has not been explored in any
previous computational models.

We applied the model to investigate the influence of
these regulation mechanisms, individually and in
combination, and found that model structures that
include both positive and negative regulation produce
multiple peaks in STATS phosphorylation within a
tight range of parameter values. By fitting to experi-
mental data using a Bayesian approach for likelihood
estimation of parameter values, we show that the
model can simultaneously predict STATS phosphory-
lation and nuclear translocation. The model predicts a
faster dimerization and nuclear import rate for
STATSB dimers than STATSA, which can explain
their different activation profiles observed experimen-
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FIGURE 1. Model schematic of JAK-STAT signaling in pancreatic beta cells. PRL binds to the PRLR:JAK2 complex (RJ), which

induces receptor dimerization and activation by JAK2 kinase activity. The activated receptor PRL:RJ2* phosphorylates STATS5,
which dimerizes and transports into the nucleus, where it promotes transcription of target genes. Phosphatases attenuate the
signaling at the membrane (SHP-2), in the cytosol (PPX), and in the nucleus (PPN). Signaling modules for ensemble modeling
include (a) STAT5-induced SOCS negative feedback, (b) STAT5-induced receptor up-regulation, and (c) ligand-induced receptor
internalization. Green indicates positive feedback; red indicates inhibition of signaling. ECM, extracellular matrix.

tally. Our experimentally-derived mathematical model
provides a framework to quantitatively understand
lactogenic signaling that mediates the adaptive
expansion of beta cell mass during pregnancy.

RESULTS

Mechanistic Model of JAK-STAT Signaling in Beta
Cells

A mechanistic model of JAK2-STATS signaling
through the prolactin receptor was constructed based
on known reactions from the literature. The model
builds on the prior work of Yamada et al. 2003 mod-
eling control mechanisms in JAK-STAT signal trans-
duction®? and Finley, et al. 2011, which analyzed IL-12
mediated JAK-STAT signaling in T cells.'®

The mechanistic model includes a core network
representing the canonical JAK-STAT signaling cas-
cade, which includes 31 reactions and 24 molecular
species (Fig. 1). Three regulatory modules are included
or excluded from the network in order to consider their
effect on STATS activation. These include (a) SOCS
exerting negative feedback on STATS phosphoryla-
tion, (b) receptor up-regulation due to transcriptional
action of phosphorylated STATS, and (c) internaliza-
tion of the prolactin receptor induced by ligand bind-
ing. Including each regulatory module individually and

in all possible combinations leads to eight model
structures to explore. The full signaling network with
all three regulatory modules included has 47 reactions
and 32 molecular species. A full list of reactions is
included in the supplementary material File S1.

Effect of Different Regulatory Modules on Qualitative
Shape of pSTATS Activation

We defined eight model structures based on inclu-
sion or exclusion of the three regulatory modules from
Fig. 1 and ran Monte Carlo simulations for each
structure to explore model predictions across a wide
area of the parameter space. Here, we varied all
parameter values (i.e., the kinetic reaction rates) and
non-zero initial conditions (see ““Methods’). This en-
ables us to efficiently explore the parameter space and
characterize the simulated dynamics. Each simulation
was classified as “No peak™, “Single Peak”, or
“Multiple Peaks” based on the predicted time course
of STATS phosphorylation (Fig. 2a). Within the
model structures with only one regulatory module in-
cluded, the structure that included SOCS feedback was
most likely to show multiple peaks in STATS phos-
phorylation (Fig. 2b). The structure that included
receptor internalization was most likely to produce a
single peak in STATS phosphorylation. Overall, the
likelihood of randomly sampled parameter sets pro-
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ducing a time course of STATS5 phosphorylation with
multiple peaks was very low for all model structures.
Of the 8 x 10° simulations we performed, only 1614
(0.2% of simulations) exhibited multiple peaks. This
indicates that tight control of the reaction rates is
necessary to achieve the right balance of activation and
attenuation.
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FIGURE 2. Ensemble Modeling Predicts the Number of
Peaks in STAT5 Phosphorylation. (a) Simulated time
courses were classified into three shapes based on the
number of peaks in STAT5 phosphorylation over 6 hours of
PRL stimulation. (b) Bar chart shows the percentage of Monte
Carlo simulations from each model structure that were
classified into each shape shown in panel A. Row labels
correspond to the inclusion or exclusion of regulatory
modules shown in Fig. 1. The data labels in red show the
number of simulations that were classified as ‘“Multiple
Peaks” for each structure. n = 100,000 simulations per
structure (800,000 total). MP Multiple Peaks.
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From the Monte Carlo simulations, model predic-
tions that had multiple peaks in STATS phosphoryla-
tion showed wide variation in the magnitude and time
course of phosphorylation. Therefore, we set out to
define a more detailed classification to understand
which model structures could give rise to STATS
dynamics matching those observed in INS-1 cells,
which show a defined profile for phosphorylated
STATS. Specifically, Brelje and colleagues showed that
STATS reaches an initial peak at approximately 30
min following the initial stimulation, followed by
attenuation between 1 and 3 h, which reduces phos-
phorylation to below 70% of its initial peak. A second
increase is observed after three hours, where phos-
phorylated STATS reaches or exceeds the initial level
of phosphorylation.'!" We first filtered the Monte
Carlo simulations, retaining those that resulted in an
appreciable level of STATS phosphorylation (at least
1% of the initial STATS becomes phosphorylated),
assuming a minimum amount of phosphorylation is
required to promote downstream signaling and cell
response. We then defined eight qualitative shapes of
STATS activation based on the number of peaks and
the time at which the peaks occur. The decision tree
used to classify predicted time courses is shown in
Fig. S1.

This classification enabled a detailed characteriza-
tion of the dynamics of phosphorylated STATS. A
large number of simulations had no peak in STATS
phosphorylation (Fig. 3a) or attenuation of the initial
STATS activation leading to a single peak in pSTATS
(Fig. 3b). A select few parameter sets (0.09%) pro-
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FIGURE 3. Classification of simulations into qualitative shapes. Simulated time course of STAT5 phosphorylation for each shape
shows the mean (solid line) and 95% confidence interval (shaded area) of all Monte Carlo simulations (800,000 total) classified into
that shape. All shapes are mutually exclusive, that is, all simulations were uniquely assigned to one shape (see Fig. S1 for decision
tree). Simulations that did not reach a threshold level of 1% of STAT5 phosphorylated were labeled as “weak activation” and

filtered out, n = 436,731.
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FIGURE 4. Breakdown of simulations matching desired
shape by structure. The y-axis shows the eight model
structures defined by the inclusion or exclusion of the
regulatory modules. Horizontal bars show the percentage
contribution of each model structure to the 101 simulations
that matched the desired shape shown in Fig. 3h.

duced multiple peaks in STATS phosphorylation that
did not match the qualitative shape of experimental
data, such as having more than one oscillation within 6
h (Fig. 3¢) or showing a smaller second peak charac-
teristic of damped oscillation (Fig. 3d). This damped
oscillation profile has been shown in prior modeling of
JAK-STAT signaling**>? but does not explain the
activation profile observed in INS-1 cells treated with
prolactin. Positive feedback can lead to unstable sys-
tems, and some simulations (0.05%) had an early peak
in STATS phosphorylation followed by a large in-
crease in phosphorylation due to strong positive feed-
back (Fig. 3e). Over 2000 (0.36%) simulations had an
initial peak followed by minimal attenuation before
reactivation (Fig. 3f). These simulations are grouped
into early, intermediate, and late simulations to pre-
serve the qualitative shape when pooling simulations
together. Another small group of simulations (0.03%)
had multiple peaks in pSTATS5 but did not match the
time course of the experimental data, either because
the reactivation was too fast (< 3 h) or the initial peak
was too slow (> 1 h) (Fig. 3g).

Finally, a small number of simulations (101) mat-
ched the qualitative shape of the experimental data
(Fig. 3h). Simulations classified as having this desired
shape comprise just over 0.01% of the 800,000 total
simulations, pointing to the necessity of tightly con-
trolled balance of positive feedback and negative
feedback, both in terms of the strength and timescale
of feedback. The eight distinct model structures con-
tributed differently to the fraction of simulations that
match the desired shape (Fig. 4). Although SOCS
inhibition was sufficient to cause multiple peaks in
STATS phosphorylation (Fig. 2), SOCS inhibition

alone was not sufficient to cause an early peak fol-
lowed by prolonged activation (Fig. 4, row 2). Model
structures that included receptor up-regulation, com-
bined with either SOCS inhibition, receptor internal-
ization, or both had the highest likelihood of matching
the desired qualitative shape (Fig. 4, rows 5, 7, and 8).
We found that the likelihood of these three model
structures to match the qualitative shape of STATS
activation was similar even with noise in parameter
values (Fig. S2).

Effect of Parameter Values on Time Course of STATS
Activation

Kinetic parameter values affect the strength of
STATS activation, strength of feedback, and timescale
of feedback. Several parameters from Monte Carlo
simulations were strongly correlated with characteris-
tics of the predicted time course of phosphorylated
STATS5 (Fig. 5a). These characteristics include the
activation strength, the strengths of the negative and
positive feedback, and the times of attenuation and
reactivation (see ‘“Methods” section for more detail).
The Pearson correlation coefficients for each statisti-
cally significant association are shown in Figs. 5b to 5f.
For ease of viewing, we labeled the five parameters in
each panel that had the highest absolute value of cor-
relation coefficient and include the correlation and p-
value for all parameters in Supplemental File S1. The
ratio of the ligand-bound receptor degradation rate to
the unbound receptor degradation rate (deg_ratio) was
highly correlated with four of the five defined charac-
teristics of the pSTATS time course. As expected,
higher values of deg ratio decreased the activation
strength (Fig. 5b), increased the strength of negative
feedback (Fig. 5c¢), and decreased the strength of pos-
itive feedback (Fig. 5d). Increased values of deg_ratio
also led to a shorter timescale of attenuation (Fig. Se)
because the active receptor complex had a shorter half-
life in the cell and therefore less time to phosphorylate
STATS. The parameter k2, the ligand-receptor binding
rate, had a similar effect as deg_ratio on the strength of
feedback and time scale of attenuation (Figs. 5c to 5e).
and timescale of feedback (Figs. 5c to 5f). However, it
was positively correlated with the strength of activa-
tion (see Supplemental File S1). A faster rate of ligand
binding leads to a stronger activation but stronger
negative feedback due to increased internalization of
ligand-bound receptors.

Increased values of the initial concentration of the
receptor:JAK2 complex (RJ) increased the activation
strength (Fig. 5b) and shortened the time of reactiva-
tion (Fig. 5f). With more receptor complexes at the
surface, a larger fraction of STATS can be phospho-
rylated initially and upon reactivation after attenua-
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FIGURE 5. Parameters Correlated with STAT5 phosphorylation. Pearson correlation between each kinetic parameter or initial
value and five quantitative characteristics of the STAT5 phosphorylation time course. (a) lllustration of five characteristics. (b)
Activation strength. (c) Negative feedback strength. (d) Positive feedback strength. (e) Time of attenuation. (f) Time of reactivation.
Only parameters with statistically significant (p < 0 .05) correlations are shown in the waterfall plots. The five parameters most
highly correlated with each characteristic are labeled. RJ initial value of PRLR:JAK2 complex, k6 phosphorylation rate of STAT5, k5
activation rate of JAK2, k4 dimerization rate of PRLR:JAK2 complexes, deg_ratio ratio of degradation rate of ligand-bound receptor
complexes to unbound complexes, k2 ligand binding on rate, k12 rate of dephosphorylation of pSTAT5 by cytoplasmic
phosphatase, PPX initial value of cytoplasmic phosphatase, k77 binding rate of cytoplasmic phosphatase to pSTAT5, k_3 receptor
complex dimerization off rate, k3 receptor complex dimerization on rate. The full list of correlated parameters and their Pearson

correlation values are given in Supplemental File S1.

tion of the initial signal. Predictably, parameters that
govern the rate of interactions critical to STATS acti-
vation (k4, k5, and k6, corresponding to the rate at
which the ligand-bound receptor complex is activated,
binds STATS, and phosphorylates STATS, respec-
tively) were positively correlated with the activation
strength (Fig. 5b). Additionally, increases in k72, the
rate at which cytosolic phosphatase dephosphorylates
STATS, led to stronger negative feedback (Fig. 5¢c),
weaker positive feedback (Fig. 5d), and a faster time-
scale of attenuation (Fig. 5e¢). Overall, this analysis
provides mechanistic insight into how specific bio-
chemical reactions influence key features of STATS
dynamics. Such results can guide experimental studies
to modulate the signaling network to enhance STATS
response.

Model Calibration to STATS Dynamics in INS-1 Cells

The results presented thus far provide a detailed
analysis of the model features that give rise to STATS
dynamics that qualitatively agree with experimental
data. We next aimed to produce a predictive model
that quantitatively matches the data by calibrating the
computational model to the experimental data.
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TABLE 1. Comparison of model structures.

ab- -bc abc*

Range of SSE  0.595-0.751  0.585-0.687 0.424-0.643
Median SSE  0.662 0.639 0.602
AIC (AAIC)T - 79.85(9.25) —89.11(0) — 81.25(7.85)

*Columns represent the model structures defined by inclusion or
exclusion of regulatory modules a, b, ¢ from Fig. 1. A dash
represents exclusion of a given regulatory module.

TA AIC is the AIC for each model structure minus the AIC for the
structure with lowest AIC, which is structure -bc.

Specifically, we fit the model to measurements for the
time course of phosphorylation of JAK2, STATSA
and STATS5B.,!! translocation of STATS5A and
STATSB from the cytoplasm to the nucleus,'' and the
fold change in protein level of the pro-survival
response protein Bel-xL.>!

We chose to fit the three model structures that
produced a reasonable number of simulations (> 5%)
matching the qualitative shape of STATS activation
from ensemble modeling. This included the full model
with all regulatory mechanisms (Fig. 4, row 8) as well
as the model structure that did not include receptor
internalization (Fig. 4, row 5) and that did not include
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FIGURE 6. Model calibration. Model predictions for (a) Phosphorylated JAK2, normalized to the 10 min time point, (b)
Phosphorylated STAT5A, normalized to the 30 min time point, (c) Phosphorylated STAT5B, normalized to the 30-min time point, (d)
Ratio of nuclear to cytosolic STAT5A and STAT5B, and (d) Fold change of Bcl-xL. Lines show mean value of model predictions with
shading indicating the standard deviation across the 1000 parameter sets from the posterior distribution. Squares show
experimental data points from Brelje et al. for panels A, B, C, and D or from Fujinaka et al. for panel E. Error bars are included for
experimental data points that had error bars shown in the previously published work. All experimental data are for INS-1 cells
treated with PRL at 200 ng/mL. Thirty-three parameters were fit simultaneously to the six data sets using a Bayesian likelihood
estimation approach. Dark blue, STAT5A; light blue, STAT5B in (d).

SOCS negative regulation (Fig. 4, row 7). The model
structure that included all three regulatory modules
had the lowest minimum Sum of Squared Errors (SSE)
and median SSE (Table 1). In addition to using the
SSE to evaluate the model fits, we also use the Akaike
Information Criterion (AIC), which allows for com-
parison of model structures with different number of
fitted parameters, penalizing structures that have more
parameters.””** A lower value of AIC indicates a
better fit. The model structure without SOCS negative
feedback had the lowest AIC. This structure fit the
data similarly well as the full model (Fig. S4) and has a
lower number of fitted parameters, leading to a lower
AIC. Our modeling predicts that SOCS negative reg-
ulation is not necessary for early activation, attenua-
tion, and reactivation of STATS5 in pancreatic beta
cells treated with prolactin. Other sources of negative
regulation such as phosphatase action and internal-
ization of ligand-bound receptors, combined with
positive regulation due to STATS-induced receptor
upregulation, can drive the experimentally observed
activation profile.

We focus our analysis on the model that included all
three regulatory modules, as that model structure
produced the lowest SSE and allowed us to probe each

different regulatory mechanism. Model predictions for
this full model are shown in Fig. 6, illustrating that this
structure effectively captured the phosphorylation
dynamics of JAK2 (Fig. 6a), STATSA (Fig. 6b), and
STATSB (Fig. 6¢) as well as the nuclear import
(Fig. 6d) of both STATS5A and STATS5B on the six-
hour timescale. The dynamics of STATS phosphory-
lation and nuclear import share a similar qualitative
shape because phosphorylation is necessary for shut-
tling of STATS to the nucleus.

Interestingly, although STATSA and STATSB show
a similar time course of phosphorylation, they differ in
the amount that is translocated into the nucleus.'®"
The model accounts for separate STATSA and
STATSB species and allows for homo- and hetero-
dimerization with separate rate constants for dimer-
ization, import of phosphorylated dimers into the nu-
cleus, and export of dephosphorylated STATs from
the nucleus. The fitted model predicts that STATSB
homodimers form faster than STAT5A homodimers,
with a ratio of 4.24 £+ 0.03 as compared to the STA-
T5A dimerization rate. The model also predicts the
nuclear import rate to be faster for STAT5B homod-
imers than STATS5A homodimers, with a ratio of
4.94 + 0.03 as compared to the STATSA nuclear im-
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FIGURE 7. Dose Response predictions. (a) Model predicted time course of STAT5B import into the nucleus under various
concentrations of PRL ligand, simulated for 60 minutes. The red dotted line emphasizes the values at the 30 minute time point,
which is plotted in the bar chart in panel B. (b) Model predicted dose response data for 30-min timepoint (blue) compared to
experimental data from Brelje et al. treating rat primary beta cells with PRL (grey). Values are normalized to the amount of STAT5B
in the nucleus with no PRL stimulation (0 ng/mL dose). Error bars for model predictions show standard deviation of predictions

across the 1,000 posterior parameter sets.

port rate. The faster dimerization rate and nuclear
import rate predicted by the model provide a potential
hypothesis for greater STATSB nuclear localization as
compared to STATSA, which has been observed
experimentally.

In addition to predicting the upstream dynamics,
the model also predicts the fold change of Bcl-xL, a
response protein that is induced by pSTATS activity in
the nucleus (Fig. 6e). The model predicts that the fold
change of the pro-survival protein Bcl-xL increases
through 18 h of stimulation with prolactin before
decreasing after 18 h, matching experimental obser-
vations from Fujinaka et al®' that capture how a
single oscillation in STATS activation on the six hour
timescale can lead to a smooth increase in the con-
centration of a response protein on a longer timescale
(Fig. 6e). Taken as a whole, the fitting results suggest
that multiple feedback mechanisms could explain the
observed time courses in STATS5 phosphorylation,
nuclear translocation, and protein response. However,
receptor upregulation is required, and it must be
combined with at least one of the other regulatory
mechanisms (SOCS negative feedback or receptor
internalization). The calibrated model containing all
three regulatory modules produces the best fit to the
data and generates consistent parameter estimates
(Fig. S6).

Dose Response Predictions for Beta Cells Treated
with Prolactin

We next aimed to use the parameterized model to
make new predictions for STATS signaling through
the prolactin receptor. We tested six concentrations of
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prolactin used by Brelje er al.''to treat rat primary
beta cells in vitro and found that higher concentra-
tions of prolactin lead to a greater magnitude of
STATSB translocation to the nucleus and an earlier
peak in STATSB translocation (Fig. 7a). We quanti-
fied the amount of STAT5B translocation at the 30
min time point in order to compare to experimental
measurements using immunohistochemistry from
Brelje et al. We found that the model predictions
match the qualitative shape of the experimentally
determined dose response curve (Fig. 7b), showing a
biphasic response, in which the STATS5B level
increases with increasing stimulation before decreas-
ing. However, there are differences between the model
predictions and experimental data. Specifically, the
model predicts an increase in STATS5B translocation
at the 30-min timepoint (Fig. 7b, blue bars) with
increasing hormone concentration, with the maximal
response occurring at a dose of 500 ng/mL. In com-
parison, the peak response occurs at the 1000 ng/mL
dose in the experimental data (Fig. 7b, grey bars).
Given that the model produces the full time-course of
STATS levels, we can investigate why there is this
difference between model and experiments. The
model predicts that the attenuation of the initial
STATS activation occurs more rapidly for higher
doses of PRL such that attenuation has already re-
duced STATS levels by the 30-min timepoint
(Fig. 7a). This difference in the timing may be due to
having calibrated the model using data from INS-1
cells treated with prolactin rather than rat primary
beta cells. Multiple studies point to differences in
enzyme catalytic rates in different biological set-
tings.'>>*
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FIGURE 8. Model perturbations. (a) The effect of varying the initial ligand-binding rate k2 and the cytosolic phosphatase
dephosphorylation rate k72 between 0.1-fold and 10-fold of the fitted parameter values. (b) Varying the initial values of the receptor-
JAK2 complex RJ and the cytosolic phosphatase PPX between 0.1- and 10-fold of the fitted values. Coloring of the heat map
indicates the initial peak in the STAT5B cytoplasm to nucleus ratio averaged across the 1000 posterior parameter sets.

Perturbing the Fitted Model

Next, we examined the influence of varying indi-
vidual parameters and initial values on model predic-
tions. We varied each parameter or initial value that
was determined by ensemble modeling to have a large
impact on one of the various aspects of STATS acti-
vation (large correlation values in Figs. 5b to 5f)
individually within two orders of magnitude of the
fitted values. Changing individual parameter and ini-
tial values altered both the strength of activation and
the feedback dynamics, suggesting that the feedback
system can be modulated.

We chose to investigate in detail two of the highest
ranking influential kinetic parameters and initial val-
ues, based on their ability to strongly modulate mul-
tiple aspects of STATS activation. We predicted the
time course of model species in response to changes in
parameter values (Fig. S12) and quantified the initial
peak in STATSB nucleus to cytoplasm ratio, which
represents the strength of activation of the system
(Fig. 8). When varying the PRL ligand binding rate
(k2) and the cytosolic phosphatase dephosphorylation
rate (k12) two orders of magnitude, we found that the
activation of STATS was more sensitive to changes in
the ligand binding rate, as indicated by the increase in
activation along the y-axis (Fig. 8a). The phosphatase
did modulate activation, with higher values of k/2
leading to lower activation, but the effect is less pro-
nounced than that of k2. A similar result was obtained
when varying the initial value of the receptor complex
(RJ) and the cytosolic phosphatase (PPX). The acti-
vation was increased greatly when the initial value RJ
approached ten times its fitted value (Fig. 8b). Higher
initial values of PPX decreased the strength of initial

value, but again, this effect is less pronounced than
modulating signaling at the receptor level. In this case,
when the initial concentration of RJ is too low or that
of PPX is too high, there is no distinct peak for the
nuclear to cytoplasmic ratio of STAT5B (indicated by
the value 0 in Fig. 8b). This can be explained, as low
RJ would prevent the prolactin input signal from being
transduced, and high PPX would strongly attenuate
the signal.

Based on these simulation results, we conclude that
targeting reactions upstream in the signaling network
has a larger impact on the activation of STATS, as
compared to directly targeting regulatory reactions in
the signaling cascade. Interestingly, changing these two
sets of parameters produces nonlinear effects, as indi-
cated by the curved isoclines in Fig. 8. Overall, the
model is useful in predicting how altering kinetic
parameters and species’ concentrations influences sig-
naling dynamics that directly mediate pro-survival
signaling.

DISCUSSION

Our mechanistic model of JAK-STAT signaling in
pancreatic beta cells captures key dynamics of STATS
activation via phosphorylation by the PRLR-JAK?2
complex, followed by import of phosphorylated
STATS dimers into the nucleus. The model differenti-
ates between STATSA and STATS5B and identifies the
kinetic rate parameters that are able to explain exper-
imentally observed differences in the amount of the
STATS5A and STATS5B entering the nucleus under
prolactin stimulation.'®™'"  Specifically, the model
shows that the rates of dimerization and translocation
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can account for the experimental measurements. This
mechanistic insight is relevant, as it has been hypoth-
esized that this differential expression of STATSA and
STATSB in the nuclear and cytosolic forms may be a
form of tissue-specific regulation of JAK-STAT sig-
naling,” arising from their differential affinity for
STATS target genes.® The model simultaneously pre-
dicts experimental data for upstream activation of
STATS and fold change of the response protein Bcl-xLL
to the same hormonal stimulus.

In addition, the model was used to predict the dose
response of STATS nuclear import under different
concentrations of prolactin. This demonstrates the
predictive capability of the model since the simulated
dose response curve qualitatively matched the experi-
mentally observed dose response data, which was not
used for parameter estimation. In addition, we establish
that although the model was calibrated using data from
INS-1 cells, it can reproduce observations obtained
using rat primary pancreatic beta cells. This is a par-
ticularly important point since INS-1 cells, while used as
a model of primary beta cells, exhibit quantitative dif-
ferences in their metabolism®® and insulin secretion in
response to glucose,*” as compared to healthy beta cells.

The model includes reactions known to drive JAK-
STAT signaling in pancreatic beta cells. There are a
multitude of feedback modules affecting the signal
transduction pathway,*>** and we chose to explicitly
explore the role of different feedback modules on the
activation of STATS through ensemble modeling. We
hypothesized that positive feedback through STATS-
induced receptor up-regulation could explain the
reactivation of STATS in INS-1 cells to a magnitude
greater than the initial activation.'®'" Classifying
Monte Carlo simulated time courses by their qualita-
tive shapes revealed that model structures with both
receptor up-regulation and an inhibitory module
(whether that be SOCS feedback of receptor internal-
ization) were most likely to show reactivation of
STATS matching the shape of the experimental data.
Quantifying the impact of different parameter values
on the time course of STATS activation helped us
define which parameters drive the dynamics. An
increased ligand-bound receptor degradation rate, for
example, decreased the strength of activation and
timescale of feedback while increasing the negative
feedback strength. We followed up on the most influ-
ential parameters from ensemble modeling by varying
them within the fitted model. Our simulations predict
that modulating signaling at the receptor level pro-
duces larger increases in STATS activation than
altering the effect of an individual feedback mechanism
(cytosolic phosphatase). This information is relevant
for researchers aiming to enhance beta cell survival
through activation of the JAK-STAT pathway. Ulti-
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mately, we found that multiple model structures could
fit the data well (Table 1), but there were emergent
properties that were consistent across model struc-
tures, such as a faster rate of STATSB dimerization
and nuclear import, as compared to STATSA.

We acknowledge some limitations of our work.
Although the model predictions reproduce key aspects
of the activation profile of STATS in INS-1 cells
treated with prolactin, the model does not match
experimental data for the 4-hour time point of
pSTATS5A and the 4 and 6-h time points of pPSTATSB
(Figs. 6b, and 6¢). Although error bars were not in-
cluded in the literature-derived data,'' we expect that
there is greater uncertainty in phosphorylation mea-
surements at later time points, as indicated by different
quantitative values for pPSTATSA and pSTATSB when
the authors repeated the experiment in INS-1 cells in
future work.'®!! Additionally, the model predicts a
larger decrease in STATS5B upon initial attenuation
than experimental data implies and a larger upward
trajectory between 4 and 6 h (Fig. 6d). These discrep-
ancies between model predictions and experimental
data are likely due to the fact that in our model,
STATS cannot be shuttled into the nucleus unless
phosphorylated first, so dynamics of nuclear import
are tied to the phosphorylation dynamics. In a living
cell, additional factors likely affect the nuclear import
of STATS such as other signaling pathways and con-
centration of importin proteins, which were not
accounted for in our computational model. Our model
predicts JAK-STAT signaling within the cell. Further
work is required to integrate signaling across many
cells to understand how JAK-STAT signaling can
drive changes in beta cell mass. Lastly, we only con-
sider JAK-STAT signaling through the PRLR. Other
pathways, such as PI3K and MAPK cascades, have
shown to be important in beta cell signaling.®*"*’
Future work can build on our model of JAK-STAT
signaling to encompass other signaling pathways as
well, as has been done for the JAK-STAT and MAPK
activation in response to IL6 in hepatocytes.*

Despite these limitations, our model motivates new
experiments that can better elucidate the role of regu-
latory elements in JAK-STAT signaling. Previous
work has demonstrated that using principles of opti-
mal experimental design can reduce uncertainty in
parameter estimation.®*’ Based on our findings, mul-
tiple possible inhibitory mechanisms could explain the
observed time course of STATS phosphorylation. By
designing a time course stimulus of PRL on INS-1 cells
that aims to discriminate between these different model
structures, one could experimentally test which mech-
anism is most likely to occur within the cell. This in-
depth exploration of signal transduction would benefit
pre-clinical researchers trying to design a therapy
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aimed at increasing beta cell mass in model organisms
of diabetes.

Taken as a whole, our work points to the impor-
tance of regulatory modules in JAK-STAT signaling
within pancreatic beta cells. Our model predicts that
positive feedback combined with inhibition, be that
through negative feedback or enhanced degradation
rate, can drive a single oscillation in STATS phos-
phorylation within 6 h, followed by a second peak that
is higher than the first. Based on the rarity of this
behavior occurring within the wide parameter space
sampled, we contend that the kinetic rate parameters
within the cell must be well constrained to balance
positive and negative feedback and achieve this
behavior. In line with this hypothesis, the kinetic
parameters predicted by our model when fitting to
experimental data were tightly constrained (Figs. S5—
S7).

Excitingly, the mechanistic insight as to the detailed
effects of the regulatory modules provides quantitative
information needed to identify strategies to increase
beta cell survival. The ability to increase the beta cell
mass in vivo could be a powerful new therapy for the
treatment of diabetes.'* Hormonal stimulus seeks to
recapitulate the islet adaptation to pregnancy” and has
already achieved beta cell proliferation in rodent
models’ in both female and male rodents.”* Despite
these advances, potential therapies have failed to
realize the same gains in beta cell proliferation in
humans,®'>?"*7  pointing to a need for better
understanding of regulatory mechanisms through the
PRLR-JAK-STAT pathway.'? Here, we provide evi-
dence that feedback modules play a key role in regu-
lation of JAK-STAT signaling within a computational
model relevant to the pancreatic beta cell. We also
show that modulating upstream parameters such as the
ligand binding rate and the initial value of receptor
complexes can increase PRL-mediated STATS activa-
tion. We acknowledge the dependence of our model
predictions on the accuracy of the model structure, and
therefore explored several potential structures through
ensemble modeling. The inclusion and exclusion of
different regulatory modules gives insight into their
relative importance and helps us understand the
important predicted behaviors that emerge across
multiple model structures.

METHODS

Model Construction

A mathematical model was constructed to describe
the reaction kinetics of JAK2 and STATS signaling in
pancreatic beta cells. The model is comprised of ordi-

nary differential equations, which describe how the
concentrations of the molecular species in the reaction
network evolve over time. Our model builds on the
reactions and kinetic parameters from the work of
Yamada et al., who modeled control mechanisms of
the JAK-STAT pathway in response to interferon-y
(IFN- y) signaling.>? The model was adapted to include
2:1 ligand to receptor stoichiometry, which has been
shown for the binding of prolactin (PRL) to the pro-
lactin receptor (PRLR).”!” Literature evidence shows
that in humans'® and rats,'> prolactin has cyclic
dynamics and rhythmic secretion. The timescale of
these dynamics is likely different in the in vitro setting;
however, to account for a decrease in prolactin levels
over the timescale considered here, we included pro-
lactin degradation. In the absence of experimental data
for the half-life of prolactin, we assumed it is similar to
that of estrogen (5-6 h) in MCF-7 cells.* The receptor
is assumed to be pre-associated with JAK2 (repre-
sented by the species RJ) since JAK?2 is constitutively
associated with the prolactin receptor.”'”** Once two
RJ complexes are bound to one PRL hormone, the
complex becomes activated. The receptor complex RJ
has degradation and synthesis rates corresponding to a
half-life on the cell membrane of 45 min.'® Once the
ligand is bound, the receptor has a higher degradation
rate, which represents internalization of the ligated
receptor to the endosome.'"!°

The activated receptor complex binds to the
cytosolic form of STATS reversibly, and once bound,
releases a phosphorylated form of STATS due to the
kinase activity of JAK2. The pSTATS molecules
dimerize in the cytosol and are transported into the
nucleus. Three phosphatases are included in the
model, which serve to attenuate the signaling after
initial ligand binding: SH2 domain-containing tyr-
osine phosphatase 2 (SHP-2) dephosphorylates the
activated receptor-JAK complex, and phosphatases in
the cytosol and nucleus (termed PPX and PPN,
respectively) dephosphorylate STATS species.’> The
phosphatase action is a form of negative feedback
shown to be necessary for attenuation of STAT
activation.”® pSTAT molecules are shuttled out of the
nucleus when they are not dimerized with another
molecule. The phosphorylated STATS5 dimer pro-
motes transcription of several target genes once in the
nucleus. Specifically, we include SOCS, the prolactin
receptor, and the pro-survival protein Bcl-xL as
STATS targets. It has been shown that SOCS pro-
teins bind competitively to the receptor JAK com-
plexes and also target the receptors for
ubiquitination-based degradation.”>® These mecha-
nisms were incorporated in the model rather than the
non-competitive binding used by Yamada er al.>*
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STATS dimers promote transcription of mRNA for
the prolactin receptor. This has been shown in vitro in
INS-1 cells* and in vivo during pregnancy in mice.
This positive feedback mechanism may play a role in
the islet response to pregnancy>® and has not been
explored computationally before. The phosphorylated
STATS dimer in the nucleus also promotes transcrip-
tion of cell-cycle genes such as cyclin D proteins®>*
and anti-apoptotic species such as Bcl-family pro-
teins.”>* We included a module for the STAT5-me-
diated transcription and translation of the response
protein Bel-xL. A full list of reactions is included in the
supplementary File SI. MATLAB was used to carry
out model simulations, and statistical analyses of the
simulated results were performed using R statistical
computing language.*® All of the code necessary to run
the simulations and produce all figures is publicly
available at: https://github.com/FinleyLabUSC/JAK-
STAT-Regulation-CAMB.

Ensemble Modeling

The three optional modules (Fig. 1) were included
or excluded from the core model. The induction of
SOCS in response to STATS activation and its subse-
quent negative feedback on JAK-STAT signaling was
the first optional module. The positive regulation due
to up-regulation of the PRL receptor in response to
activated STATS was the second optional module. The
third optional module was receptor internalization, as
represented by an enhanced degradation rate for li-
gand-bound receptors. The three optional modules
were included in different combinations to produce
eight possible model structures.

For each model structure, 100,000 Monte Carlo
simulations were performed by sampling all free
parameters and initial values from a log-uniform dis-
tribution. The parameters and initial values were var-
ied two orders of magnitude above and below the
initial guess (taken from previous models and literature
evidence—see Supplementary File S1 ‘“Parameters”
and “Initial Values” spreadsheets). The total amount
of phosphorylated STATS was calculated by summing
together all forms of pSTATS and multiplying by two
if the molecule included a STAT dimer with both
STAT molecules phosphorylated.

We analyzed the features of the pSTATS concen-
tration over time. The definitions of the characteristics
of the pSTAT activation illustrated in Fig. Sa are as
follows:

Maximum pSTAT

Activation strength = Total pSTAT
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Minimum pSTAT after first peak

Negative FB St th=1-
cealive reng pSTAT at first peak

Maximum pSTAT after first peak
pSTAT at first peak

Positive FB Strength =

Time of attenuation = Time (hr.) of first peak

Time of reactivation = First time(hr.) in which
pSTATgoes from decreasing to increasing

The number of peaks in total pSTATS was quantified
using the Matlab findpeaks function, which returned
the value of total pSTATS at local maxima as well as
the time of the peak in hours. Thresholds for the
findpeaks function were defined to have a minimum
distance between peaks of 20 min and a minimum peak
prominence of 0.1% to avoid identifying noise in the
data as peaks (see MATLAB findpeaks documenta-
tion).

A detailed shape classification was performed based
on the decision tree in Fig. S1 implemented through if
statements in our MATLAB script. Parameter corre-
lations were calculated in R using the cor function. The
correlations shown in Fig. 5 are calculated using
Monte Carlo simulations from the full model structure
that included all three regulatory modules. Correla-
tions with activation strength were calculated using all
100,000 simulations. Correlations with negative FB
strength, positive FB strength, and time of attenuation
could only be calculated for simulations that had a
peak, n = 58,265. Correlations with the time of reac-
tivation could only be calculated for simulations that
had reactivation, n = 11,123.

Model Calibration
Sensitivity Analysis

A total of 33 parameters were chosen to fit to the 37
experimental data points based on a global sensitivity
analysis. We used the extended Fourier Analysis Sen-
sitivity Test (eFAST) to determine which parameters
significantly influence the model predictions.’’ The
eFAST method uses a variance decomposition method
to determine the sensitivity of model outputs to model
inputs. The first-order sensitivity S; quantifies the
fraction of variance in model output that is explained
by the input variance in the parameter i.
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We calculated the first-order sensitivity of each ki-
netic parameter and non-zero initial value, with the
output being all species’ concentrations predicted by
our model. We also estimated the total-order sensi-
tivity Sty for each kinetic parameter and initial value.
Sti is calculated as one minus the summed sensitivity
index of complementary parameters Sc; which is de-
fined as all parameters except parameter 1.

Sti =1 =S¢

In order to determine which parameters to fit to
experimental data, we compared the total-order sen-
sitivity index for all kinetic parameters and initial
values on the predicted model outputs: phosphorylated
STATSA (pSTATA), phosphorylated STATS5B
(pSTATB), nuclear to cytoplasm ratio of STATSA
(STATS5A,/STATSA,), and the nuclear to cytoplasm
ratio of STATSB (STATSB,/STATSB,). Although we
calculated S7; for each parameter on all model outputs,
we chose to focus on the effect of each parameter on
those four model predictions because they are used in
the objective function in model calibration (see below).

We took the mean St; for each parameter or initial
value over each of the four model outputs listed above
at each timepoint for which we had experimental data
from the literature. These sensitivity indices are in-
cluded in the Supplementary File S1 on the sheet
“Sensitivity Analysis.” The parameters and initial
values that had a mean St; greater than that of the
dummy variable, a factitious input which has no effect
on model structure, were chosen as parameters to be
fitted. In addition, the parameter k30a, which is the
maximal rate of transcription of the PRLR receptor in
response to STATS binding, was added to the
parameter list because no kinetic parameter affecting
the positive feedback module emerged from sensitivity
analysis. In order to deconvolute the fact that the
dimerization and shuttling rates of the different forms
of STATS would likely be correlated, we defined the
following multiplicative factors:

k8B k8AB
k14B k14A4B
k17B
multl7TB = 1A

The parameters k84 and k8B describe the rate of
homodimerization of STATS5A and STATSB respec-
tively while k84 B represents the rate of heterodimer-
ization. The parameters ki4A, ki4B, and kI4AB
represent the rate of nuclear import of dimerized

STATS5A dimers, STAT5B dimers, and heterodimers
respectively. The parameters k174 and k17B represent
the nuclear export rate of unphosphorylated STATSA
and STATSB respectively.

Parameter Estimation

Parameter fitting was performed by fitting the
model simultaneously to all of the experimental data
used for likelihood estimation. The amount of phos-
phorylated JAK2, phosphorylated STATS5A, and
phosphorylated STATS5B at the 10 min, 30 min, 1 h, 2
h, 4 h, and 6 h timepoints were quantified using Plot
Digitizer (Java) from Brelje ez al. Fig. 7."' The nucleus
to cytoplasm ratio of STATSA and STATSB at the 30
min, 1 h 1.5 h, 3 h, and 6 h. timepoints and the 5 min,
15 min, 30 min, 1 h, 2h, 3h, 4 h, 5h, and 6 h. time-
points respectively were quantified using Plot Digitizer
from Brelje et al. Fig. 6 results for INS-1 cells.'" The
fold change of the anti-apoptotic protein Bcl-xL in
response for the timepoints 2, 4, 6, 8, 12, 18, and 24 h
were quantified using Plot Digitizer on Fujinaka et al.
Fig. 7e.>' All experimental data from both papers was
for INS-1 cells treated with 200 ng/mL of PRL.

A total of 50 independent fits were performed for
each model structure using a Bayesian approach for
likelihood estimation.”***

Our group recently used this approach to calibrate a
model of Natural Killer cell signaling,”” and we
implemented the same algorithm in the current study.
We assume the parameters are random variables and
estimate the distributions of their values using a
Bayesian. Thus, we maximized the posterior density
f(0]y) of the parameters, 6, given the available experi-
mental data, y, using the Metropolis-Hastings (MH)
algorithm. In brief, Bayes’ theorem describes the rela-
tionship between the posterior distribution to be
maximized and the known (or assumed) prior distri-
bution

JWI0)/16)
)
where represents the data likelihood function, f{0) is
our prior knowledge on 0 and f{y) is the probability of
the data. Here, is constant, as the experimental mea-
surements are known. The likelihood function esti-
mates the goodness of fit of a model given the
unknown parameter values. It captures the error, € ,
between the model predictions and the experimental
data: €=y — M(0) (both y and are vectors). Thus, the

likelihood function is directly related to the error:

f18,0%) £ f(e) = f(y — M(0)) ~ N(0,02).

J0ly) = o< f(¥10)110),
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We make the assumption that y is normally distributed
with mean equal to zero and variance equal to ¢>. We

can marginalize out the noise from f(y|0,0?) by

2

assuming an inverse gamma distribution over ¢~ and

integrating with respect to ¢ to attain
o0
f(v10) :/fyIG a*)f(a*)da’
0

The density of the likelihood function is at its maxi-
mum when y = M(0) since is centered at zero. There-
fore, maximizing the posterior density is equivalent to
minimizing the error between the model prediction and
the experimental data. We cannot solve for analytically
since is a nonlinear operator, so we employ the Me-
tropolis—Hastings (MH) algorithm®**® to sample from
the posterior distribution, which is the target distri-
bution. The prior distribution remains fixed over all
iterations while the proposal distribution re-centers
around parameters 0" that minimize the error between
the model and the data.

Since this parameter estimation approach is proba-
bilistic, we simulated the MH algorithm 50 indepen-
dent times with a random initial guess for the
parameter values. Within each independent fit, 10,000
iterations on the parameter values were performed to
effectively sample from the posterior distribution for
each parameter value. The first several thousand iter-
ations of the MH algorithm serve to maximize the
posterior density, thereby converging the initial esti-
mate of the posterior distribution closer to the true
posterior distribution. This is known as the burning-in

phase. Once the algorithm converges, then each 0
(for i sufficiently large) will be a sample from the
posterior distribution. We discarded the first 9000
iterations, retaining the last 1000 iterations. We note
that we do not make the assumption that the param-
eters have unique values. Rather, the Bayesian
approach assumes that the parameters are random
variables, and a distribution is imposed on them (f{0),
the prior distribution). Examining the posterior dis-
tribution provides an indication of whether the esti-
mated parameters are identifiable, given the
experimental data available for fitting. We show the
posterior distribution of each parameter in Figs. S5-S7
for model structures 5, 7, and 8, respectively. These
figures demonstrate that the parameters are well be-
haved: the distributions are unimodal, and the values
lie within a tight range. In addition, we provide diag-
nostic information in the form of trace plots to further
demonstrate that the parameters are identifiable
(Figs. S8-S10 for model structures 5, 7, and 8,
respectively).
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For model structures 5 and 7, the best fit was taken
to be the independent fit with the lowest median error
within the last 1000 iterations. For model structure 8,
the best fit was taken to be the independent fit with the
second lowest median error within the last 1000 itera-
tions since the independent fit with the lowest median
error had fluctuations in parameter values within the
last 1000 iterations.

We used the Akaike Information Criterion (AIC) to
compare model structures with various combinations
of regulatory mechanisms. For Table 1, AIC was cal-
culated from median sum of squared error (SSE) val-
ues for each model structure as:

E
AIC =n x log(%) + 2k

where 7 is the number of data points, SSE is the
median error, and k is the number of parameters used
to fit the model.

To display the results for Fig. 6 and Figs. S3 and S4,
the predicted time courses were simulated for each of
the 1000 parameter sets from the posterior. The mean
and standard deviation of the model predictions were
quantified and shown. For dose response predictions
(Fig. 7), the dose response data for rat primary beta
cells was quantified using Plot Digitizer from Brelje
et al. Fig. 13."
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